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Abstract: In this study, dynamic characteristics of a composite beam with uncertain design parameters
are analyzed. Uncertain-but-bounded parameters change only within certain specified limits. This
study uses interval analysis to investigate a composite beam with viscoelastic layers whose behavior
is described using the fractional Zener model. In general, parameters describing both elastic and
viscoelastic layers can be uncertain. Several methods have been studied to determine the lower
and upper bounds of the dynamic characteristics of a structure. Among them, the vertex method
is a comparative method in which the lower and upper bounds of the dynamic characteristics are
approximated using the first- and second-order Taylor series expansion. An algorithm to determine
the critical combination of uncertain design parameters has also been described. Numerical examples
demonstrate the effectiveness of the presented methods and the possibility of applying them to the
analysis of systems with numerous uncertain parameters and high uncertainties.

Keywords: composite beam; uncertainty; fractional Zener model; dynamic characteristics; interval
analysis

1. Introduction

An important issue while solving engineering-related problems is taking into account
the uncertainty of design parameters. Many parameters may have physical and geometric
uncertainties as a result of modeling inaccuracies, measurement errors, manufacturing
errors, etc. Parameter uncertainties can be dealt with using three methods: probabilistic
methods, fuzzy theory, and interval values. In probabilistic methods, the parameters
are described as random variables, assuming that the probability distribution is known.
Some examples of probabilistic methods are the Monte Carlo method [1], perturbation
techniques [2], and spectral methods [3]. However, probabilistic methods are often labor
intensive. The fuzzy theory method is used to analyze uncertainties especially when
sufficiently reliable stochastic data are not available [4]. In the interval values method,
uncertainties are modeled as interval values, whose parameters are uncertain but bounded.

In 1979, Moore [5] introduced the concept of interval analysis. Since then, this method
has been used to address numerous static and dynamic problems. In [6], interval analysis
was used to solve the eigenproblem of systems with uncertain parameters. The interval
finite element method was used in [7,8], where the eigenvalue problem of systems with
parameters described by interval values was addressed. The mass and stiffness matrices
were expressed using the matrix perturbation theory. In [9], this method was applied in
damped systems. In [10], it was demonstrated that the range of the structure response
obtained using the perturbation theory, together with the interval analysis, includes the
range obtained by the probabilistic method.

In [11], the modal interval analysis method was used to analyze natural frequencies,
eigenvectors, and frequency response functions.

The solution for systems with uncertain-but-bounded parameters can also be deter-
mined using the vertex method [12,13]. This method assumes that the solution is sought
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only for the limit values of the parameters and consists in solving the problem for each
combination of them. Thus, it is necessary to select the lower and upper limits of the struc-
ture response among the solutions obtained. This method yields an exact or close-to-exact
solution but is labor intensive as it requires 2" combinations of parameters (where 7 is the
number of uncertain parameters).

Hence, numerous other methods for calculating the lower and upper bounds of the
response function have recently been proposed. In [14], to determine natural frequencies, a
combination of the interval finite element method with the element-by-element approach
was presented. The advantage of this approach is that overestimation of the obtained
solution is prevented. A similar approach was used in [15] to determine the lower and
upper limits of frequency response functions. In this approach, equations describing the
dynamic response of the structure are written as a system of interval linear equations,
which is solved iteratively using Brouwer’s fixed-point theorem. In [16], the frequency
response function was analyzed using the Laplace transform, but this method is suitable
only for small uncertainties. In [17], a method for deriving approximate explicit expressions
of frequency response functions was presented.

In [18], the time response of a structure with uncertainties that are described as
random and/or interval quantities was presented. In this study, three models of uncertainty
were proposed: the first applied the generalized polynomial chaos theory to uncertainties
described as random quantities, the second used the Legendre metamodel to uncertainties
described as interval quantities, whereas the third was a hybrid one that takes into account
the possibility of both random and interval uncertainties.

In [19], the dynamic response of the structure, which is subjected to uncertain excita-
tions, was analyzed. In this method, quadratic programming with a bivalent constraint at
each time point was applied to determine the response limit of the structure. Uncertain-
but-bounded external loads were analyzed in [20], in which a nonprobability modal su-
perposition method was proposed. The obtained solution area was wider than that in
the case of using the probabilistic approach, but this method was definitely less laborious.
In [21], Chebyshev polynomials were used to estimate the limits of the dynamic response
of systems with uncertain parameters.

Furthermore, the lower and upper limits of the structure response can be obtained by
expanding the expected value into a Taylor series, as shown in [22], in which the Taylor
series expansion was used to estimate the range of the nonlinear response of the structure
with uncertainties. The second-order Taylor series expansion was used in [23] to determine
the limits of natural frequencies. In [24], the second-order Taylor series expansion was used
to determine the critical combination of uncertain parameters, i.e., the combination for
which the structure response takes the minimum and maximum values. In addition, this
method does not require much computational effort. The first- and second-order Taylor
series expansion was also used in [25], where the solution of the eigenvalue problem and
frequency response functions for systems with viscoelastic dampers were analyzed. In [26],
uncertainties of a system with viscoelastic dampers were analyzed using a probabilistic
approach.

In [27], stochastic analysis was applied to systems with uncertain-but-bounded param-
eters. This method adopted a first-order approximation of the random response obtained
by improving the interval analysis based on affine arithmetic. In [28], a hybrid stochastic
and interval approach was used to analyze systems with mixed random and interval pa-
rameters. The expressions of mean values and the variance of the considered quantity were
derived using the perturbation method and the random interval moment method. Interval
analysis was used to determine the limits of these probabilistic quantities. The advantage
of this approach is that it can be applied to all of the following scenarios: only random,
only interval, and mixed parameters.

Interval analysis can also be applied to problems related to the structure design process.
In [29,30], it was used to optimize systems with uncertainties, whereas in [31], it was used
to analyze the nodes of the structure subjected to dynamic effects. Interval analysis was
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also used to model the nodes of the structure and hence to find the connections whose
stiffness change would have a positive effect on the structure response. Furthermore, it
was used in the analysis of systems with uncertainties that use an active vibration control
system [32].

In Table 1, a brief overview as well as the advantages and disadvantages of three main
groups of methods used for analyzing systems with uncertainties are presented. It is worth
noting that the choice of an appropriate method depends on the nature of the problem and
the available data.

Table 1. Methods used for the analysis of systems with uncertainties.

Method

Characteristics/Advantages and Disadvantages

Probabilistic methods
[1-3]

Fuzzy theory methods
[4]

Methods based on interval analysis

[6-26,29-32]

Hybrid methods
[27,28]

Parameters are assumed as random variables, and their probability distributions are
estimated based on available data.
Advantage:
- allow for considering a wide range of probability distribution.
Disadvantages:

- require a large number of samples;
- may introduce simplifications.

Parameters are described as fuzzy sets.
Advantage:

- canbe applied in cases where probability distribution is lacking.
Disadvantages:

- mathematical operations on fuzzy sets can be time consuming;

- may be less precise than probabilistic methods.
Parameters are modeled as intervals with uncertain-but-bounded values.
Advantages:

- allow for incorporating uncertain parameter ranges without the need for
knowledge about its distribution;

- enable the calculation of upper and lower bounds of results;

- relatively easy to code.

Disadvantage:

- can lead to a wide range of possible results.

A combination of different methods, such as probabilistic, fuzzy, or interval-based.

In this study, a composite beam with viscoelastic layers was considered. It is assumed
that design parameters change within certain specified limits. Interval analysis was used to
determine the dynamic response of the structure in the form of dynamic characteristics.
Their limits were expressed as the first- and second-order Taylor series expansions. The
solutions obtained were compared with those calculated using the vertex method, which
can be adopted as a comparative method. This study also presented an algorithm that can
obtain a critical combination of uncertain parameters, just like the vertex method, but it is
much less laborious. In addition, this algorithm can also be used for large uncertainties and
when the number of uncertain parameters is large. Only a few studies have been conducted
on composite structures with viscoelastic layers in which parameters are uncertain. In [33],
such a structure was analyzed, but using the Monte Carlo method. In the present study,
much less labor-intensive methods were used for composite structures. These methods can
determine the response of structures with uncertain parameters. The Taylor series expan-
sion and the algorithm for determining the critical combination of parameters were applied
to a composite beam with viscoelastic layers described by the fractional Zener model for
the first time. In addition, large uncertainties of design parameters were considered. The
presented methods belong to the methods based on interval analysis, whose advantages
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and disadvantages are presented in Table 1. The aim of the study is to compare the pre-
sented methods and their effectiveness for small and large uncertainties of parameters in
composite beams with viscoelastic layers.

This paper starts with an introduction. Then, in Section 2, a brief description of the
structure under consideration and the method used to determine the dynamic character-
istics are presented. Section 3 describes the basic assumptions of interval analysis. Then,
methods for calculating dynamic characteristics of structures with uncertain parameters are
presented. In Section 4 the algorithm for determining the critical combination of parameters
is shown. In Section 5, numerical examples are presented that confirm the applicability of
these methods to composite systems. The paper ends with conclusions.

2. Finite Element Formulation of Composite Beam with Viscoelastic Layers

An element of a composite beam in which the viscoelastic layer is bounded by two
elastic layers was considered (Figure 1). The influence of linear and rotational inertia forces
was taken into account, and out-of-plane deformation was neglected. The Euler-Bernoulli
beam theory was used to describe the elastic layer, and the Timoshenko beam theory was
used to describe the viscoelastic layer. Each layer was modeled as a two-node element
(Figure 2). The behavior of the viscoelastic material was modeled using the fractional Zener
model [34]. All layers were assumed to be perfectly glued. The elastic and viscoelastic
layers were modeled following [35], where this issue is described in detail.

(a) element e
elastic layers , ! viscoelastic layer
(b) element ¢

\
elastic layers / \viscoelastic layer

(© element e

.\
elastic layers % \\Viscoelastic layers

(d) element e

| /AN J
elastic layers % \ viscoelastic layer

Figure 1. Multilayered elements: (a) elastic core laminated on the top, (b) elastic core laminated on

the bottom, (c) elastic core laminated on both sides, and (d) sandwich element.

>
@(% —————————————————————————————————————————— }»uzk

\J
w1 w2

Figure 2. kth layer of element e (modeled as a beam finite element).

2.1. Elastic Layers

According to the Euler-Bernoulli theory, the cross-section of a layer is infinitely rigid.
It remains plane after deformation and perpendicular to the beam deformation axis.

If uy is the horizontal displacement in the center of the kth elastic layer, w is the vertical
displacement, and 6 is the angle between a normal to the cross-section before and after
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deformation (¢ = 6 = dw/0x), the displacement field of the kth elastic layer is expressed
as follows:

ue(x,t) = Ni(x)q,(t) @

T
where ug(x, t) = [ug(x,t), w(x,t), 60(x,t)]" and qp(t) = [ugx(t), ua(t), wi(t), @i(t),
wy(t), @2(t)]T is vector of nodal displacements. N (x) denotes matrix of shape functions:

Nl(x) N4(x) 0 0 0 0
Nk(x) = 0 0 Ng(x) N3(x) N5(x) Né(x) (2)
0 0 Npx(x) Nix(x) Nsx(x) Nex(x)

where (o) . = d(e)/0x. Horizontal displacements are approximated using linear functions,
whereas vertical ones are approximated using Hermite polynomials.

Hence, the generalized strain vector can be written in terms of nodal displacements in
the following form:

e(x, ) = Br(x)qx(t) ®)
where e (x, t) = [ex(x,t), «(x, t)]T, ¢y is the axial strain of the kth layer (e(x, t) = u(x,t)),
K is the curvature (x(x,t) = —wxx(x,t), (@) ., = 0°(e)/dx? ), and matrix By can be ex-
pressed as follows:

_ Nl,x(x) N4,x(x) 0 0 0 0
Bk(X) B |: 0 0 _NZ,xx(x) _NS,xx(x) —N5,xx(x) _Né,xx(x) - @

2.2. Viscoelastic Layer

The Timoshenko theory was used to model the viscoelastic layer. Based on this
theory, the horizontal displacement of the viscoelastic layer is expressed by the horizontal
displacements of the constraining elastic layers (Figure 3). Effects of shear deformation are
taken into account, and the angle of rotation of the cross-section is defined as follows:

0(x,t) = wx(x,t) —y(x,t) (5)

where 6(x, t) is the angle of rotation after deformation and 7(x, t) is the averaged angle of
rotation.

I’lc] ----------------------------------------

0 I A -
X

hrZ ————————————————————————————————————————— w

.

Figure 3. Deformation of viscoelastic layer.

The displacement field is described as follows:

ui(x, £) = Ni(x)qi(t) (6)
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where  u(x, ) = [ug(x,t), w(xt), 8(x,)]" and qt) =
T
[u1e1(t), w1ea(t), w21 (t), uea(t), wi(t), wa(t), ¢1(t), @2(t)],
Nt 3Nt NG 3N aNo N5 N3 &N
Nk(x) = 0 0 0 0 N, N5 N3 Ng (7)
BNt =Nt Ny —iENy (1-B)Nay (1-B)Nsx (1—B)Nax (1—p)Nex
o= %, =1+ %, and /i, denotes the height of the viscoelastic layer. Indexes el
and e2 refer to the upper and lower elastic layers, respectively (see Figure 3).
The generalized strain vector for the viscoelastic layer can be expressed as follows:
e(x, 1) = Br(x)qi(f) ®)
where ex(x,t) = [ex(x,t), x(x,t), (x,1)] T and x is the curvature of the Timoshenko
layer defined as x(x,t) = —w xx(x, ) + ¥, (x, t). Matrix By is expressed as follows:
%1Nl,x %Nl,x %1N4,x %Nzl,x AN, N5,y N3 xx &N xx
Be(x) = | =Ny, N "Ny mNy, (B=DNow (B=DNsxe (B=1)Nsawx (B=1)Nexx|. (9)
—hl—le ,%Nl —hlv N, %Nz} BNa » BN x BNz x BN x

2.3. Matrix Formulation of Equation of Motion for Composite Beam

Matrices for kth layer can be determined using the virtual work principle. Matrix My
for kth layer is expressed as follows:

le

M; = /NZ(x)mka(x)dx (10)
0

where my = diag [mk My ]k], m; is the mass per unit length of layer, J; is the mass
moment of inertia, and Ny can be calculated using Equation (2) or Equation (7) for the kth
elastic layer and the kth viscoelastic layer, respectively. Stiffness matrix Kj for the kth elastic
layer is expressed as follows:

le

K — / B (x)E;By(x)dx (11)
0

where E; = diug[EkAk Eklk], Ej is Young’s modulus, Ii is the moment of inertia of the
layer’s cross-section, and By can be calculated using Equation (4). Stiffness matrices for the
kth viscoelastic layer can be computed using the following expressions:

Lo
KOk:/O Bf (x)EqBy(x)dx, (12)

le
Kuk = | B (2) (Bt — Eot)By(x)dx (13)
0

where EOk = dlag [EOkAk EOka dGOkAk]r Eook = dzag [EookAk Eooka dGookAk}/ EOk is
the relaxed elastic modulus, Ey is the nonrelaxed elastic modulus, Gy, = Eg/ (2 +2v),
Geok = Eor/ (2 +2v), v is the Poisson ratio, d is the shear factor, and B can be calculated
using Equation (9). Based on these formulas, elemental matrices can be assembled.

The equation of motion of the composite beam with viscoelastic layers can be written
as follows:

(14)

(M + K+ Ko(s) )als) = p(s)
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where q(s) and p(s) are the Laplace transforms of global vectors of displacements and
excitation forces, respectively, and s is the Laplace variable. M, K, and Ky(s) are global
matrices built on the basis of elemental mass matrix M,, elemental stiffness matrix K,, and

elemental matrix K¢y (s):
nr Tl‘"l s

Keo(s) = Z

K 15
o] 1 + TltX[Sal ool ( )
where nr is the number of viscoelastic layers of the finite element under consideration.

2.4. Dynamic Characteristics of Composite Beam

After assuming p(s) = 0, the following nonlinear eigenproblem is obtained:
D(s)q(s) =0, D(s) = *M + K + Ky (s). (16)

Eigenvalues and eigenvectors are solutions to the eigenproblem (16), which can be
determined using the continuation method [35,36] or the subspace iteration method [37]. In
this study, natural frequency w; and the nondimensional damping ratio 7; were analyzed.
The dynamic characteristics can be calculated as follows:

w = /1> +1? 7:—% (17)

if eigenvalue is writtenas s = y £iy,i = v/ —1.

3. Uncertain Design Parameters
3.1. Interval Analysis

Moore [5] presented the fundamentals of interval analysis. Any parameter p; can be
described as an interval number as follows:

vl =|p, i) (18)

This means that it can vary within certain limits, where p. is the lower bound and p; is
the upper bound. The middle value of the interval parameter can be expressed as follows:

pi=5 (0 71). 19)

and the radius value is determined as follows:

Ap; = % (r,-7:)- (20)

Operations on interval numbers require calculations that consider all possible combi-
nations of upper and lower limits of the considered quantities. The result is the interval
whose bounds are the smallest and largest result values. The basic operations on sample

interval numbers x! = [x,¥] and y! = {y, y} are calculated as follows:
Ayl = x4y ¥+7), 1)
xl—yI: {g—y,f—ﬂ, (22)
oyl = {min (&'J &'EY%Y'?) ,max (z-g,z'?ﬁ'yrf'?)}, (23)
' [xx]

e L T
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[Af(p"),

()] = [minaf(p"), maxaf(p ] = [ (mind 91)), iy (maxd (7)) =

The major problem of the application of direct interval analysis to engineering prob-
lems is the huge overestimation of obtained results. This is because each interval number is
treated as an independent variable even if it represents the same physical quantity. Never-
theless, interval analysis is a highly useful tool for obtaining responses of structures with
parameters whose values change within certain limits. However, the overestimation that
may be present in the obtained limits of the solutions needs to be eliminated.

3.2. Approximation of the Lower and Upper Bounds of Objective Function Based on Taylor
Series Expansion

Uncertainties of design parameters whose limits are known can be taken into account
using the Taylor series expansion of the objective function in the vicinity of the middle
values of parameters. The objective function is the response function of the structure
denoted as f(p!), where p! is a set of interval design parameters. It can be expressed as

follows:
1 (07) = i (7)o ()] >

where minf (p!) = f(p!) is the lower bound of function f (p') and maxf (p!) = f(p!) is
the upper bound of function f(p!). In this study, the objective function is the dynamic
characteristics of a composite beam with viscoelastic layers; however, the presented ap-
proach is general, and the objective function can be any quantity related to the response of
the structure.

The lower and upper bounds of the objective function can be calculated by Taylor
series expansion using the first two elements of this series:

o) = 109 + 1 250, 26)

where f(p°) is the value of the response function for the values of the middle parameters
and of (p°)/dp; is the first-order derivative of the response function with respect to pa-
rameter p; (the so-called sensitivity of the first order with respect to the change of design
parameter p;). The function f(p) is the new value of the response function containing the
effect of the changing parameter p;, which can be rewritten as follows:

f(p) = f(p°) +Af(p) (27)

where the second term of Equation (27) is the increment in the response function:

87p) = Xy 28 A = T af(p). 2s)

Hence the response of structures with uncertain parameters can be expressed as
follows: _
F1(p) = (£ +af(p'), £(p) +BF (p!)] (29)

where the lower and upper bounds of the increment can be written as follows:

[ (minZ5B Ap;), o (max 2B ;). (30)

It is assumed that design parameters take the values at the edges of the intervals and
that parameters vary independently. The maximum and minimum values of the increment
(maxAf (p!) and minAf (p!)) are determined after considering all possible combinations
of Apl. The increment in the interval parameter Ap! means that two possible increments in
the parameter 7 are taken into account in the calculations:

Api = p, — pj or Ap; = P; — p; (31)
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The number of combinations needed to consider for selecting the smallest and largest
values of the increments is 2r. However, when the number of parameters or their variability
is high, the approximation of the limits of the objective function using a first-order Taylor
series expansion may be insufficient.

If a higher accuracy is required, an approximation using the first three terms of the
Taylor series can be used (second-order Taylor series expansion):

af ror azf ) } ‘
o) =500+ LA e s R s e

where 9%f (p©)/ (9 pidp;) is the second-order derivative with respect to parameters p; and
p;j (the so-called sensitivity of the second order with respect to the simultaneous change
in two design parameters p; and p;). Derivatives of the second order form the following
Hessian matrix:

[2f(p°)  22f(p) Pf(p) |
o2 op19p2 dp19p;
RF(p)  Pf(p9) £ (p)
9p29p7 af 3 dpropz (33)
PFpPY)  Pf(p°) P f(p°)
L ap,apl apraPZ afp% .

In this case, increments in Equation (27) can be written as follows:

9(9)87(¢)] = [mins (97) s (¢)] = | umas (1)), Emwas ()| @9

where the increment for parameter i can be expressed as follows:

2
Af(pi) = afa(p 5 2 ° f PC Tpnap, PP (35)

To find the minimum or maximum values of the increment Af (p!), it is necessary to
consider 2" combinations. With a high number of parameters, this method is laborious
and inefficient. The number of combinations can be reduced by eliminating nondiagonal
elements of the Hessian matrix [23], which can be expressed as follows:

P (p) ]
A p? aZf(() 5 0
0 aJP) L. 0
fp3 . (36)
' ' )
L 0 0 U ofp? |

In this case, the effect of the simultaneous change in design parameters is not taken
into account and Equation (34) can be written as follows:

_ 9f(p) 19%f(p,)
Af(pi) = =5, =8pi+5 TR (Ap)™. (37)
Therefore, the number of combinations is the same as in the case of applying the first
two elements of the Taylor series for calculations, but it requires second-order sensitivity
calculations. Sensitivity is calculated according to the algorithm presented in [38] which
was used for beams with viscoelastic layers in [39,40].
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3.3. Vertex Method

In the vertex method, design parameters are assumed to be interval values. In this
method, all possible combinations of lower and upper parameter bounds are investigated,
and then, the smallest and largest values of the response function are selected. The val-
ues obtained this way are close to the exact solution, and this method can be used as a
comparative method. The number of combinations to be considered is 2.

4. Algorithm for Determining Critical Combinations of Parameters

Due to the large number of combinations required, the vertex method is not effective,
but the combination of parameters obtained using this method allows one to calculate the
bounds of the objective function. Using Taylor series expansion does not always result in
determining the same combination of parameters as in the vertex method, especially if
uncertainties are large. The algorithm presented below uses the Taylor series expansion,
but even in the case of a large number of parameters or their variability, it gives exactly the
same combination of parameter values as the vertex method. In [25], this algorithm was
used to analyze structures with viscoelastic dampers; however, in this study;, it is proved
that this algorithm is general and can be used for other structures with viscoelastic damping
elements. In addition, this algorithm is more efficient than the vertex method.

In the first step, the first- and second-order sensitivities with respect to the change in
each design parameter, which was assumed as an interval value, are calculated. Then, ac-
cording to Equation (37), increments in the limit values of design parameters are performed,
and the largest among them is selected. In the second step, the value of the parameter with
the largest is updated, and first- and second-order sensitivities are recalculated with respect
to the change in design parameters. The parameter whose value was set in the previous
step is not taken into further consideration. As mentioned earlier, the largest increment is
selected, and the appropriate parameter value is updated. The calculations are repeated
until the limit values of all parameters are determined. In the last step, the upper bound
of the objective function for the set parameter values is calculated. The same analysis is
conducted to determine the parameter values, thus allowing the calculation of the lower
bound of the objective function. The analyzed examples show that this algorithm allows
one to determine the same critical combination of limit values of parameters as the vertex
method, but it is less labor intensive. The pseudocode for the presented algorithm is as
follows (see Algorithm 1):

Algorithm 1: Determining the critical combination of parameters.

1° Input data:

r—number of uncertain parameters

p—vector of lower bounds of uncertain parameters

p—vector of upper bounds of uncertain parameters

p°—vector of middle values of uncertain parameters

2° setn:=r

set p'l := p (p"" denotes parameter vector for the critical combination)
3°fori=12,... n

calculate sensitivities of the response function with respect to change in parameter p{

af(p”“) L . aZf(pcri) .
e (sensitivities of the first order) and PwaY. (sensitivities of the second order)
p.

i
i

4°fori=1,2,... n
calculate the increment in response function Af (p°'*) according to Equation (37) for p,andp;

5° select the maximum value of Af (p*) and corresponding parameter py

87 (py) = max(Af (p))

6° substitute p (k) = px

7¢ exclude parameter py and its lower p, and upper p; bounds from futher calculations

8° update n:=n — 1

9° repeat steps 3° to 8° until n =0

10° calculate the maximum value of the response function for the critical combination of parameters

f=fpr).
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To find the lower bound of the structure response and corresponding parameters,
the above algorithm is repeated, but in step 5°, the minimum value of A f (p”i) has to be
selected (Af (px) = min(Af (p)).

A flowchart of the algorithm for determining the critical combination of parameters
for the upper bound of the structure response is shown in Figure 4. To find the lower bound,
the minimum value of Af (p“?) and the corresponding parameter p; must be selected.

Calculate sensitivities

o) and (e i=12,..,n
aplc (Bpf)z yhy many

v
Calculate increments
Af (p°™) according to Eq.(37)
forp;andp; i=12,..,n

Select the maximum value of Af (p™)

and corresponding parameter py,

AF (pi) = max (Af (p™))

update peri(k) = py
and exclude parameter pj, from further calculations

|updaten:=n—1|

NO

YES
| calculate f = f(p™) |

Figure 4. Flowchart for determining the critical combination of parameters.

5. Examples

A composite five-layered beam is analyzed with the arrangement of layers shown
in Figure 5. Elastic layers are described by the following parameters: p, = 2690.0 kg/m?
and E, = 70.3 GPa. Viscoelastic layers are described as follows: p, = 1600.0 kg/m?,
Ey = 1.5 MPa, and Ex = 69.9495 MPa. The Poisson ratio is v, = 0.5, the relaxation time is
T = 1.4052-107° s, and the fractional order is & = 0.7915. The heights of the layers are as
follows (notation as presented in Figure 4): h,; = 0.001 m, h,; = 0.002 m, h,p = 0.004 m,
hy = 0.002 m, and k.3 = 0.001 m. The length of the beam is 0.2 m, and the calculations
are carried out by dividing the beam into 10 elements. Various boundary conditions are
considered.
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! constraing layer, h,q

I . .
~_ Viscoelastic layer, h,,

base beam, h,,

| viscoelastic layer, h,,

™\ constraing layer, h,;

Figure 5. Scheme of the considered five-layered composite beam.
Calculations are made using codes written in Matlab.

5.1. Veryfication Example

To verify the correctness of the performed calculations, the natural frequencies and
nondimensional damping ratios were computed for the simply supported sandwich beam
considered in [35] (Figure 6). The heights of the elastic and the viscoelastic layers are as fol-
lows: hyp = 0.001 m, hy; = 0.002 m, and ey = 0.001 m. The remaining parameters are the
same as described above. Table 2 presents the first four natural frequencies and nondimen-
sional damping ratios. The maximum difference for the fourth natural frequency is 0.017%.
The obtained results confirm the correctness of the obtained dynamic characteristics for the
considered beam.

|
A A

Figure 6. Scheme of the sandwich beam considered in [35].

Table 2. Comparison of natural frequencies of a sandwich beam.

Mode
Dynamic Characteristics
1 2 3 4

Natural frequency (present paper) [rad/s] 404.875 1336.507  2860.876  4990.735
Natural frequency [35] [rad/s] 404.879 1336.560  2861.150  4991.590

Nondimensional damping ratio (present 01378 0.1343 0.1184 01042

paper) [
Nondimensional damping ratio [35] [-] 0.1378 0.1343 0.1184 0.1042

5.2. The Influence of the Layer Height Uncertainty

Four types of boundary conditions were considered, as shown in Figure 7. The first
natural frequency w; and the first nondimensional damping ratio y; were analyzed. The
central parameter values are presented in Table 3.

(@ (b)

s I/

(© (d)

—_—

77777

Figure 7. Scheme of the considered five-layered composite beam (a) simply supported, (b) cantilever,
(c) fixed-pinned and (d) fixed-fixed.
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Table 3. Natural frequencies and nondimensional damping ratio for different boundary conditions.

Nondimensional Damping

Static Scheme Natural Frequency w1 [rad/s] Ratio 77 [-]
(a) Simply supported 1107.60 0.0706
(b) Cantilever 443.36 0.0879
(c) Fixed-pinned 1672.05 0.0491
(d) Fixed-fixed 2381.97 0.0346

It is assumed that layer heights are uncertain parameters and can be varied indepen-
dently. Uncertainties from 5% to 30% with 5% steps are considered. The interval values of

the parameters for the smallest and the largest considered uncertainties are presented in
Table 4.

Table 4. Interval values of uncertain parameters &, and .

Uncertainties of Parameters Layer Height [m]

her = [ 0.00095, 0.00105 |
hy1 = [0.0019, 0.0021 ]
5% hey = [ 0.0038, 0.0042 ]
hyy = [0.0019, 0.0021 ]

hez = [ 0.00095, 0.00105 |

her = [ 0.0007, 0.0013 ]

hy1 = [0.0014, 0.0026 |

30% hep = [0.0028, 0.0052 ]
hyp = [0.0014, 0.0026 ]

hes = [ 0.0007, 0.0013 ]

In Figures 8-11, the ranges of natural frequencies and nondimensional damping ratios
for different boundary conditions are presented. Final values are calculated using the
vertex method (Method I—black line), the first-order Taylor series expansion (Method
II—blue line), the second-order Taylor series expansion with only diagonal elements of the
Hessian matrix (Method Ill—red line), and the second-order Taylor series expansion with
all components of the Hessian matrix (Method IV—green line).

a) 1800 0.12 5
@ Method | (b)
] Method |1 i
1600 — Method Il
i Method IV
1400
@
e]
© 1200
1000 — 1
E 0.06 4
800 i
600 : : . : ; . 0.04 : : : : . .
0 10 20 30 0 10 20 30

A(Py;----Ps) [%] A(Py;---Ps) [%]

Figure 8. Ranges of interval values of (a) natural frequency w; and (b) nondimensional damping
ratio 7y for a simply supported beam.



Appl. Sci. 2023,13, 6473

14 of 22

700 0.124
(@) Method | (b)
1 Method II 1
Method Il 0.1+
600 Method IV ]
i 0.1
©' 500 _
o T
© E — 0.094
= =
S 400
l 0.08 |
300 0.07 -
200 : : . : : . 0.06 : , : , : |
0 10 20 30 0 10 20 30

A(Ps;---ps) [%] A(Pss---:Ps) [%]

Figure 9. Ranges of interval values of (a) natural frequency w; and (b) nondimensional damping
ratio 7y for a cantilever beam.

2800 0.08
@) Method | (b)
1 Method II 1
Method Ill
24001 Method IV 0.07
© 2000 0.06 —|
o T
I 1 L J
— =
3 1600 0.05 -
1200 4 0.04
800 T T T T T ] 0.03 T T T T T ]
0 10 20 30 0 10 20 30

A(Ps,---,Ps) [7] A(py---,ps) [%]

Figure 10. Ranges of interval values of (a) natural frequency w; and (b) nondimensional damping
ratio 7; for a fixed-pinned beam.

3500 — 0.06
(a) Method | (b)
1 Method II i
Method IlI
3000 Method IV 0.05 |
»’ 2500 7]
je T
g ] —0.04
& 2000 - -]
1 0.03
1500 —
1000 . , . , . , 0.02 . , . , . ,
0 10 20 30 0 10 20 30

A(Py>---Ps) [%] A(Py5---5Ps) [%]

Figure 11. Ranges of interval values of (a) natural frequency w; and (b) nondimensional damping
ratio 7y for a fixed-fixed beam.

In all cases, as shown in the graphs for variations up to 10%, the results from all four
methods are very close and the lines in the graphs almost overlap. This applies to both
the natural frequency and the nondimensional damping ratio for all considered boundary
conditions. This confirms that even the simplest method of predicting a solution for
uncertain design parameters (a first-order Taylor series expansion) is sufficient to achieve
good results.
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When large uncertainties are considered, in the case of natural frequency, the second-
order Taylor series expansion with all components of the Hessian matrix provides results
closest to the vertex method. However, it is relatively time consuming due to the number
of combinations required. In the case of the nondimensional damping ratio, this method
usually gives results closest to the vertex method, but the discrepancies are larger and, in
some cases, a smaller range of results is obtained (i.e., the lower limit for simply supported
or fixed-fixed beams) than using the vertex method. In this case, the solution does not take
into account all cases that may occur.

For this reason, it seems to be important to determine the same critical combination of
design parameters as in the case of the vertex method. Therefore, the algorithm presented
in Section 4 (Method V) was used. In Tables 5 and 6, the results for a simply supported
beam with the uncertainty of design parameters equal to 10% and 30% are presented.

Table 5. Lower and upper bounds of natural frequency wq for a simply supported beam with
uncertain design parameters equaling 10%.

Bounds Methods Natural Error [%] Combination
Frequency [rad/s] of Parameters
lower I 968.63 Comparative het, hot, Bep, Bop, hes
upper 1259.25 method ho1, Byt eps By, ey
lower I 962.53 0.63 het, hot, Bep, Bon, hes
upper 1252.67 0.52 N1, Byt hep, By, By
lower I 965.42 0.33 het, hot, ey, Bon, hes
upper 1255.55 0.29 N1, Byt hep, By, By
lower v 968.83 0.02 het, hot, Bep, Bon, hes
upper 1258.96 0.02 N1, Byt hep, By, By
lower v 968.63 0.00 het, hot, Bey, Bon, hes
upper 1259.25 0.00 N1, Byt hep, By, By

Table 6. Lower and upper bounds of natural frequency w; for a simply supported beam with
uncertain design parameters equaling 30%.

Natural o Combination
Bounds Methods Frequency [rad/s] Error [%] of Parameters
lower I 735.89 Comparative het, hot, Bey, Bon, hes
upper 1597.05 method hot, hy1, hen, By, B3
lower I 672.40 8.63 het, hot, Bep, Bop, hes
upper 1542.80 3.40 Bt ot Be2s B, o3
lower I 698.38 5.10 het, hot, Bey, hop, hes
upper 1568.77 1.77 o1, Bt Be2s B, o3
lower v 729.02 0.93 her, hot, Beos Bon, Bes
upper 1599.42 0.15 No1, b1, heo, By, B
lower v 735.89 0.00 e, hot, heos Bon, hes
upper 1597.05 0.00 No1, b1, Neo, By, B

Based on the results presented in Tables 5 and 6, it can be concluded that Method V
yields the same critical combination of design parameters and the same results as the vertex
method. In addition, it is more efficient than Method IV, as described in Section 5.4.

5.3. The Influence of the Parameters Ey and Eo of the Viscoelastic Layers

It is assumed that the parameters describing the viscoelastic layers Ey,1, Egp2, Ecov1,
and Ey are uncertain parameters. The first two natural frequencies and nondimensional
damping ratios were analyzed for the simply supported beam. It is assumed that the



Appl. Sci. 2023,13, 6473 16 of 22

parameter uncertainties change from 5% to 30% with 5% steps. In Table 7, parameter values
for the smallest and largest uncertainties are presented.

Table 7. Interval values of uncertain parameters Eg and Ec.

Uncertainties of Parameters Design Parameters [Pa]

Ego1 = [ 1425000, 1575000 |
Eooo1 = | 66452025, 73446975 |

5% Eovz = [ 1425000, 1575000 |
Eoosz = [ 66452025, 73446975 |

Ego1 = [ 1050000, 1950000 |
20, Eooo1 = [ 48964650, 90934350 |

Egez = [ 1050000, 1950000 |
Eoorn = | 48964650, 90934350 |

In Figures 10 and 11, the lower and upper limits of the dynamic characteristics with
respect to the change in the uncertainties of the Ey and E, are presented. The calculations,
as discussed in Section 5.2, are performed using four methods.

The graphs presented in Figures 12 and 13 show that for Ey and E., of the viscoelastic
layers, all four methods give similar results, as well as for the higher mode. In this case, the
calculation of the first-order sensitivity is therefore quite sufficient to predict the behavior
of the structure.

1140 4
@) Method |
Method Il
1 Method Ili
Method IV
1120
@
o
S 4
<)
1100
1080 —T 0.04 —T
0 10 20 30 0 10 20 30
A(p1 ,---,P4) [%] A(p1,...,p4) [O/O]
Figure 12. Ranges of interval values of (a) natural frequency w; and (b) nondimensional damping
ratio 1.
(3)4320— (b) 0.08
0.07
4280 —
@ | 0.06 -
°© o
® 4240 -
= =
s 0.05
Method | 4
4200 — Method II T~
Method Ili 0.04
- Method IV | —
4160 —_— — 0.03 —
0 10 20 30 0 10 20 30
A(Ps;--.P4) [%] APs;--.P4) [%]

Figure 13. Ranges of interval values of (a) natural frequency w, and (b) nondimensional damping
ratio ;.
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5.4. The Influence of the Parameters a and T of the Viscoelastic Layers

In the third example, it is assumed that the parameters « and T are uncertain. The
first four natural frequencies for a simply supported beam are analyzed. It is assumed
that the parameters change simultaneously for both viscoelastic layers, i.e., the number of
changing parameters is two. Due to the high influence of & on the structure response, it was
assumed that the uncertainty of this parameter is constant and amounts to 5%, whereas the
uncertainties of T change from 5 % to 30% with 5% step. The interval values of « and for
the smallest and largest parameter T are shown in Table 8.

Table 8. Interval values of uncertain parameters & and 7.

Uncertainties of Parameters Design Parameters

a = [0.751925, 0.831075 ]
T = [1.33494-107°,1.47546-10 7

30% T = [0.98364-107°,1.82676-10 7

5%

In Figure 14, a comparison of natural frequencies calculated using four methods is
presented. The collapse of the graphs for 5% is because the uncertainty of « is constant and
is equal to 5%, whereas only the uncertainty of T changes.

1140 4 4320
(@ | () —
1130 4
0 120 Method | 3
S 1 / Method Il S
® 1110/ Method IlI @©
= ] Method IV =
8 =5% 8
1100 Aa
1090 H |
1080 T T T T T ] 4160 T T . T , |
0 10 20 30 0 10 20 30
Al [%] A(z) [%]
(c) 9650 (d) 17,000
9600 ]
] 16,900 —
9550 _ )
o -
© 9500 ® 16,800
T = \
8 g N
16,700 — \
16,600 ———
0 10 20 30
A(r) [%] A(t) [%]

Figure 14. Ranges of interval values of first four natural frequencies for Ax = 5% (a) 1st natural
frequency, (b) 2nd natural frequency, (c) 3rd natural frequency and (d) 4th natural frequency.

To check the effects of the uncertainty of & on the natural frequencies, the lower and
upper limits for the uncertainty of « of 5%, 15%, and 25% are shown on the same graph.
Because Method IV gives results similar to those of the vertex method (see Figure 14), only
these two methods are presented in Figure 15.
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Method I, Aa=5%
Method IV, Aa=5%
— — Method |, Aa=15%
Method IV, Aa=15%
----- Method I, Aa=25%
Method IV, Aa=25%

1080 \TLTLT LT LTS LTS
1040 | r |
0 10 20 30
A7) [%]
©
9800- -
@ %600 4 -
k] s —
8 ,
a0 N
-
9200 —
T T 1
0 10 20 30
Ar) [%]

(b) 4600

4400 |

®, [rad/s]

4200

4100

4300/

(d) 17,200 5

17,000

o, [rad/s]

16,600 —

16,800

16,400
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Figure 15. Ranges of interval values of first four natural frequencies for different changes of « (a)
1st natural frequencies, (b) 2nd natural frequencies, (c) 3rd natural frequencies and (d) 4th natural

frequencies.

The effect of the uncertainty of « is quite significant. The graphs show that with
an increase in the uncertainty of the parameter, the solutions obtained using the vertex
method, and Method 1V differ already for uncertainties of 5%. Hence, it is reasonable to
use the method described in Section 4. In Tables 9-12, the results for four selected cases of

uncertainties are presented.

Table 9. Lower and upper bounds of natural frequency w; for a simply supported beam and

uncertainty of design parameters AT = 5% and Ax = 5%.

Bounds Methods Natural Frequency Error [%] Combination
[rad/s] of Parameters
Lower I 1096.63 Comparative T,
Upper 1122.06 method T, &
Lower I 1094.99 0.15 T,
Upper 1120.21 0.16 T, &
Lower I 1096.26 0.03 T, &
Upper 1121.49 0.05 T, &
Lower v 1096.69 0.01 T, w
Upper 1121.91 0.01 T, &
Lower v 1096.63 0.00 T,
Upper 1122.06 0.00 T, &

~
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Table 10. Lower and upper bounds of natural frequency wj for a simply supported beam and
uncertainty of design parameters AT = 15% and Aa = 15%.

Bounds Methods Natural Frequency Error [%] Combination
[rad/s] of Parameters
Lower I 1082.70 Comparative T, 0
Upper 1163.71 method T, &
Lower I 1069.76 1.19 T,
Upper 1145.44 1.57 T, 0
Lower I 1081.24 0.13 T
Upper 1156.91 0.58 T, &
Lower v 1085.08 0.22 T, 0
Upper 1160.76 0.25 T, &
Lower v 1082.70 0.00 T,
Upper 1163.71 0.00 T, 0

Table 11. Lower and upper bounds of natural frequency wj for a simply supported beam and
uncertainty of design parameters AT = 25% and Aa = 25%.

Bounds Methods Natural Frequency Error [%] Combination
[rad/s] of Parameters
Lower I 1075.97 Comparative T, 0
Upper 1124.08 method T, o
Lower I 1044.54 2.92 T,
Upper 1170.66 4.36 T Q
Lower I 1076.42 0.04 T, 0
Upper 1202.54 1.76 T,
Lower v 1080.85 0.45 T, 0
Upper 1213.22 0.89 T, &
Lower v 1075.97 0.00 T,
Upper 1124.08 0.00 T, &

Table 12. Lower and upper bounds of natural frequency wj for a simply supported beam and
uncertainty of design parameters AT = 30% and Aa = 25%.

Bounds Methods Natural Frequency Error [%] Combination
[rad/s] of Parameters
Lower I 1075.87 Comparative T, Q
Upper 1227.85 method T, &
Lower I 1043.03 3.05 T,
Upper 1172.17 4.53 T,
Lower M 1074.90 0.09 T,
Upper 1204.05 1.94 T, &
Lower v 1080.22 0.40 T,
Upper 1216.86 0.89 T, &
Lower v 1075.87 0.00 T,
Upper 1227.85 0.00 T, &

Tables 7-10 show that Method V provides the same critical combination of design
parameters and the same results as the vertex method. It is also effective for large uncer-
tainties.
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5.5. Comparison of Methods

In Table 13, the number of combinations that should be considered in order to select
the largest or smallest increment in the objective function is presented, and the number of
eigenproblems to be solved for the given design parameters is analyzed.

Table 13. Comparison of the methods.

Number of Eigenproblems

Methods Number of Combinations to Be Solved for the New
Parameter Values
I 2" 2"
11 2r 1
111 2r 1
v 2" 1
\Y r(r+1) r+1

Methods I and V always result in the same critical combination of parameters, and
Method V is effective also for large uncertainties. The number of combinations is smaller
for method V if the number of parameters is higher than four, and the number of tasks to
be solved is smaller for two parameters. In addition, Methods II and III are comparable
in terms of the number of combinations and the number of tasks to be solved, but in the
case of high uncertainties, they provide results that differ from those of the vertex method.
Method IV gives results similar to the vertex method, as well as for large uncertainties, but
the critical combination of parameters obtained is not always the same as in the case of the
vertex method. Hence, for large uncertainties, Method V is recommended.

6. Conclusions

This study presents an analysis of a composite beam with viscoelastic layers, assuming
that design parameters are uncertain. The exact value of the parameter is unknown, but
the bounds of the parameters are known. Hence, interval calculus can be used. The most
common method, but also the most laborious, due to the number of combinations that need
to be performed, is the vertex method. This study proposes four different methods based
on expanding the objective function into a Taylor series.

The conducted analyses aimed to determine which of the presented methods would be
the most beneficial for determining the dynamic characteristics of a composite beam with
viscoelastic layers. However, the choice of method depends on the number of uncertain
parameters and the value of the parameter uncertainty. If there are a small number of
parameters and small uncertainties, the method that uses the first-order Taylor series
expansion can be successfully applied. With large uncertainties and a larger number of
parameters, Method V is recommended. The presented examples confirm that it yields
good results and is not laborious.
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