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Featured Application: A new quasi-3D shear deformation theory is proposed for static bending
analyses of functionally graded plates. This work can provide fundamental support for the com-
prehensive design and analysis of functionally graded plates.

Abstract: A new quasi-three-dimensional (3D) shear deformation theory, called the spectral dis-
placement formulation (SDF), is proposed for high-precision static bending analyses of functionally
graded plates. The main idea is to expand unknown displacement fields into Chebyshev series of
a unique form in the thickness direction; the truncation numbers are set to be adjustable to meet
various application requirements. Specifically, 3D elasticity solutions and traction-free boundary
conditions can be approached by increasing the number of Chebyshev bases. The SDF is also an
extension of the classical plate theory and naturally avoids the shear locking problem, making it
versatile for functionally graded material (FGM) plates of arbitrary thicknesses. The C1 continuity
requirement for the discretization of the generalized displacements is conveniently fulfilled by the
nonuniform rational B-splines (NURBS)-based isogeometric method. Numerical examples demon-
strate the excellent performance of the proposed method for the displacement and stress analyses of
functionally graded plates. The high precision and versatility of the present method have manifested
its great potential applications in strain-based or stress-based reliability analysis, optimization design,
fatigue analysis, and fracture analysis of FGM plates, and other related fields.

Keywords: functionally graded material plate; spectral displacement formulation; isogeometric
analysis; Chebyshev series

1. Introduction

Functionally graded materials (FGMs) are heterogeneous materials characterized by
gradually changing composition and material properties. FGMs can effectively avoid stress
concentration between interfaces and are suitable for applications requiring conflicting
properties. Due to their exceptional mechanical strength, high temperature resistance, and
other characteristics, FGMs are widely used in various fields, such as aerospace equipment,
electronic equipment, automobile engines, and medical equipment [1,2].

Mechanical analyses of functionally graded material (FGM) plates have been exten-
sively discussed in the past decades using various theories [2–4]. The classical plate theory
(CPT) [4], known as Kirchhoff theory, is only suitable for analyzing thin FGM plates where
shear effects can be ignored. The first-order shear deformation theory (FSDT) [5], devel-
oped by Mindlin and Reissner, can handle the mechanical analyses of moderately thick
FGM plates. However, problem-dependent shear correction factors are usually necessary
to improve the accuracy. In addition, applying FSDT to thin plates leads to troublesome
shear locking problems. Many higher-order shear deformation theories (HSDTs) have been
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proposed to analyze thick FGM plates, such as the third-order shear deformation theory
(TSDT) [6,7], the fifth-order shear deformation theory, the nth-order shear deformation
theory [8,9], the sinusoidal shear deformation theory, the exponential shear deformation
theory, and the hyperbolic shear deformation theory [10–14]. Traction-free boundary con-
ditions on the top and bottom surfaces are satisfied automatically in these HSDTs; thus,
using shear correction factors becomes unnecessary. Generally, HSDTs also provide more
accurate displacement and stress results than CPT and FSDT.

Carrera et al. [15] demonstrated the importance of the thickness stretching effect in ana-
lyzing FGM plates and shells and introduced the quasi-3D Carrera’s unified formula (CUF).
CUF expands all displacement components as Taylor series in the thickness direction; ad-
justable precision can be achieved by alternating the truncation numbers. Quasi-3D HSDTs
have also been proposed. Zenkour [16] developed a quasi-3D trigonometric shear defor-
mation theory and presented benchmark solutions for the bending of exponential FGM
rectangular plates. Matsunaga [17,18] constructed a quasi-3D theory based on power series
expansion for the vibration and buckling analyses of FGM plates and shallow shells, and the
effects of shear deformation and rotatory inertia were investigated. Using a new quasi-3D
theory, Talha and Singh [19] developed a nine-node isoparametric element for bending and
free vibration analyses of FGM plates; the influences of aspect ratio, thickness ratio, volume
fraction index, and boundary conditions were studied. Mantari and Soares [20] proposed a
general formulation in which various quasi-3D theories can be formulated using combined
polynomial, trigonometric, or hybrid functions [21,22]. Thai and Kim [23] constructed a
quasi-3D sinusoidal shear deformation theory with five unknowns, in which the transverse
displacement is divided into bending, shear, and stretching parts to reduce the number
of unknowns and overcome the shear locking problem. Similarly, Thai [24], Hebali [25],
Bessaim [26] and Bennoun [27] employed hyperbolic functions to construct shear-locking-
free quasi-3D shear deformation theories. Belabed [28] and Mantari [29,30] presented a
quasi-3D shear deformation theory by combining the polynomial and hyperbolic, or sinu-
soidal and hyperbolic functions. Neves and Ferreira et al. [31–33] combined polynomials
and trigonometric functions to formulate various quasi-3D shear deformation theories.
Farzam-Rad et al. [34] presented a new simple and efficient quasi-3D shear deformation
theory with only five unknowns. As the thickness stretching effect is well accounted for,
these quai-3D HSDTs generally show improved accuracy compared to conventional HSDTs.

This paper aims to develop a new high-precision quasi-3D shear deformation theory,
called the spectral displacement formulation (SDF) [35], for the static bending analyses of
FGM plates. The displacement fields in the thickness direction are expanded using the
Chebyshev series. Similar to the CUF, the SDF is capable of hierarchical refinement to
approach exact 3D solutions, and it can satisfy traction-free boundary conditions without
additional modifications. Compared with commonly used shear deformation theories,
such as CPT, FSDT, HSDTs, and most of the quasi-3D HSDTs, the SDF supplies higher
accuracy, especially for the strain and stress analyses. The SDF is extended from the
CPT and naturally free from shear locking. This feature guarantees that the SDF has
versatility for thin and thick FGM plates and offers a flexible balance between accuracy
and computational cost that can be adjusted by changing the truncation numbers. A
non-uniform rational B-splines (NURBS)-based isogeometric analysis (IGA) method [36]
is implemented to satisfy the in-plane C1-continuity requirement of the SDF and further
enhance the present method’s applicability to complex plate geometries. In view of the
remarkable precision and versatility, the SDF-based IGA method has significant potential
in various applications, e.g., strain-based or stress-based reliability analysis, optimization
design, fatigue analysis, and fracture analysis [37,38].

This paper is organized as follows: Section 2 details the basic assumptions of the SDF
and presents the integral governing equations based on d’Alembert’s principle and the
principle of virtual work. Section 3 briefly introduces the concept of NURBS and derives
the discrete governing equations. Section 4 presents numerical examples and discussions.
The conclusions are summarized in Section 5.
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2. Fundamental Assumptions and Formulations
2.1. Functionally Graded Material Plate

Consider an FGM plate shown in Figure 1 with a constant thickness of h and midplane
located in the oxy plane. The FGM plate consists of ceramic and metal materials in the
direction of thickness according to the following power law [39]:

vc = (1/2 + z/h)g

vm = 1− vc
, z ∈ [−h/2, h/2] (1)

where vc and vm are the volume fractions of the ceramic and the metal, respectively. g is the
gradient index that controls the variation of material properties in the thickness direction.
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The rule of mixtures [2] is applied to determine the equivalent material properties of
the FGM plate according to the following relationship:

(E, ν, ρ) = (Ec, νc, ρc)vc + (Em, νm, ρm)vm (2)

where Ec, νc, ρc represent the elastic modulus, Poisson’s ratio, and mass density of the
ceramic, respectively, and Em, νm, ρm correspond to the elastic modulus, Poisson’s ratio,
and mass density of the metal, respectively. The resulting values E, ν and ρ represent the
equivalent properties of the FGM plate.

2.2. Spectral Displacement Formulation

For high-precision analyses of thick FGM plates, as well as for the stress analyses of
thin FGM plates, refined shear deformation theories are necessary [4]. In this paper, the
displacement fields are expanded into the following spectral series:

u = u0 + ∑M
i=1(ui − wi−1,x)κi(z) + ∑N

i=M+1 uiκi(z)
v = v0 + ∑M

i=1
(
vi − wi−1,y

)
κi(z) + ∑N

i=M+1 viκi(z)
w = ∑M

i=1 wi−1κ′i(z)
(3)

where u, v, and w are displacements in the x, y, and z directions; {ui}N
i=0, {vi}N

i=0, and
{wi}M−1

i=0 are basic unknows. {κi(z)}N
i=1 are the spectral bases with the first constant term

omitted. ( )′ represents the first-order derivative, while ( ),x and ( ),y indicate first-order
partial derivatives with respect to x and y, respectively. M and N are the truncation
numbers for the transverse and the in-plane displacement fields, M ≤ N. Equation (3) can
be rearranged in the following vector form:

u = u0 + ∑M
i=1 Ai(z)ui + ∑N

i=M+1 Ai(z)ui
Ai(z) = diag

[
κi(z), κi(z), κ′i(z)

] (4)

where u = [u, v, w]T, {ui}N
i=0 are the generalized displacements defined as follows:

ui =

{
[ui − wi−1,x, vi − wi−1,y, wi−1

]T , 1 ≤ i ≤ M
[ui, vi, 0]T, i = 0 and M + 1 ≤ i ≤ N

(5)
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The infinitesimal strain fields can be expressed as [40]

ε = ε0 + ∑M
i=1 Bi(z)εi + ∑N

i=M+1 Bi(z)εi
Bi(z) = diag

[
κi(z), κi(z), κ′′i (z), κ′i(z), κ′i(z), κi(z)

] (6)

where ε =
[
εxx, εyy, εzz, γyz, γxz, γxy

]T, {εi}N
i=0 are generalized strains in the following form:

εi =


[
ui,x − wi−1,xx, vi,y − wi−1,yy, wi−1,

vi, ui, ui,y + vi,x − 2wi−1,xy
]T , 1 ≤ i ≤ M[

ui,x, vi,y, 0, vi, ui, ui,y + vi,x
]T, i = 0 and M + 1 ≤ i ≤ N

(7)

Applying the 3D elastic constitutive relations [40], the stress fields are expressed as

σ = Dε = Dε0 + ∑M
i=1 DBi(z)εi + ∑N

i=M+1 DBi(z)εi

D =

[
Dn 03×3
03×3 Ds

]
, (Dn)ij = λ + 2µδij, (Ds)ij = µδij

(8)

where σ =
[
σxx, σyy, σzz, σyz, σxz, σxy

]T, δij is the Kronecker symbol. λ = Eν/(1+ ν)/(1− 2ν)
and µ = E/(1+ ν)/2 are Lamé parameters.

In this paper, the Chebyshev polynomials of the first kind are taken as the spectral bases
whose first-order derivatives are Chebyshev polynomials of the second kind. Specifically,
Chebyshev polynomials [41] of the first kind on [−h/2, h/2] are defined as [41]

T0(z) = 1, T1(z) = 2z
h

Ti(z) = 4z
h Ti−1(z)− Ti−2(z), i ≥ 2

(9)

and Chebyshev polynomials of the second kind are defined as [41]

U0(z) = 1, U1(z) = 4z
h

Ui(z) = 4z
h Ui−1(z)−Ui−2(z), i ≥ 2

(10)

Figure 2 shows the function shapes of the first five Chebyshev bases. It is also noted
that the SDF is inherently an extension of the CPT and thus naturally free from shear-locking,
similarly as already been extensively stated by Thai [42] and Nguyen [43], among others.
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Figure 2. Chebyshev polynomials. (a) Chebyshev polynomials of the first kind; (b) Chebyshev
polynomials of the second kind.

2.3. Integral Governing Equations

Assuming the top surface of the FGM plate is subjected to a distributed transverse
force $(x, y), the integral governing equations of the FGM plate can be derived based on
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the d’Alembert principle and the principle of virtual work [40]. These equations can be
written as ∫

V
δεTσdv =

∫
Ω

[
∑M

i=1 δwi−1κ′i

(
h
2

)]
$(x, y)da (11)

where V and Ω represent the volume and the midplane of the FGM plate, respectively.
Combined with Equations (4)–(8), Equation (11) can be rearranged as∫

Ω
δ

~
ε

T ~
D

~
εda =

∫
Ω

δ
~
u

T
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3. NURBS-Based Isogeometric Analysis

IGA was proposed by Hughes et al. [44] to seamlessly link computer-aided engi-
neering (CAE) and computer-aided design (CAD). In IGA, the widely used NURBS basis
functions in CAD are directly applied to numerical simulations; therefore, potential geomet-
ric errors can be eliminated. In addition, NURBS-based IGA conveniently fulfills continuity
requirements of arbitrary orders that can be challenging to achieve in the conventional
finite element method. The SDF proposed in this paper requires at least C1-continuity,
which is readily satisfied using NURBS-based IGA.

3.1. A Brief on NURBS

A knot vector Σ =
{

ζ1, . . . , ζn+p+1
}

is assigned on the one-dimensional parameter
axis ζ, where ζi is the ith knot, and ζi+1 ≥ ζi. Knots in Σ may be repeated. An open
knot vector is usually used, where the start and end knots repeat p + 1 times to create
additional control points at the ends. The knot vector Σ recursively defines a group of
one-dimensional polynomial B-splines as follows [44,45]:

Ni,0(ζ) =

{
1, ζ ∈ [ζi , ζi+1)
0, otherwise

Ni,p(ζ) =
ζ−ζi

ζi+p−ζi
Ni,p−1(ζ) +

ζi+p+1−ζ

ζi+p+1−ζi+1
Ni+1,p−1(ζ), p ≥ 1

(14)

where p and n are the order and the total number of the B-splines, respectively. i = 1, . . . , n
denotes the sequence number. Polynomial B-splines cannot accurately represent conic
curves; hence, rational B-splines are constructed as [44,45]

Ri,p(ζ) =
viNi,p(ζ)

∑n
j=1 vjNj,p(ζ)

(15)

where the constants vi > 0 denote the weights. The weights {vi}n
i=1, the knot vector Σ,

and the order p. define a group of rational B-splines. The rational B-splines based on
non-uniform knot vectors are called NURBS.



Appl. Sci. 2023, 13, 6412 6 of 21

Multi-dimensional NURBS basis functions used to discretize multivariable functions
can be readily obtained by tensor product operations. Specifically, the NURBS representa-
tion of a bivariable function can be simplified as [44,45]

s(ζ, η) = ∑Q
die=1 sdieRdie(ζ, η)

Rdie(ζ, η) = Ri1,p1(ζ)Ri2,p2(η)
(16)

where die is the lexicographical order associated with the two-tuple i = (i1, i2), which
contains the sequence numbers of ζ-dimensional and η–dimensional NURBS basis func-
tions. The sdie represents control points or control vectors, while Rdie represents the
two-dimensional (2D) NURBS basis functions. Q = n1 × n2 denotes the total number of 2D
NURBS basis functions. Additionally, p1 and p2, along with n1 and n2, indicate the orders
and the total numbers of the one-dimensional (1D) NURBS basis functions in the ζ and η
directions, respectively.

NURBS basis functions are widely used for creating parametric representations of
geometric models [44,45]. Figure 3a,b illustrate an instance of a 2D NURBS plane in
Euclidean and parameter space, respectively. For a deeper understanding of NURBS and
NURBS-based IGA, refer to the works of Piegl and Tiller [45], Farin [46], and Hughes and
Cottrell [44].
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3.2. Discrete Governing Equations

The analysis of the FGM plate is simplified to a 2D problem using the process outlined
in Section 2. The midplane geometry of the FGM plate is modeled based on 2D NURBS
basis functions, which can be expressed as

Ω =
{

x = (x, y)
∣∣∣x(ζ) = ∑Q

die=1 xdieRdie(ζ), ζ = (ζ, η) ∈ Ω̂
}

(17)

where xdie are the geometric control points, and Ω̂ is the mapping of the midplane Ω in the
parameter space. The displacement fields are discretized using 2D NURBS basis functions
calculated as

q(ζ) = ∑Q
die=1 qdieRdie(ζ) (18)

where q = [u0, . . . , uN , v0, . . . , vN , w0, . . . , wM−1]
T is a vector that collects all the basic un-

knowns. qdie are the control vectors. Combined with Equations (4) and (6), the displacement
and the strain fields can be expressed as

~
u(ζ) = ∑Q

die=1 Udie(ζ)qdie
~
ε(ζ) = ∑Q

die=1 Edie(ζ)qdie
(19)
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where Udie and Edie are sparse block coefficient matrices, the nonzero elements of which
are listed as(

Udie
)

11
=
(

Udie
)

2,N+2
= Rdie;(

Udie
)

3i+1,i+1
=
(

Udie
)

3i+2,N+i+2
=
(

Udie
)

3i+3,2N+i+2
= Rdie,(

Udie
)

3i+1,2N+i+2
= −Rdie,x,

(
Udie

)
3i+2,2N+i+2

= −Rdie,y, 1 ≤ i ≤ M;(
Udie

)
3i+1,i+1

=
(

Udie
)

3i+2,N+i+2
= Rdie, M + 1 ≤ i ≤ N.

(20)

and (
Edie

)
11

=
(

Edie
)

6,N+2
= Rdie,x,

(
Edie

)
2,N+2

=
(

Edie
)

61
= Rdie,y;(

Edie
)

6i+1,i+1
=
(

Edie
)

6i+6,N+i+2
= Rdie,x,

(
Edie

)
6i+1,2N+i+2

= −Rdie,xx,(
Edie

)
6i+2,N+i+2

=
(

Edie
)

6i+6,i+1
= Rdie,y,

(
Edie

)
6i+2,2N+i+2

= −Rdie,yy,(
Edie

)
6i+3,2N+i+2

=
(

Edie
)

6i+4,N+i+2
=
(

Edie
)

6i+5,i+1
= Rdie,(

Edie
)

6i+6,2N+i+2
= −2Rdie,xy, 1 ≤ i ≤ M;(

Edie
)

6i+1,i+1
=
(

Edie
)

6i+6,N+i+2
= Rdie,x,(

Edie
)

6i+2,N+i+2
=
(

Edie
)

6i+6,i+1
= Rdie,y,(

Edie
)

6i+4,N+i+2
=
(

Edie
)

6i+5,i+1
= Rdie, M + 1 ≤ i ≤ N.

(21)

Substituting Equation (19) into Equation (12), the discrete governing equations of the
FGM plate can be obtained as

∑Q
dje=1 Kdiedjeqdje = $die, ∀die ∈ [1, Q]

Kdiedje =
∫

Ω̂ ET
die

~
DEdje Jadâ, $die =

∫
Ω̂ UT

die
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$Jadâ
(22)

where Ja represents the Jacobian determinant [47], Kdiedje and $die are block stiffness ma-
trices and load vectors, respectively. Equation (22) can be further arranged using the
established lexicographical order into a global form as

Kd = f (23)

where K, d, and f are the global stiffness matrix, displacement and load vector, respectively,
assembled from Kdiedje, qdje, and ρdie. The local support property of the NURBS basis
functions ensures the sparseness of the stiffness matrix K [44,45].

4. Numerical Examples

In this section, examples of square, rectangular, circular, and L-shaped FGM plates
are used to demonstrate the effectiveness of the proposed methodology. Specifically, in
Section 4.1, the square plate example is utilized to verify the convergence performance of
the SDF in terms of the two truncation numbers. In Section 4.2, the converged results of
the rectangular plates are compared with exact 3D elastic solutions to validate the high
accuracy of the SDF. In Sections 4.3 and 4.4, the circular and the L-shaped plate examples
are tested to illustrate the application of the SDF-based IGA to analyze FGM plates with
multi-patch and complex geometries. Table 1 shows the properties of the relevant materials.
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Table 1. Material properties of ceramics and metals.

Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)

Al 70 0.3 2707
Ti 110.25 0.288 -

Al2O3 380 0.3 3800
ZrO2 278.41 0.288 -
SiC 427 0.17 3210

The penalty method is used to impose boundary conditions and handle patch cou-
pling, in which the penalty coefficient is 104 times the maximum element of related stiff-
ness matrices [44]. The k-refinement strategy [44] is applied to meshing the models and
(p + 1)× (q + 1) in-plane Gaussian integration points are used in each element [48]. The
number of integration points in the thickness direction is determined according to the
value of the gradient index. The codes were compiled using MATLAB 9.10 and run on a
computer with Intel(R) Core (TM) i7-9750H CPU (2.60 GHz), Win10 64-bit OS, 32 GB RAM,
and 12 threads.

As a preliminary to further discussions, the shear-locking-free property of the pro-
posed SDF is demonstrated by considering a homogeneous square plate with length a,
thickness h, and elastic properties E = 1.092 GPa, v = 0. The plate is subjected to a
uniformly distributed load with amplitude $0 = 1 N. Both simply supported and clamped
boundary conditions are considered; SDF-based IGA using second-order NURBS basis
functions with a 10 × 10 mesh and SDF truncation numbers M = 3 and N = 3 prove
accurate enough.

Figure 4 compares the results obtained using the SDF-based IGA in this paper with the
reference solutions presented in the relevant literature [49]. It is seen that for small aspect
ratios, the central deflection results obtained using the SDF-based IGA are close to those of
the FSDT-based IGA, which are considered to be accurate in practice. As the aspect ratio
increases, the FSDT-based IGA displays obvious locking behavior. At the same time, the
results obtained using the SDF-based IGA conform well with the CPT-based solutions for
thin plates, demonstrating the shear-locking-free property.
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Figure 4. Central deflections of a homogeneous square plate with various aspect ratios. (a) Simply
supported; (b) clamped.

4.1. Square Al2O3 Plate

Consider a fully simply supported square plate with length a, thickness h, as shown in
Figure 5. The plate is assumed to be made of aluminum (Al) and aluminum oxide (Al2O3),
and the corresponding material properties are listed in Table 1.
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Assuming the length a = 1, the thickness h = 0.25, and the gradient index g = 10, and the
top surface of the plate is subjected to a transverse bi-sinusoidal load $0sin(πx/a) sin(πy/a)
with $0 = 4× 109, numerical tests indicate that using fourth-order NURBS basis functions
with a 10× 10 mesh in the SDF-based IGA provide converged response results for any SDF
truncation numbers.

Defining nondimensional deflection and stress responses as w = 10h3Ec
a4$0

w
( a

2 , a
2 , 0
)
,

σxx = h
a$0

σxx

(
a
2 , a

2 , h
3

)
, τxz =

h
a$0

τxz

(
0, a

2 , h
6

)
, Figure 6 shows the convergence of the results

with respect to the SDF truncation numbers. The deflection w converges as M ≥ 3 and
N ≥ 3; however, for the normal stress σxx and the shear stress τxz, converged results can
only be obtained by setting M ≥ 5 and N ≥ 6.

The converged nondimensional 3D responses are shown in Figure 7. It is noted that
the shear stress τxz on the top and bottom surfaces of the plate is zero, satisfying the
traction-free boundary conditions [50].

As shown in Table 2, the nondimensional deflection and stress results for various
gradient indexes and aspect ratios obtained using the SDF-based IGA (M = 5, N = 6) are
compared with available references in the literature. Quasi-3D [15] represents results based
on CUF; TSDT-IGA [42] represents IGA solutions based on Reddy’s TSDT; FSDT [15] are
analytical solutions based on the FSDT. It is found that all four methods yield generally
acceptable deflection results. However, the FSDT is unable to provide accurate stress results
for both thick and thin FGM plates. The TSDT-IGA method shows improved but limited
accuracy stress results, especially for thick FGM plates. In all cases, the SDF-based IGA
results conform very well with the quasi-3D results, indicating the accuracy and reliability
of the present method.

4.2. Rectangular E-FGM Plate

Consider bending of simply supported exponentially functionally graded material
(E-FGM) rectangular plates with Poisson’s ratio ν = 0.3 under a bi-sinusoidal trans-

verse load. The nondimensional responses are defined as [u, v, w] = 10E0h3

a4$0
[u, v, w](z),[

σxx, σyy
]
= h2

a2$0

[
σxx, σyy

]
(z), τxy = 10h2

a3$0
τxy(z),

[
τyz, τxz

]
= h

a$0

[
τyz, τxz

]
(z), where a is the

width, h is the thickness, $0 is the amplitude of the load. E0 is the elasticity modulus on the
bottom surface of the plate; however, the nondimensional responses are irrelevant to E0 in
practice; see Zenkour [15] for more details.

Using fourth-order NURBS basis functions and setting the SDF truncation numbers
M = 5, N = 6 as described in Section 4.1. Assuming the gradient index k = 0.5, the
width-to-thickness ratio a/h = 4, and the length-to-width ratio b/a ranging from 1 to 4,
Figure 8 compares the displacement and stress results obtained using the SDF-based IGA
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with the exact 3D elasticity solutions provided by Zenkour [16]. It can be seen that the
predicted results agree perfectly with the exact solutions, demonstrating the ability of the
proposed method to supply sufficiently accurate and reliable results.
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Table 2. Nondimensional deflection and normal stress of Al/Al2O3 square plates with various
gradient indexes and aspect ratios.

g Method
¯
w
( a

2 , a
2 ,0
) ¯

σxx

(
a
2 , a

2 , h
3

)
a/h = 4 a/h = 10 a/h = 100 a/h = 4 a/h = 10 a/h = 100

1

Quasi-3D [15] 0.7171 0.5875 0.5625 0.6221 1.5064 14.9690
TSDT-IGA [42] 0.7284 0.5889 0.5625 0.5783 1.4816 14.8890

FSDT [15] 0.7291 0.5889 0.5625 0.8060 2.0150 20.1500
Present 0.7172 0.5875 0.5625 0.6219 1.5064 14.9692

4

Quasi-3D [15] 1.1585 0.8821 0.8286 0.4877 1.1971 11.9230
TSDT-IGA [42] 1.1598 0.8815 0.8287 0.4406 1.1711 11.8436

FSDT [15] 1.1125 0.8736 0.8286 0.6420 1.6049 16.0490
Present 1.1589 0.8823 0.8287 0.4884 1.1974 11.9198

10

Quasi-3D [15] 1.3745 1.0072 0.9361 0.3695 0.8965 8.9077
TSDT-IGA [42] 1.3908 1.0087 0.9362 0.3230 0.8733 8.8582

FSDT [15] 1.3178 0.9966 0.9360 0.4796 1.1990 11.9900
Present 1.3757 1.0074 0.9362 0.3657 0.8947 8.9076
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Figure 8. Nondimensional responses through the thickness of E-FGM plates with various width-
to-length ratios (a/h = 4, k = 0.5). (a) Variation in u through thickness; (b) Variation in v through
thickness; (c) Variation of w through the thickness; (d) Variation in σxx through thickness; (e) Variation
in τxy through thickness; (f) Variation in τxz through thickness; (g) Variation τyz through thickness.

For further verification, various values of the gradient index k are selected (a/h = 4,
b/a = 3). In Figure 9, the displacement and stress results obtained using the SDF-based
IGA method are compared with the exact 3D solutions [16]. It can be observed that the
SDF-based IGA results closely match the exact solutions.
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Using fourth-order NURBS basis functions with a 10 × 10 mesh in each patch, taking 
the SDF truncation numbers 𝑀𝑀 = 5, 𝑁𝑁 = 6, Figure 11 shows the converged displacement 
and von Mises stress results. It is seen that the results are continuous and smooth along 
the interfaces of adjacent patches, which means the patches are well coupled by the pen-
alty method. In addition, a reasonable stress concentration phenomenon is displayed on 
the boundary of the plate. 

Figure 9. Nondimensional responses through the thickness of an E-FGM plate with various gradient
indexes (a/h = 4, b/a = 3). (a) Variation in u through thickness; (b) Variation in v through thickness;
(c) Variation in w through thickness; (d) Variation in σxx through thickness; (e) Variation in τxy

through thickness; (f) Variation in τxz through thickness; (g) Variation in τyz through thickness.

4.3. Circular Ti/ZrO2 Plate

Consider a clamped circular FGM plate made of titanium (Ti) and zirconia (ZrO2), as
depicted in Figure 10. The power law used for comparison purposes is vm = (1/2− z/h)g,
vc = 1− vm, as described in Reddy et al. [51]. The radius, the thickness, and the gradient
index are taken as r = 1, h = 0.2, and g = 10, respectively. The top surface of the plate is
subjected to a uniform load with amplitude $0 = 2× 109.
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Figure 10. Three-dimensional geometry and 2D NURBS midplane of a circular plate. (a) Three-
dimensional geometry; (b) 2D NURBS midplane.

Using fourth-order NURBS basis functions with a 10× 10 mesh in each patch, taking
the SDF truncation numbers M = 5, N = 6, Figure 11 shows the converged displacement
and von Mises stress results. It is seen that the results are continuous and smooth along the
interfaces of adjacent patches, which means the patches are well coupled by the penalty
method. In addition, a reasonable stress concentration phenomenon is displayed on the
boundary of the plate.
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The nondimensional deflection is defined as w = 16h3Ec
3r4$0(1−ν2

c )
w. In Table 3, the central

deflection results for various thickness-to-radius ratios and gradient indexes obtained
using the SDF-based IGA are compared with the reference solutions in the literature. The
reference solutions include FSDT [51], which are analytical solutions based on the FSDT;
sFSDT–IGA [52], which are obtained using a simple FSDT with IGA method; and HSDT–
IGA [53], which are obtained using Reddy’s TSDT with the IGA method. It is seen that
the SDF-based IGA results agree well with the HSDT–IGA results, while the FSDT and
the sFSDT–IGA are less accurate. Furthermore, as the thickness decreases, the disparity
between the results significantly reduces.

Table 3. Nondimensional central deflection w(0, 0, 0) of Ti/ZrO2 circular plates with various gradient
indexes and thickness-to-radius ratios under uni-form load.

h/r Method g = 2 g = 4 g = 8 g = 10 g = 50 g = 100

0.2

FSDT [51] 1.6130 1.4730 1.3620 1.3330 1.2160 1.1990
sFSDT–IGA [52] 1.6051 1.4659 1.3548 1.3260 1.2097 1.1918
HSDT–IGA [53] 1.5958 1.4557 1.3467 1.3187 1.2060 1.1884

Present 1.5962 1.4556 1.3468 1.3189 1.2065 1.1891

0.1

FSDT [51] 1.4440 1.3200 1.2170 1.1900 1.0800 1.0630
sFSDT–IGA [52] 1.4428 1.3186 1.2159 1.1889 1.0785 1.0615
HSDT–IGA [53] 1.4386 1.3143 1.2123 1.1855 1.0762 1.0592

Present 1.4378 1.3131 1.2112 1.1845 1.0754 1.0620

0.05

FSDT [51] 1.4020 1.2820 1.1810 1.1550 1.0460 1.0290
sFSDT–IGA [52] 1.4023 1.2817 1.1812 1.1546 1.0458 1.0289
HSDT–IGA [53] 1.3990 1.2786 1.1785 1.1520 1.0435 1.0267

Present 1.3990 1.2785 1.1783 1.1518 1.0435 1.0266

4.4. L-Shaped Al/SiC Plate

Consider an L-shaped corner support plate made of aluminum (Al) and silicon carbide
(SiC), as shown in Figure 12a. The outer edges of the plate are clamped, and the top surface
is subjected to a uniform load of $0 = −107. The geometric parameters of the L-shaped
plate are defined as h = 0.2, a = 1, b = 1.3, and r = φ = 0.3. In order to achieve a more
uniform mesh, 10× 10 meshes are used for the 16 NURBS patches, except for the two
corner patches B and C, where 15× 15 meshes are applied. Fourth-order NURBS basis
functions are used, and the SDF truncation numbers are taken as M = 5 and N = 6.
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Figure 12. Three-dimensional geometry and 2D NURBS midplane of an L-shaped corner support
plate. (a) Three-dimensional geometry; (b) 2D NURBS midplane.

Taking the gradient index as g = 4, Figure 13 shows the displacement and stress
results obtained by the SDF-based IGA. The results exhibit good symmetry and smoothness.
Reasonable stress concentrations can also be observed near the boundaries.
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Figure 13. Converged 3D response of Al/SiC L-shaped corner support plate under a uniform load.

In order to verify the accuracy of the SDF-based IGA method for complex geometries,
the deflection results from the SDF-based IGA at the points P1 and P2 for various thicknesses
and gradient indexes are compared with those obtained from the ANSYS, as listed in Table 4.
The Ansys results are obtained using Shell181 elements based on the FSDT. In order to
approximate the graded material properties, 100 uniform layers are used in the thickness
direction. It can be seen that the SDF-based IGA results agree well with the Ansys results,
and the discrepancy reduces as the thickness decreases.

Table 4. Deflections at P1 and P2 of the Al/SiC L-shaped corner support plate for various gradient
indexes and thicknesses.

h Point Method g = 0 g = 2 g = 4 g = 6 g = 8 g = 10

0.2
P1

Ansys 3.089 × 10−3 8.246 × 10−3 9.745 × 10−3 1.037 × 10−2 1.083 × 10−2 1.121 × 10−2

Present 3.088 × 10−3 8.215 × 10−3 9.714 × 10−3 1.034 × 10−2 1.078 × 10−2 1.117 × 10−2

P2
Ansys 4.480 × 10−3 1.188 × 10−2 1.400 × 10−2 1.488 × 10−2 1.551 × 10−2 1.606 × 10−2

Present 4.485 × 10−3 1.183 × 10−2 1.394 × 10−2 1.481 × 10−2 1.544 × 10−2 1.599 × 10−2

0.1
P1

Ansys 2.376 × 10−2 6.357 × 10−2 7.431 × 10−2 7.852 × 10−2 8.163 × 10−2 8.442 × 10−2

Present 2.464 × 10−2 6.330 × 10−2 7.396 × 10−2 7.813 × 10−2 8.122 × 10−2 8.400 × 10−2

P2
Ansys 3.448 × 10−2 9.166 × 10−2 1.071 × 10−1 1.131 × 10−1 1.176 × 10−1 1.216 × 10−1

Present 3.324 × 10−2 9.136 × 10−2 1.067 × 10−1 1.127 × 10−1 1.171 × 10−1 1.212 × 10−1
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5. Conclusions

A novel spectral displacement formulation (SDF) was proposed for analyzing func-
tionally graded material (FGM) plates. This formulation extends the displacements into
the Chebyshev series in the thickness direction, resulting in a quasi-3D shear deformation
theory with adjustable truncation numbers. By incorporating isogeometric analysis (IGA)
for the in-plane discretization, the proposed method can handle FGM plates with complex
geometries and various boundary conditions.

Numerical results of the square, rectangular, circular, and L-shaped FGM plates
demonstrate the effectiveness of the SDF-based IGA, especially its ability to approach
exact 3D elasticity solutions, similar to the well-known Carrera’s unified formula (CUF).
Compared with the CUF, an important improvement of the SDF is that it is extended from
the classical plate theory, which naturally avoids the shear locking problem. This feature
makes the SDF-based IGA versatile for analyzing FGM plates of arbitrary thicknesses.

Numerical tests indicate that, for displacement analyses, using SDF truncation num-
bers M = 3 and N = 3 is generally enough. However, larger truncation numbers such as
M = 5 and N = 6 are recommended for stress analyses. Of course, the current discussions
are limited, and appropriate settings may be changed in different scenarios. Anyhow, the
high precision and adjustability of the present method have manifested its great potential
in various applications of FGM plates, including strain-based or stress-based reliability
analysis, optimization design, thermoelasticity analysis, viscoelasticity analysis, fatigue
analysis, and fracture analysis.
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