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Benković, M.; Jurina, T.; Valinger, D.;
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Abstract: The implementation of a suitable and ecologically friendly solid waste management plan
is accepted as an essential need. Given that organic matter constitutes the majority of solid waste,
composting has gained popularity as an alternative way of organic refuse recycling. Compost
quality is defined by its stability and maturity, both of which must be assessed by measuring a large
number of physical–chemical parameters, microbiological variables, and enzymatic activities. These
procedures are complex and time-consuming, making it difficult to assess compost quality correctly.
Spectroscopy methods could be used as an efficient alternative. In this work, general information
about composting processes and near-infrared spectroscopy (NIRS) is given. A discussion and
comparison of the different approaches of coupling NIRS and chemometric tools for the monitoring
and/or control of composting processes are presented in this work.

Keywords: composting process; near-infrared spectroscopy; chemometric methods

1. Introduction

One of the twenty-first century’s issues is increasing agricultural output while im-
proving food safety and quality. The food sector must feed a rising population while
simultaneously caring for the environment and maximizing natural resources in each
location. Subsequently, there is also growing interest in solid waste management with
minimum environmental impact. According to the literature data, composting is con-
sidered a low cost, efficient, and long-term treatment for solid waste. The importance
of composting as a waste management method can be seen from the growing numbers
of publications published in last 20 years (Figure 1). Due to their potential importance,
composts can be used for agricultural reasons. Composts’ organic content may actually
enhance soil structure and lower the danger of erosion. Composts can also be useful fertil-
izers. They are an essential source of organic phosphorus and nitrogen, and they improve
soil’s cation exchange capacity. Based on the abovementioned, there is also a growing
demand for the development of analytical methods to monitor the composting process and
form assessments of compost quality and maturity. Traditional approaches for analyzing
such materials are being phased out in favor of spectroscopic techniques, one of which is
near-infrared spectroscopy (NIRS) (Figure 1). This technique has several advantages over
traditional methods. The main advantages are as follows: (i) it is a nondestructive method
of analysis; (ii) it does not pollute the environment (it does not use chemical reagents);
(iii) it is a cheap and fast method; (iv) it measures several parameters comparatively; and
(v) it enables on-site analysis (and online connection) for a large number of samples per
minute.
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Figure 1. Number of publications according to Web of Science (WoS) in fields of (i) NIR spectroscopy 
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Figure 1. Number of publications according to Web of Science (WoS) in fields of (i) NIR spectroscopy
and composting and (ii) composting and chemometrics.

Considering the importance of spectroscopy methods in composting process analy-
sis, in this work, the application of NIR spectroscopy for the monitoring of composting
processes has been revised. The motivation for this research was a lack of review papers
presenting information on composting control and monitoring using NIR spectroscopy.
This review includes some general information on composting technologies and some
general information on NIR spectroscopy, followed by a comparison and discussion of
specific examples of using NIR spectroscopy for composting process monitoring and for
compost quality assessment. Furthermore, current challenges and future perspectives
regarding composting and online measurements are also discussed.

2. Literature Search Overview

A comprehensive systematic review of the important scientific articles was conducted
using the core collection in the Web of Science database for the period of the last 23 years
(period from 2000 to 2023). The keywords “composting” and “NIR spectroscopy” and
“composting” and “chemometrics” were used to search the titles and abstracts of the articles.
Only indexed papers (research and review papers) were selected for further analysis. For
the field of NIR spectroscopy and composting, there were 315 articles; for the field of
composting and chemometrics, there were 222 articles. Literature search was not focused
on specific composting substrates but on potential application of spectroscopic techniques
for monitoring and control of composting process.

3. Composting: General Information

The growth of the world’s population, especially in developed countries in the last
fifty years, has had an exponential effect on the amount of produced solid waste [1–3].
Sustainable waste management of any kind, including food waste, is seen as an approach
in which the primary goal is to reduce waste in any part of the production cycle and, if
possible, recycle and/or separate those components that are still usable in a sustainable
way as possible and thus, reduce the related impacts, starting from resources, production,
sale, consumption to use, and final disposal—thus covering the entire life cycle [4,5], which
encourages the professional and scientific community to develop and implement new,
greener strategies in solid waste management as soon as possible [6]. This increase in
waste generation has put a pressure on the various components of the environmental
system. As a result, the introduction of a suitable and environmentally favorable solid
waste disposal plan has been identified as a vital requirement [6]. Considering that a
major section of compact waste is organic matter [7], composting has attracted attention
as an alternative method of organic waste recycling. Composting can divert waste from
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landfill, mitigate groundwater contamination, reduce air pollution and greenhouse gas
emissions, and generate usable goods [8]. As described by Meena et al. [9], composting
can be categorized into two types according to the characteristics of the microorganisms
responsible for the decomposition of organic wastes, namely aerobic (Equation (1)) and
anaerobic (Equation (2)) [10]:

CaHbOcNd +

(
4a + b− 2c + 3d

4

)
O2 → aCO2 +

(
b− 3d

2

)
H2O + dNH3 (1)
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4

)
H2O→

(
4a + b− 2c− 3d

8

)
CH4 +

(
4a− b + 2c + 3d

8

)
CO2 + dNH3 (2)

As a number of studies indicate, the creation of the main byproducts (thermal en-
ergy, H2O, and CO2) is the result of the aerobic process of the biodegradation of organic
matter [1,11] (Figure 2). In addition to the aerobic effect, during the decomposition of or-
ganic waste, there is also an anaerobic segment, and as stated in the term itself, it takes
place without the presence of oxygen, so microorganisms that work in such conditions
(anaerobic microorganisms, i.e., anaerobes) dominate the process of biogas production (e.g.,
methane) but also a strong-smelling byproduct called digestate (slurry mixture) [12,13].
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Although considered a robust technology with numerous advantages, there are still
some challenges when performing composting. According to Cerda et al. [14], challenges
in composting can be assigned to (i) composting material composition, (ii) odors produced
during composting, (iii) process variable monitoring (temperature, oxygen supply, moisture
content, pH, C/N ratio, and particle size), and (iv) composting mixture condition. During
the controlled process of composting under aerobic conditions, in addition to aeration,
it is necessary to control the following extremely important parameters: (i) temperature,
(ii) humidity, (iii) degree of acidity, and (iv) the ratio of carbon and nitrogen. A prerequisite
for good quality products during composting is the control of the aforementioned condi-
tions [6]. An indication of microbial activities during the composting process is the change
in temperature, which is justifiably considered a parameter that indicates the status of the
process [15–17]. When the favorable conditions for the implementation of the composting
process have been achieved, it will take place in several main stages, which we can follow
according to the microorganisms that prevail in a certain stage [6]. The first phase is the
so-called mesophilic, and it is dominated by fungi and bacteria that start with the decom-
position of easily degradable macronutrients (proteins and simpler carbohydrates, such as
sugars), and due to the microbial activity, the temperature rises evenly (25 to 45 ◦C), and
the heat increases, which enables the transition to the next, thermophilic phase [6]. The
thermophilic temperatures (above 55 ◦C) are desirable because they kill pathogens [18].
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During the thermophilic phase, high-energy compounds (sugars and proteins) are bro-
ken down, and the supplies are depleted, which results in a decrease in temperature and
the redominance of mesophilic microorganisms. The last phase is characterized by the
humification of the material and presents the maturation phase [6,18].

Moisture is a variable closely related to microorganisms and should be in appropriate
amounts through the composting cycle [19]. The most favorable moisture content at the
beginning of the composting process depends on the physical state and size of the particles
of the material. A moisture content around 50–60% should be satisfactory [13]. A low
moisture content (less than 30%) can lead to dehydration of the compost, while excessive
moisture content will limit the movement of oxygen; thus, anaerobic conditions will reduce
the rate of composting [18,20].

The most favorable pH range for the composting process is between 5.5 and 8.0.
Bacteria favor practically neutral pH, and fungi develop in acidic environments [21,22].
In the first stage of composting, the pH may decrease due to the organic acids which are
produced during the degradation of organic compounds. Further mineralization leads to
an increase in pH, and at the end of the process, it is around 8.0–8.5 [19,22]. Food waste
can present a challenge for applying the composting method due to low pH, which is a
consequence of the presence of short-chain organic acids. Therefore, several studies have
investigated the use of alkaline materials (sodium acetate, sodium hydroxide) as pH control
amendments in order to provide an improvement in the composting process [23].

The ratio of carbon to nitrogen (C/N ratio) indicates the degree of decomposition
of organic matter and its identification; an optimal ratio is of great significance to obtain
favorable composting results and highly depends on the properties of the composting
material [8]. The ultimate for the active composting of most types of wastes is 25–30:1, and
during the composting process, it decreases constantly due to mineralization of the carbon
compounds [24,25]. Aeration is important for microbial growth and gas emissions [8].
Composting is an aerobic process where oxygen is consumed, and carbon dioxide is
released [18,26]. Studies show that an optimal level of aeration will provide enough oxygen
that is needed to evaporate excess moisture from the substrate due to the oxidation of
organic material [27], while inappropriate aeration can lead to anaerobic conditions (in the
case of insufficient aeration) or can lead to cooling and prevent the thermophilic conditions
necessary for optimal decomposition rates (with excessive aeration) [28].

A well-executed composting process results in compost that is suitable for improv-
ing soil characteristics and will enable increased infiltration and water retention, and its
extremely sustainable feature is that it will also provide a number of nutrients necessary
for plant growth [29]. Ensuring microbial diversity is considered a key factor for healthy
soil as it enables the implementation of biological processes and the circulation of nutrients,
where enzymatic activities also have an important role in biochemical reactions. Enzymatic
activities can be enhanced using organic fertilizers [6]. The final use of compost defines
which requirements will be set for the quality of the compost. Compost used in the agri-
cultural sector must not have a dominant smell, the amount of nutrients must be known,
and it must contain only trace amounts of impurities (homogeneous and disinfected).
When compost is used as a growing medium, some physical properties that will affect
water availability to plants (e.g., particle size, density, and water-holding capacity) become
extremely important [30].

The composting process can be performed in different types of facilities: open systems,
such as windrows or piles (either aerated, static, or turned) and closed systems, such as re-
actors or composters [31] (Figure 3). Closed (in-vessel) systems have advantages over open
systems: they require less space and provide better control of the process, and they involve
high process efficiency [32–34]. For example, Pinto et al. [20] investigated different grape
pomace composting treatments during 140 days: two of them composted piles by turning
the pomace after some period, and one was a static pile. In their work, all treatments
achieved the thermophilic phase (the temperature was above 45 ◦C) at the 2nd composting
day, and those conditions continued for almost 50 days through the composting. Aeration



Appl. Sci. 2023, 13, 6419 5 of 21

was achieved by turning the piles, increasing oxygen levels, and improving microorgan-
ism activity; consequently, the temperature increased and composting progressed faster.
According to the rates of organic matter mineralization, the highest was in the static pile
compared to the turned ones because the thermophile phase lasted longer without any tem-
perature decrease [20]. Moreover, the composting process of poultry manure and sawdust
in closed cylindrical and rectangular reactors was performed by Qasim et al. [35]. They
investigated the effect of different aeration rates on the performance of the composting
process. Their results showed that low aeration rates correspond to higher temperatures
and a longer thermophilic phase. Furthermore, the literature reports many studies on
vermicomposting of different types of organic waste [36–38]. Vermicomposting is defined
as utilizing several earthworm species for composting organic matter [1]. Fertilizer rich in
nutrients can be created from organic solid waste, and this requires aerobic conditions and
earthworms. One species of earthworm (Eisenia fetida) has the potential to convert organic
waste into products of a high nutritional value, but the environmental conditions (such as
pH, temperature, and humidity) must be suitable [39].
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4. Near-infrared Spectroscopy

Near-infrared (NIR) spectroscopy is a commonly used spectroscopic technique dealing
with the absorption, emission, and reflection of electromagnetic radiation in a wavelength
range from 800 to 2500 nm [40]. It comprises both electronic and vibrational NIR spec-
troscopy. Furthermore, the NIR wavelength range has been divided into three regions:
the first one encompasses the wavelength range from 800 to 1200 nm, forming a visible
near-infrared region. Characteristics of this region include high permeability, enabling its
application in medicine and agricultural industries. It is also specific due to the appearance
of bands, which are consequences of electronic transitions, higher-order overtones, and
combinations of fundamental vibrations of the XH bonds (X = C, N, O, S) [41–43]. The
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second region includes the wavelength range from 1200 to 2000 nm, containing a number
of bands arising from the first and second overtones and combination modes. This wave-
length range can be used for qualitative and quantitative analyses, but the permeability
of the second region is low. The third region (2000–2500 nm) deals with the combination
modes and can be used for various purposes, such as investigations about the structure of
proteins; however, the third region is characterized by relatively low permeability [40,44].

Due to fact that NIR spectra are often complex and possess broad overlapping ab-
sorption bands, the extraction of useful information from the NIR data set requires the
use of chemometrics. Chemometric tools are used for defining the relationship between
spectral information and sample properties [41,45,46]. Data preprocessing represents the
first chemometric step for reliable NIR spectra analysis. Algorithms, such as baseline
correction (BL), multiplicative scatter corrections (MSCs), standard normal variate (SNV),
Savitzky–Golay (SG), and smoothing (SMTH), help to remove useless information, mini-
mizing deviations caused by different measurement conditions (e.g., light, instrumental
drift, light scattering, interferences, etc.), all in order to achieve the quality of spectral
data [47,48]. The high-dimensionality of NIR spectral data needs to be reduced in order to
prepare them for classification analyses [49]. Principal component analysis (PCA) is the
most widespread applied multivariate method for data exploration and reduction, with
the aim to find potential likenesses and/or disparities within observations and identify
clusters or outlines [50]. Furthermore, PCA converts NIR spectra into variables that are
not linearly correlated and enables meaningful patterns to be described or predicted from
complex spectral prints. PCA is also very useful for the determination of important wave-
lengths that could contribute to further sample discrimination [48]. In addition to PCA
as an exploratory technique, NIR spectra can also be modeled using partial least squares
regression (PLS), partial least squares discriminant analysis (PLS-DA), linear discriminant
analysis (LDA), and soft independent modeling using class analogy (SIMCA) (Figure 4).
These classification algorithms are commonly utilized for classification or sample grouping
into clusters according to their similarities or common spectral characteristics [48–52].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21 
 

appearance of bands, which are consequences of electronic transitions, higher-order over-
tones, and combinations of fundamental vibrations of the XH bonds (X = C, N, O, S) [41–
43]. The second region includes the wavelength range from 1200 to 2000 nm, containing a 
number of bands arising from the first and second overtones and combination modes. 
This wavelength range can be used for qualitative and quantitative analyses, but the per-
meability of the second region is low. The third region (2000–2500 nm) deals with the 
combination modes and can be used for various purposes, such as investigations about 
the structure of proteins; however, the third region is characterized by relatively low per-
meability [40,44]. 

Due to fact that NIR spectra are often complex and possess broad overlapping ab-
sorption bands, the extraction of useful information from the NIR data set requires the use 
of chemometrics. Chemometric tools are used for defining the relationship between spec-
tral information and sample properties [41,45,46]. Data preprocessing represents the first 
chemometric step for reliable NIR spectra analysis. Algorithms, such as baseline correc-
tion (BL), multiplicative scatter corrections (MSCs), standard normal variate (SNV), Sa-
vitzky–Golay (SG), and smoothing (SMTH), help to remove useless information, minimiz-
ing deviations caused by different measurement conditions (e.g., light, instrumental drift, 
light scattering, interferences, etc.), all in order to achieve the quality of spectral data 
[47,48]. The high-dimensionality of NIR spectral data needs to be reduced in order to pre-
pare them for classification analyses [49]. Principal component analysis (PCA) is the most 
widespread applied multivariate method for data exploration and reduction, with the aim 
to find potential likenesses and/or disparities within observations and identify clusters or 
outlines [50]. Furthermore, PCA converts NIR spectra into variables that are not linearly 
correlated and enables meaningful patterns to be described or predicted from complex 
spectral prints. PCA is also very useful for the determination of important wavelengths 
that could contribute to further sample discrimination [48]. In addition to PCA as an ex-
ploratory technique, NIR spectra can also be modeled using partial least squares regres-
sion (PLS), partial least squares discriminant analysis (PLS-DA), linear discriminant anal-
ysis (LDA), and soft independent modeling using class analogy (SIMCA) (Figure 4). These 
classification algorithms are commonly utilized for classification or sample grouping into 
clusters according to their similarities or common spectral characteristics [48–52]. 

 
Figure 4. Chemometric methods for NIR spectra analysis (adapted from Varmuza et al. [46]). 

The quantitative characterization of specific compounds in samples can be performed 
by applying chemometric regression methods. Regression methods analyze the relation-
ship between the NIR spectra (as raw, preprocessed, or as a set of particular wavelengths) 
and the physical/chemical features of the investigated samples [48,53]. Partial least 

Figure 4. Chemometric methods for NIR spectra analysis (adapted from Varmuza et al. [46]).

The quantitative characterization of specific compounds in samples can be performed
by applying chemometric regression methods. Regression methods analyze the relationship
between the NIR spectra (as raw, preprocessed, or as a set of particular wavelengths) and
the physical/chemical features of the investigated samples [48,53]. Partial least squares
regression (PLS), principle component regression (PCR), multivariate curve resolution–
alternating least squares (MCR-ALS), or parallel factor analysis (PARAFAC) are models
applied for quantitative purposes, assuming linear relationship between predictors (in-
dependent variables) and predicted (dependent) variables (Figure 4). However, due to
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the appearance of multicollinearity problems, nonlinearity of the data can occur. Multi-
collinearity includes a number of predictors that is greater than the number of samples,
which makes the covariance matrix singular and noninvertible; subsequently, finding a
unique solution is impossible from least squares [54]. The alternative is to use nonlinear
models, such as artificial neural networks (ANNs). The application of ANNs started in the
1980s, along with development of computational techniques based on self-organizing prop-
erties and parallel information systems [55]. Due to their capability to solve real problems,
ANNs have been extensively used in areas such as engineering [56,57], biology [57], and
agriculture [58]. ANNs mimic the data processing of the human brain. The relationship
between the independent vs. dependent variables (inputs vs. outputs) is nonlinear, and this
relationship is reflected by the neuronal linking network matrix of the network. Therefore,
it is crucial in the development of ANNs to ensure consistent and significant experimental
records for (i) training, (ii) testing, and (ii) validating the strength of the model [58].

A wide range of NIRS applications led to the development and constant improve-
ment of NIRS devices’ performance, which is confirmed by the increase in the number of
published studies on this topic (Figure 1). In general, any NIR instrument includes (i) a
source of radiation, (ii) a device for the interaction of the sample and radiation source,
(iii) a wavelength selector, (iv) a detector, (v) a device for data collection, processing,
and storage, as well as (vi) a device for controlling the instrument [59,60]. The radiation
source is a quartz bulb containing traces of iodine with a tungsten filament, with power
in the range of 25–100 W and operating temperatures from 2000 to 3000 K, respectively.
A queue of light-emitting diodes (LEDs) is used for vigorous NIR radiation sources in
small instruments. The sample–radiation interaction device promotes interaction between
monochromatic or polychromatic NIR radiation and the sample, obtaining spectral infor-
mation about a particular sample as a function of its position with respect to the wavelength
selector [59]. The frequency (wavelength) domain contains the spectral information utilized
for qualitative and quantitative reasons. The key feature of the selection device for NIR
wavelength separation is its resolution. It denotes the capacity to distinguish between two
relatively near wavelengths. This feature is determined by the bandwidth of the peaks in
the samples under consideration. The detector is a device used to measure the intensity
of radiation. The optical and electrical characteristics of semiconductors are determined
by their energy bandgap. A disadvantage of PbS and PbSe detectors is the nonlinearity
of their response. However, they exhibit good detectivity over the entire NIR range, even
beyond the typical NIR spectral range. The instrument controller, user interface, and
data acquisition/storage device is a microcomputer or microprocessor with the capability
to control the main functions on the spectrophotometer and to acquire and process the
detector intensities to produce the final spectral information (i.e., absorbance intensities as
wavelength functions). The instrument software should have the capability to store spectral
data in several formats compatible with the chemometric software package to be used [59].
In contrast, with regard to the spectrophotometers with a wide wavelength range and
high spectral resolution, the development of so-called dedicated instruments has expanded
recently (Figure 1). These dedicated instruments are portable; their size has been reduced,
together with a reduction in wavelength ranges to address specific applications (tailored
for customer requirements). With their nondestructive process and rapid measurements,
portable instruments offer more possibilities for in-field studies [59,61].

Over the years, NIR spectroscopy (NIRS) has been rapidly developed and applied
(Figure 1) in various industries, such as agriculture, the food industry, medicine, environ-
mental protection, pharmaceuticals, the petroleum industry, and the chemical industry.
NIRS has been proven as a fast, nondestructive, and noninvasive spectroscopic technique,
employed for multicomponent analysis [62]. It requires minimal amounts of samples for
analysis. The price of NIRS use for detection, compared to other standard detection meth-
ods, is lower because of the absence of sample pretreatment or preparation processes [63,64].
NIRS can also be used for online analyses, with good data reproducibility [65]. The major
drawback of applying the NIRS technique is its inability to explore trace composition in
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samples due to the fact that the target composition absorption in the infrared range is
weaker when compared with other compositions. Therefore, NIRS can be used to detect
samples only with more than a 0.1% mass ratio. This limits the accurateness of the NIRS
method. Analysis and quantification of the chemical profile variances require the use of con-
ventional analytical methods. Additionally, NIRS requires the application of chemometric
methods for the qualitative and quantitative interpretation of complex spectral data [65,66].

Considering the last few decades, newly developed NIR performances, such as NIR
imaging, have significantly contributed to the application of NIR spectroscopy in different
sectors, such as biomedical, pharmaceutical, foods, and polymers [40,43,67–70]. The reason
for this lies in the fact that the spatial spreading of sample components provides much
information using NIR imaging, enabling in situ, noncontact, and nondestructive analyses.
Using this technique, samples that are thick or materials that are bulky can be investigated
without sample preparation. It is expected that the future improvement of NIRS technology
will dramatically expand its application [40].

5. Use of NIR Spectroscopy to Monitor and/or Control the Composting Process

As described previously, compost quality is manifested through an assessment of
how stable and mature the compost is; these two parameters must be evaluated, and the
complexity of composting is measured by the large number of variables that govern it
(physical–chemical analysis, microbiological issues, and activity of enzymes). To produce
high-quality compost, the process must be well monitored and maintained (as presented
for aerobic composting, Figure 2). Composting presents certain challenges, such as (i) de-
termining how to generate high-quality compost at a minimal cost and (ii) how to use
compost successfully in organic agriculture. To do this, it is critical to comprehend the
quality and chemical components of the compost and raw materials. These qualities are
not homogeneous and fluctuate too much for traditional chemical studies to be helpful.
Furthermore, no precise definition of compost quality has been developed. Composting
materials differ greatly and might include a diverse spectrum of chemical components, even
within the same pile. These variations have an impact on the compost’s quality. As a result,
for quality monitoring of the compost production process, a quick on-site measuring system
is necessary. The enormous number of factors that influence it (physical–chemical analysis,
microbiological parameters, and enzymatic activities) measure the composting process’s
complexity, and different chemometric tools should be applied (Figure 4). These techniques
are time-consuming, and in most situations, a range of methodologies must be investigated,
making it difficult to precisely compare compost quality, hence encouraging the develop-
ment of fresh approaches for appropriate composting evaluation. Spectroscopic techniques,
with specific emphasis on NIR spectroscopy, are regarded as the quick on-site measuring
system essential for quality control in the compost manufacturing process. Table 1 contains
some experiences of how spectroscopy methods may be used to monitor the composting
process. Examples describing different composting processes (in pile or in vessel) efficiently
monitored and controlled based on spectroscopy methods and chemometrics techniques
available in the literature over the last 20 years are presented. For specific parameters
during plant field composting [71], it can be concluded that spectroscopy methods coupled
with chemometric techniques can be efficiently used for the monitoring and quantification
of predicting ash, carbon, species and fiber ratios, volatile solids, macronutrient size (N, P,
and K), and the amounts of feasibly polluting elements (Fe, Cu, Mn, and Zn) as well as for
the quantification of odor outputs. Example of NIR spectra measured during composting
process are presented in Figure 5.
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Kavdir et al. [72] used Fourier transform near-infrared (FT-NIR) spectroscopy for
monitoring the olive solid waste composting process. The composting process was per-
formed in the form of composting piles, including 70% of olive oil solid waste, 25% of
goat manure, and 5% of alfalfa over 35 days. PLS models (as suggested in Figure 4), based
on FT-NIR spectra, were developed for the prediction of the compost carbon to nitrogen
(C/N) ratio, total nitrogen, inorganic nitrogen, total carbon, pH, and electrical conduc-
tivity. Their results show that FT-NIR spectroscopy has the potential to sense olive oil
solid waste parameters nondestructively based on the high coefficients of determination
for all the analyzed variables. Furthermore, Rueda et al. [73] also applied FT-NIR and
Fourier transform mid-infrared (FT-MIR) to analyze the chemical changes taking place
during torrefaction (at three different temperatures 175, 225, and 275 ◦C from 1 to 5 h)
of olive pomace compost and to assess the impact of treatment on compost at various
stages of maturation. Windrow composting (manual composting technology, Figure 3)
was performed using 4 m high and 8 m diameter piles composed of 68% olive pomace,
24% goat manure, 6% olive tree pruning, and 2% chicken excrement mixed with sawdust
for a one year. The results indicated that the FT-NIR and FT-MIR combination of data is
especially dependent on molecular modifications occurring both during and following the
composting procedure, and PCA analysis of the merged spectra indicated that the changes
below 175 ◦C are mostly caused by water loss, whereas heating above 225 ◦C causes a
drop in the aliphatic groups. Both examples confirm that the NIRS operational technique
is relatively easy and nondestructive, and the measurement takes just a few minutes and
can be used for the continuous monitoring of the composting process, as presented for
the chicken manure samples in Figure 5 [71]. Another example of the efficient usage of
handheld near-spectroscopy for the monitoring of industrial composting processes was
presented by Huang et al. [74]. The authors stated the potential of the used handheld NIR
in the accurate detection of the contents of (i) moisture, (ii) total nitrogen, (iii) total carbon,
and (iv) organic matter as well the ratio of C/N and changes in electrical conductivity
during the composting process. Their results showed that NIR spectroscopy described
the moisture content with the highest accuracy, followed by total nitrogen and organic
matter. The possibility of the rapid measurement of moisture content during the com-
posting process is considered very important, taking into account that the composting
process efficiency depends on moisture control. Developments in the NIR instrumentation
production led to the production of high performance portable NIR spectrometers [75].
The use of portable devices for in-field measurements opens up new opportunities by al-
lowing the direct measurement of critical parameters. These devices offer various benefits,
including lower costs, enhanced safety for the environment and workers, and improved
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technique accuracy by conserving the sample and eliminating its travel. Similarly, Malley
et al. [75] investigated the ability of a field-portable NIR spectrophotometer to identify the
nutrient content of unprocessed, stored (not turned), and composted cattle feedlot manure.
NIRS was discovered to be helpful in two distinct manners. SIMCA (Figure 4), utilizing
spectral data alone, revealed that stockpiling the manure did not considerably alter it,
whereas compost was considerably distinct from the raw or stored manure. Second, usable
calibrations for total carbon (C), organic carbon, total nitrogen (N), the carbon/nitrogen
ratio (C/N), sulphur (S), potassium (K), and pH were created by merging spectral and
compositional data depicting raw, stored, and composted cattle manure for both years.
These calibrations can be used to forecast these constituents in fresh samples in real time.
The data available in the literature also show that NIR spectroscopy can be used for the
estimation of available nitrogen in poultry manure compost [76]. Second derivative spectra
and multiple regression analysis were applied to establish highly precise calibration models
for total nitrogen and uric acid nitrogen in compost. According to dos Santos et al. [77],
under the same measurement settings, the performance of the laboratory and portable NIR
devices is equivalent. Nonetheless, depending on the measurement settings and sample
characteristics, NIR spectrometers in the field may confront additional issues inherent in
situ measurements, which may bring undesirable fluctuations into the spectra that have to
be removed by applying some of the spectra preprocessing methods.

Ueno et al. [78] used FT-NIR in a wavelength range of 1000–2500 nm and PLS modeling
for the prediction of total carbon, total nitrogen, and the C/N ratio for monitoring cow
manure composting. The calibration models assessed the right potassium, phosphorus, and
other mineral contents of the test composts in terms of received precision. These findings
suggested that NIR spectroscopy was a helpful instrument for managing compost quality.
Grube et al. [79] used FT-IR spectroscopy to investigate the cocomposting process of sewage
waste, wood fragments, and mature compost. The aim of their study was to determine the
characteristic IR absorption bands or band growth rates that correlate with the compost
maturity/degradation degree, while Kumar et al. [80] used FT-IR to compare the quality,
maturity, and nutritional levels of vermicompost and compost produced from Eichhornia.

The potential for NIRS as a high throughput analytical method was also evaluated
for the detection and quantification of microplastics in compost samples [81] and for the
prediction of heavy metal content in compost [82]. Regarding the microplastic analysis in
compost, the authors showed that partial least squares regression models (Figure 4), after
applying a smooth first derivative of the raw data followed by normalization, could identify
and quantify the extracted microplastics in a mass range of 1–10 mg. The concentrations
of chosen heavy metals (Cr, As, Cd, Cu, Zn, and Pb) in compost containing pig and
chicken feces were analyzed. The second derivative outperformed the log 1/R and the first
derivative treatments in the research. The modified partial least squares calibration model
projected a correlation between NIRS expected values and chemical analysis values better
than the PLS or PCR methods. All previously presented examples show the significant
potential of spectroscopy methods for monitoring process and for the analysis of compost
chemical composition. The most important advantages of using spectroscopy techniques,
especially NIRS, are the possibility to perform analyses in situ and online for a large
number of samples per minute without interfering with the process and without the use
of chemicals, and this makes this method very appealing for application on a lab scale as
well as in large-scale processes. Other procedures require more time, and, in most cases,
a variety of methodology must be examined, making it difficult to accurately evaluate
compost quality, supporting the discovery of novel approaches for appropriate composting
assessment. Spectroscopic methods are considered a rapid on-site measurement system
required for the quality control of the compost production process. Some of the examples
describing the application of NIR spectroscopy for monitoring the composting process are
given in Table 1.
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Table 1. Overview of the application of NIR spectroscopy coupled with chemometrics for monitoring
and/or control of the composting process.

Type of Composting Composting Material Spectroscopic Method
and Chemometrics Specific Results Reference

In pile composting.

Compost made from
wheat stalks and
poultry waste;
microbial and
biochemical properties
analysis.

UV-Vis and NIR
spectra gathered in the
wavelength range
400–2498 nm coupled
with PLS regression.

The best calibrations could be
developed using the 1100–2498 nm
segment. NIR calibration equations
for predicting ash, carbon,
thermophilic population, and fiber
fractions have been successfully
developed and then validated using
independent samples.

[83]

In pile composting.

120 animal manure
compost samples from
22 provinces in China;
compost compositions
analysis (moisture,
volatile solid, total
organic carbon, total
nitrogen, carbon to
nitrogen ratio, pH, and
electronic
conductivity).

NIR spectra gathered in
the wavelength range
1000–2500 nm coupled
with PLS regression.

Results showed that the determination
coefficient of calibration (R2) and the
standard error of estimate (SEE) were
for moisture (0.981, 21.98), volatile
solid (0.936, 37.29), total organic
carbon (0.961, 16.46), total nitrogen
(0.987, 1.61), carbon to nitrogen ratio
(0.741, 2.29), pH (0.788, 0.48), and
electronic conductivity (0.870, 1.74).

[84]

In pile composting.

20 different composting
piles using several
residuals (grape stalk,
exhausted grape marc,
grape marc, vinasse,
citrus juice waste,
Alpeorujo olive-oil
waste, almond skin,
exhausted peat, tomato
soup waste, spent
mushroom substrate,
cattle manure poultry
manure, and sewage
sludge).

FT-NIR spectroscopy in
the wavelength range
830–26,000 nm coupled
with PLS regression.

PLS models were developed for
prediction of pH, electrical
conductivity, total organic matter, total
organic carbon and nitrogen, C/N
ratio, macronutrient contents (N, P, K)
and potentially pollutant element
concentrations (Fe, Cu, Mn, and Zn).
The estimation findings revealed that
in order to obtain an adequate
prediction accuracy, the NIRS method
must be adapted to each element and
property using particular spectrum
transformations.
However, excellent forecast findings
for total organic matter and total
organic carbon were obtained, as well
as successful calibrations for pH,
electrical conductivity, Fe, and Mn, as
well as relatively successful
predictions for TN, C/N ratio, P, K,
Cu, and Zn.

[85]

In vessel composting
at 65–70 ◦C by
heating.

12 kg of tofu refuse and
200 g of seeds.

NIR spectroscopy in
the wavelength range
400–2400 nm coupled
with multiple linear
regression.

The NIR absorption of carbon
components appears in the second
derivative spectra at two wavelengths,
1584 and 1024 nm. The NIR
absorption of nitrogen components
can be seen in the second derivative
spectra at two wavelengths, 2174 and
900 nm. Multiple linear regression
analysis was performed using NIR
spectral data and carbon and nitrogen
contents. The multiple correlation
coefficient was 0.988 and 0.984,
respectively.

[86]
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Table 1. Cont.

Type of Composting Composting Material Spectroscopic Method
and Chemometrics Specific Results Reference

Composting pile
monitored for
135 days.

10 m3 of thick sludge
was mixed with 5 m3 of
fresh green waste in
pile 8 m long and 1.5 m
high.

FTIR spectroscopy in
the wavelength range
2500–25,000 nm.

FTIR detection of components of
biodegradation that can be easily
assimilated by microorganisms (e.g.,
certain aliphatic and peptide
structures and carbohydrates,
including celluloses and
hemicelluloses).

[87]

Composting pile
monitored for 1 year.

280 kg olive marc,
20 kg wheat straw, and
85 L of olive-mill
wastewater.

FTIR spectroscopy in
the wavelength range
2500–25,000 nm.

The FTIR spectra revealed that the
aromatic groups were enriched and
the aliphatic groups were degraded
throughout composting.

[88]

Composting pile
monitored for 70
days.

Four experiments were
performed:
(i) powdered cellulose +
ammonium-nitrate
mixed with the soil,
(ii) green manure as
chopped endive leaves
mixed with the soil,
(iii) ammonium-nitrate
mixed into the
substrates, with no
organic amendment
and (iv) with no
inorganic and no
organic supplements.

NIR spectroscopy in
the wavelength range
1100–2500 nm coupled
with PCR and PLS
modeling.

By simulating the cellulose
concentration in the soil with a
negative exponential function, 95% of
the variation can be explained by the
NIR equation.

[89]

In vessel composting
in 24 L adiabatic
reactors.

Four substrates were
tested: (i) organic
fraction of municipal
solid waste, (ii) mixture
of organic fraction of
municipal solid waste
with orange peel waste,
(iii) sewage sludge with
bulking agent, and (iv)
mixture of strawberry
extrudate, fish waste,
sewage sludge, and
bulking agent.

NIR spectroscopy in
the wavelength range
400–25,000 nm coupled
with PCA and
multivariate regression.

The chemical composition of each
substrate determined by NIR
spectroscopy could be related to odor
emissions. For all four substrates,
correlations between experimental
and multiple linear regression model
estimated odor emission rate based on
the NIR spectra were in the range
from 0.7370 to 0.8898.

[90]

Composting pile
monitored for 90
days.

Mixture of different
organic waste,
including urban
organic waste, farm
organic residuals, and
biochar mixed with
vegetable active
principles.

Hyperspectral imaging
analysis in the NIR
wavelength range
(1000–1700 nm)
coupled with PCA and
PLS modeling.

Respectable correlations were
achieved for all the studied variables,
with R2 values of 0.93, 0.85, 0.89, and
0.96 for pH, electrical conductivity,
soluble total organic carbon, and
soluble total nitrogen.

[91]
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Table 1. Cont.

Type of Composting Composting Material Spectroscopic Method
and Chemometrics Specific Results Reference

Composting
experiments were
carried out in 200 L
silo composters for
11 months.

Mix C (40% of textile
waste, 30% green waste,
and 30% paper and
cardboard waste) and
Mix D (60% of fabric
waste, 40% green waste,
and 40% paper and
cardboard waste).

UV-Vis spectra in the
wavelength range
220–800 nm and IR
spectra in the
wavelength range
2500–25,000 nm. Partial
least squares regression
(PLS-R) was employed
to relate the chemical
fractions (total organic
carbon, total Kjeldahl
nitrogen, C/N ratio,
NH4

+/NO3
− ratio,

temperature, pH,
moisture, and ash) of
the compost samples
with the UV-Vis and IR
spectra.

UV-Vis spectroscopy showed that the
rate of humidification increased
slightly more for compost C.
Infrared spectra revealed that compost
C samples had a greater reduction in
easily degradable components. PLS-R
analysis provided good predictions
for TOC, TKN, and C/N ratio in
compost C, while TOC and
NH4

+/NO3
− ratio in compost D

correlated strongly with IR spectra.

[92]

Taking into account that it is critical to quickly and correctly assess the maturity, sta-
bility, and fertility of waste products during the composting process, Albrecht et al. [93]
analyzed the changes in the compost of sewage sludges and green wastes (one-third of
crushed green waste, one-third of pine bark, and one-third of municipal sewage sludge)
using NIR reflectance spectroscopy coupled with partial least squares regression during
180 days of the composting process. The authors stated that the validation of the com-
posting time forecast model enabled for the determination of C, N, C/N, and the stage of
composting of unknown composts by incorporating the NIRS spectrum into the model and
comparing it to those in the data library. NIRS provided more accurate information about
decomposition duration without using a complex traditional analytical method. Moreover,
Temporal-Lara et al. [94] used ultraviolet-visible-near-infrared (UV-VNIR) spectroscopy
in the wavelength range of 190–1000 nm to quantify the degree of maturity of compost
based on compost extracts’ spectra. The compost was produced by mixing city sewer
sludge, sawdust, and chopped wheat fiber in a 4:3:1 proportion. By introducing additional
waste materials, such as wheat straw, rice straw, cotton waste, or sawdust, as bulking
agents, the composting process was enhanced. The chemical components of the compost
were correlated with the UV and VNIR wavelengths using PLSR. PLSR models for the
UV (220–400 nm) and VNIR (400–1000 nm) spectrum wavelengths were developed. Total
organic matter was measured more accurately in the 700–1000 nm spectral region. The
overall extractable carbon had a stronger association with VNIR spectra, particularly the
visible spectral region. The humic acid model findings showed an increase in the perfor-
mance of the PLSR models at gather wavelengths (700–1000 nm), indicating the necessity
of NIR spectra fingerprint detection in calibration model development. Carballo et al. [95]
used FTIR spectroscopy and thermal analysis to describe compost tea liquid preparations
and compare the contents to that of the waste used in their manufacture. The application
of these methods to compost extracts revealed information about the molecular structure
of the extracts. It allowed for the determination of which components had been extracted
primarily and/or which biological and chemical changes had occurred.

The humification of organic matter during composting was studied by Albrecht
et al. [96]. The content of humic and fulvic acid evaluation during 146 days of the com-
posting of digested sewage sludge, green waste, and pine bark at a ratio of 1:1:1 was
correlated with UV spectra and with NIR spectra. The statistical analyses of the results
showed that NIRS presents some advantages over UV. Thus, the predictions concerning
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humic acid contents, which can characterize the maturity of compost, are more accurate
with NIRS, in particular for fulvic acid and the humic acid/fulvic acid ratio. Similarly,
Soriano-Disla [97] evaluated the applicability of NIR spectroscopy to predict the stability
parameters of sewage sludge and compost derived from sludge. The results showed that
developed PLS models were similarly efficient for the prediction of water-soluble carbon
content in sewage sludge and sewage sludge compost samples. Furthermore, their results
showed that PLS models based on NIR spectra are also very efficient for the prediction
of compost age as well for the prediction of microbial reparation during the composting
process expressed as CO2. Meissl et al. [98] compared and evaluated the performance of
mid-infrared spectroscopy and near-infrared spectroscopy using an integrating sphere and
a fiber probe for the prediction of humic acid content in compost samples. As a result,
practical considerations may be the deciding element in selecting one of these methods.
While Fourier transform infrared spectroscopy (FT-IR) is an excellent laboratory technique
that requires some sample preparation time, NIR is favored for online measurements and
industrial process control because it is faster and does not require any extra sample prepara-
tion. NIR readings with the fiber probe produce the fastest outcomes, but due to the smaller
measurement area, three samples are needed, which cannot compete with the benefit of the
integrating sphere technique’s bigger measurement area.

Shen et al. [99] studied NIR spectroscopy to analyze quantitatively the organic matter
content, total nitrogen content, and carbon nitrogen ratio in compost prepared using two
different composting procedures (open composting and semienclosed high-temperature
composting). Spectra were gathered in the wavelength range of 350–1700 nm. The authors
described the calibration procedure in detail. Firstly, 13 methods, such as smoothing,
spectral enhancement, baseline correction, normalization, mean centering, differentiation,
and simple mathematical transformation, were assessed to preprocess the spectral data.
Secondly, the characteristic bands of the components were estimated using the competitive
adaptive reweighted sampling (CARS) method, stepwise regression (SR) method, succes-
sive projection algorithm (SPA), and synergy interval partial least squares (siPLS). In the
third step, PLS models were evaluated. Their results showed that various NIRS feature
variable selection and spectra modification techniques enhanced the prediction ability and
modeling. The NIRS method must be fitted to each element using particular spectrum
pretreatment to obtain acceptable prediction precision. Due to significant spectra noise
for the development of the efficient PLS model, the effect of the different techniques for
preprocessing spectrum information were evaluated, and it was noticed that to achieve the
appropriate prediction accuracy, the NIRS technique must be matched to every component
using specific spectral preprocessing. The significant effect of the used preprocessing
method on the developed calibration model performance is considered one of the most im-
portant NIR spectroscopy shortcomings. Chemometric analyses are still quite challenging,
demanding a specialized chemometrician and to maintain applicable equations. Further-
more, Sisouane et al. [100] applied middle- and near-infrared spectroscopy to quantify
organic carbon and total nitrogen in different organic samples, including wastes, composts,
and mixtures of composts and organic wastes. In total, 121 samples were included in the
analysis. Their results showed that attenuated total reflectance (PLS-ATR-MIR) models
ensure a higher prediction accuracy for both analyzed variables than diffuse reflectance
(PLS-DR-NIR) models.

Similarly, Cascant et al. [101] coupled middle- and near-infrared spectroscopy and
partial least squares regression to determinate the total phenolic compound content in
compost samples. As spectroscopy pretreatment, the multiplicative scatter correction,
standard normal variate, and first derivative were used, and the number of latent variables
was adjusted using leave-one-out cross-validation. Their results showed that the diffuse
reflectance (PLS-DR-NIR) model was more efficient than the attenuated total reflectance
(PLS-ATR-MIR) model for the prediction of the total phenolic compound content in the
compost samples. Moreover, McWhirt et al. [102] showed that PLS regression models
based on the first derivatives of the visible near-infrared diffuse reflectance spectra can be
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used for the assessment of organic matter content during composting with high accuracy
(R2 > 0.82).

Taking into account that dissolved organic matter not only represents the biochem-
ical change of organic matter during the decomposition process but also assesses the
composting humification degree, Abaker et al. [103] efficiently estimated the C/N ratio
during sludge composting using PLS regression models based on UV and fluorescence
data, while Tai et al. [104], Fuentes et al. [105], and Mouloubou et al. [106] monitored
organic matter degradation using UV–Vis and Fourier transform infrared spectroscopy.
Similarly, the application of FTIR spectroscopy and differential scanning calorimetry for
monitoring biodegradation during olive mill residue composting was also described in the
literature [107].

There are also examples of the efficient use of NIR spectroscopy for the characterization
of a diverse set of biobased fertilizers [108,109] and for the prediction of agricultural
soil fertility properties [109]. Wali et al. [108] analyzed the sample set of eighty-five (85)
diverse biobased fertilizers. This set of 85 compost samples included 4 different groups
as follows: (i) 50 composts from various Australian composting facilities, (ii) 6 samples
of animal manure (from cows and pigs), (iii) 10 fresh plant residues obtained from the
main Australian crop species and some alternative species, and (iv) 19 biosolids obtained
from waste water plants (urban and rural). Twenty-five properties were analyzed in the
listed samples, including essential plant nutrients (N, P, and K), nitrate, free amino acid
ammonium nitrogen, other elements and micronutrients (S, Al, As, Ca, Cu, Na, Fe, Mg,
Mo, Ni, Mn, Zn, Cr, Co, Cd, Pb, and Se), pH, and electrical conductivity. Their results
showed that the wavelength selection method ensured accurate predictions for 21 of the
25 analyzed properties; therefore, they suggested that NIR spectroscopy could replace
traditional chemical analysis methods for the analysis of biobased fertilizers composition.
Moreover, Wang et al. [109] analyzed 104 organic compost fertilizers from 13 regions in
Jiangsu province, China. NIR spectra of the mentioned samples were gathered in the
wavelength range of 1000–2500 nm and used for the prediction of total organic matter,
electrical conductivity, the germination index, total nitrogen, water-soluble organic carbon,
and water-soluble organic nitrogen. Overall, the NIR-PLS method precisely estimated
the total organic matter, water-soluble organic nitrogen, pH, and germination index. Less
accurate was the estimation of moisture, total nitrogen, and electrical conductivity, and
the lowest estimates were of water-soluble organic carbon. As a result, it can be suggested
that NIR spectroscopy combined with PLS analysis could be a useful industrial and study
tool for quickly and precisely assessing the quality of commercial organic fertilizers. On
the other hand, Munaware et al. [110] used NIR spectroscopy coupled with principal
component regression and partial least squares regression for the prediction of fertility
properties (solid nitrogen, phosphorous, potassium, pH, magnesium, and calcium) of 40 soil
samples. Their results showed that the partial least squares regression model described the
analyzed variables with higher accuracy than the principal component regression models.
Similarly, Peltre et al. [111] presented the potential of NIRS to estimate the organic C and
total N content, as well as van Soest biochemical fractions, in a sample set of 300 exogenous
organic matter and to predict the proportion of exogenous organic matter–total organic
carbon remaining in the soil after exogenous organic matter application in the long term. As
can be concluded from all of the above, the potential of NIR application in the monitoring
and/or control of the composting process is great, and further application and development
of the method as well as accompanying chemometric tools are certainly expected.

6. Conclusions and Future Perspective

Agriculture is a key contributor to food, feed, fiber, and fuel but, consequently, also
a provider of waste. A large amount of agro-waste is produced as a result of agricultural
operations and food processing, and this waste poses a significant environmental risk. At
the same time, in a more circular bioeconomy, this waste might be viewed as an opportunity
for reuse. The use of process analytical technology instruments (NIR included) is intended
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to understand and control complex and dynamic biological products [112], and agri-waste
is exactly such a product. Taking into account that compost enhances soil biodiversity
and mitigates the environmental dangers associated with synthetic fertilizers, composting
can be considered an adequate technique of agriculture waste disposal. To produce high
quality and effective compost, precise, reproducible, and quick composting process control
is important. The examples discussed in this work show the high potential of spectroscopic
methods, with emphasis on NIRS, as the quick measuring system needed for monitoring
the quality of the compost manufacturing procedure.

The usage of spectroscopy methods reduces the time necessary for physical–chemical
analyses, microbiological analyses, and enzymatic activity analyses, which are very impor-
tant when monitoring the dynamic composting process. The research interest is focused on
the increased application of a portable spectroscopy (in food and agricultural production
systems) instrument that allows online measurement of the most important process vari-
ables. Chemometric tools coupled with spectroscopy analysis allow precise predictions of
the process variables of interest.

NIR spectroscopy is a method that is extremely promising for the rapid, precise, and
noninvasive assessment of compost. However, for future progress, the awareness of its
limitations will greatly affect further development and applicability [113]. Namely, for the
successful application of NIRS, improvement in the following aspects will be imperative:
(i) higher resolution, (ii) a systematized data processing technique, and (iii) economic
aspects vs. standard analyses.

The development of a quality evaluation system with software algorithms that will
enable the rapid analysis of NIR spectra and shorten the time to display the quantitative
results of complex and dynamic biological products in real time is what will certainly be
worked on in the near future.
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27. Petric, I.; Selimbašić, V. Development and validation of mathematical model for aerobic composting process. Chem. Eng. J. 2008,
139, 304–317. [CrossRef]

28. Gao, M.; Li, B.; Yu, A.; Liang, F.; Yang, L.; Sun, Y. The effect of aeration rate on forced-aeration composting of chicken manure and
sawdust. Bioresour. Technol. 2010, 101, 1899–1903. [CrossRef]

29. Siles-Castellano, A.B.; López, M.J.; López-González, J.A.; Suárez-Estrella, F.; Jurado, M.M.; Estrella-González, M.J.; Moreno, J.
Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes.
J. Clean. Prod. 2020, 252, 119820. [CrossRef]

30. Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Current Approaches and Future Trends in Compost
Quality Criteria for Agronomic, Environmental, and Human Health Benefits. Adv. Agron. 2017, 144, 143–233.

31. Miguel, N.; López, A.; Jojoa-Sierra, S.D.; Fernández, J.; Gómez, J.; Ormad, M.P. Physico-Chemical and Microbiological Control of
the Composting Process of the Organic Fraction of Municipal Solid Waste: A Pilot-Scale Experience. Int. J. Environ. Res. Public
Health 2022, 19, 15449. [CrossRef]

32. Qasim, W.; Lee, M.H.; Moon, B.E.; Okyere, F.G.; Khan, F.; Nafees, M.; Kim, H.T. Composting of chicken manure with a mixture of
sawdust and wood shavings under forced aeration in a closed reactor system. Int. J. Recycl. Org. Waste Agric. 2018, 7, 261–267.
[CrossRef]

33. Pandey, P.K.; Vaddella, V.; Cao, W.; Biswas, S.; Chiu, C.; Hunter, S. In-vessel composting system for converting food and green
wastes into pathogen free soil amendment for sustainable agriculture. J. Clean. Prod. 2016, 139, 407–415. [CrossRef]

https://doi.org/10.3390/ijerph20010312
https://doi.org/10.1016/j.chemosphere.2013.06.064
https://doi.org/10.3390/inventions7020038
https://doi.org/10.3390/en14196164
https://doi.org/10.1016/j.wasman.2006.09.008
https://doi.org/10.1016/j.biortech.2009.05.073
https://doi.org/10.1016/j.biortech.2017.06.133
https://doi.org/10.3390/agronomy13020542
https://doi.org/10.3389/fmicb.2019.00529
https://doi.org/10.1186/s40538-023-00381-z
https://doi.org/10.1016/j.jenvman.2016.12.051
https://doi.org/10.1007/s13165-017-0180-z
https://doi.org/10.3390/su15043454
https://doi.org/10.1016/j.wasman.2012.09.017
https://www.ncbi.nlm.nih.gov/pubmed/23122203
https://doi.org/10.1002/tqem.21646
https://doi.org/10.1016/j.biortech.2008.10.007
https://www.ncbi.nlm.nih.gov/pubmed/19042126
https://doi.org/10.1016/j.biortech.2012.02.099
https://www.ncbi.nlm.nih.gov/pubmed/22437050
https://doi.org/10.1186/s44147-022-00092-6
https://doi.org/10.1016/j.eti.2022.102505
https://doi.org/10.1016/j.cej.2007.08.017
https://doi.org/10.1016/j.biortech.2009.10.027
https://doi.org/10.1016/j.jclepro.2019.119820
https://doi.org/10.3390/ijerph192315449
https://doi.org/10.1007/s40093-018-0212-z
https://doi.org/10.1016/j.jclepro.2016.08.034


Appl. Sci. 2023, 13, 6419 18 of 21

34. Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and economic analysis of an in-vessel food waste composting system at
Kean University in the U.S. Waste Manag. 2017, 59, 476–486. [CrossRef]

35. Qasim, W.; Moon, B.E.; Okyere, F.G.; Khan, F.; Nafees, M.; Kim, H.T. Influence of aeration rate and reactor shape on the composting
of poultry manure and sawdust. J. Air Waste Manag. Assoc. 2019, 69, 633–645. [CrossRef]

36. Molina, M.J.; Soriano, M.D.; Ingelmo, F.; Llinares, J. Stabilisation of sewage sludge and vinasse bio-wastes by vermicomposting
with rabbit manure using Eisenia fetida. Bioresour. Technol. 2013, 137, 88–97. [CrossRef]

37. Moreno, J.L.; García, C.; Hernández, T.; Pascual, J.A. Transference of heavy metals from a calcareous soil amended with
sewage-sludge compost to barley plants. Bioresour. Technol. 1996, 55, 251–258. [CrossRef]

38. Yadav, A.; Garg, V.K. Vermicomposting—An effective tool for the management of invasive weed Parthenium hysterophorus.
Bioresour. Technol. 2011, 102, 5891–5895. [CrossRef]

39. Alavi, N.; Daneshpajou, M.; Shirmardi, M.; Goudarzi, G.; Neisi, A.; Babaei, A.A. Investigating the efficiency of co-composting
and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Manag. 2017, 69,
117–126. [CrossRef]

40. Ishigaki, M.; Ozaki, Y. Near-infrared spectroscopy and imaging in protein research. In Vibrational Spectroscopy in Protein Research;
Elsevier: London, UK, 2020; pp. 143–176.

41. Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005,
57, 1109–1143. [CrossRef]

42. Menezes, J.C.; Ferreira, A.P.; Rodrigues, L.O.; Brás, L.P.; Alves, T.P. Chemometrics Role within the PAT Context: Examples from
Primary Pharmaceutical Manufacturing. Compr. Chemom. 2009, 4, 313–355.
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