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Abstract: At present, Chinese 3D reconstruction solutions using stereo cameras mainly face known,
indoor, structured scenes; for the reconstruction of unstructured, larger-scale scenes with a large
variety of texture information of different intensities, there are certain difficulties in ensuring accuracy
and real-time processing. For the above problems, we propose a scene reconstruction method using
stereo vision. Firstly, considering the influence of outdoor lighting and weather on the captured 2D
images, the optimized SAD-FAST feature detection algorithm and stereo-matching strategy were
employed in the stereo-matching stage to improve the overall efficiency and matching quality at
this stage. Then, a homogenized feature extraction algorithm with gradient value decreasing step
by step (GVDS) was used in the depth value calculation to ensure a sufficient number of feature
points for strong texture information while extracting features from weak-texture areas, which greatly
improved the quality and speed of unstructured scene reconstruction. We conducted experiments to
validate the proposed method, and the results showed the feasibility of the proposed method and its
high practical value.
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1. Introduction

Vision-based 3D reconstruction technology is an important element of research in
the computer field [1]. It works mainly through the use of relevant instruments to obtain
two-dimensional image data information for objects. The acquired data information is then
analyzed and processed and, finally, the theory of 3D reconstruction is used to reconstruct
the contour information for the object surface in the real environment [2–9]. Vision-based
3D reconstruction technology has been widely used in the fields of unmanned vehicles [10],
virtual reality [11], 3D printing [12], and engineering surveys [13].

At present, the 3D reconstruction methods for scenes are mainly divided into three
categories [14]. The first type [15] involves the use of 3D laser scanning equipment to com-
plete the 3D reconstruction, employing the optical principle to carry out optical scanning of
the scene or object to obtain a high-accuracy 3D model. However, the reconstructed scene
model has no texture, and the laser scanning equipment is expensive. The second type is the
3D reconstruction approach represented by the structure from motion method [16]. It only
needs a monocular camera and the reconstruction cost is low [17], but the image acquisition
and calculation require significant amounts of time [18] and the real-time performance is
not good. The third type [19–22] is the 3D reconstruction method based on stereo vision.
This method simulates the binocular imaging principle of human beings to obtain 3D
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information from the observed two-dimensional image information. It can be adapted to a
variety of lighting environments; does not require too much human manipulation in use;
can be employed for automatic, online, non-contact detection; has the advantages of adapt-
ability, speed, high accuracy, low cost, etc. [6,23–26]; and can be successfully implemented
for universal reconstruction projects.

Although 3D reconstruction technology based on stereo vision has many advantages,
the traditional method still has disadvantages, such as redundant calculation of stereo
matching, low real-time processing speed, and the scene information selection directly
affecting the reconstruction effect. For example, Wang et al. [27] used an innovative MVS
algorithm for the surface reconstruction task that employs planar patches of different
scales to fit the surface and can yield a visualized 3D model with high accuracy. However,
this method is built on the need for multiple views of the target to be reconstructed and
a small target class, which makes it difficult to obtain better real-time processing and
applicability. Furukawa et al. [28] divided input stereo images into clusters with small
overlaps to alleviate the scalability problem affecting large numbers of images in the
feature-growth method, but their computational complexity remains the primary problem
in scene reconstruction. Mnich [29] attempted to reconstruct the GMAW pool using a
stereo-vision approach, but the significant effect of light intensity on the reconstruction
quality suggested that the stereo reconstruction system could be improved. Liang et al. [30]
established a two-prism stereo-vision system and proposed a two-step stereo-matching
algorithm to reconstruct the surface 3D shape, but since some areas on reconstructed
surfaces are discontinuous, it cannot be applied to our reconstruction of unstructured
scenes. Considering the popularity of deep learning in recent years, Yang and Jiang [31]
combined deep learning algorithms with traditional algorithms to extract and match
feature points from optical pattern-enhanced images to improve practical 3D reconstruction
methods for weakly textured scenes. Stathopoulou et al. [32] solved the texture-free
problem by exploiting semantic priors for the PatchMatch-based MVS to increase confidence
and better support depth and normal mapping estimation in weakly textured regions.
However, even with the combination of these traditional algorithms and deep learning,
visual reconstruction of unstructured building surfaces or large, weakly textured areas
commonly found in cities remains a challenge.

Of course, when dealing with reconstruction tasks involving weakly textured or even
non-textured objects, the use of photometric 3D reconstruction-related theories is usually
effective. Generally, photometric 3D reconstruction can be broadly classified into two
types: shape from shading (SFS) and photometric stereo (PS). Both types are based on the
assumption that the reflective properties of the object surface follow the Lambert reflective
film properties. When the camera follows the orthogonal projection conditions, these
two types of reconstruction problems can be essentially solved with the image irradiance
equation [33]. The image irradiance equation is shown below.

I(x, y) = R(n(x, y)) = R(p(x, y), q(x, y)) (1)

where I(x, y) is the grayscale value of the image observed by the camera and R(p, q) is
the reflectance map determined by the reflectance model. At this point, according to the
photometric theory, the reflection diagram R(p, q) is

R(p, q) = ρ(x, y) cos θi (2)

where ρ(x, y) is the reflectance of the Lambert object surface z = z(x, y).

cos θi =
n
‖n‖•

L
‖L‖ =

ps p + qsq + 1√
p2

s + q2
s + 1

√
p2 + q2 + 1

(3)
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Substituting Equations (2) and (3) into Equation (1), the SFS image irradiance equation
can be obtained.

I(x, y) = ρ(x, y)
ps p(x, y) + qsq(x, y) + 1√

p2
s + q2

s + 1
√

p2(x, y) + q2(x, y) + 1
(4)

However, it is also clear that, for the image irradiance (Equation (4)), there are three
unknowns: ρ(x, y), p(x, y), and q(x, y). One of the most straightforward approaches
is to remove the issue by increasing the illumination constraints. In other words, in
order to determine these three unknown quantities, at least three uncorrelated image
irradiance equations need to be constructed, which is exactly the research idea proposed
by Woodham [34], who developed the photometric stereo 3D reconstruction method. He
proposed a photometric stereo method, as shown in Figure 1b, using m(m ≥ 3) light
sources L1, L2, . . . , Lm in different directions to sequentially illuminate the same object
under scrutiny and obtain m images. The I1(x, y), I2(x, y), . . . , Im(x, y) equations can be
combined to obtain:

I1(x, y) = ρ(x, y) ps1 p(x,y)+qs1q(x,y)+1√
p2

s1+q2
s1+1
√

p2(x,y)+q2(x,y)+1

I2(x, y) = ρ(x, y) ps2 p(x,y)+qs2q(x,y)+1√
p2

s2+q2
s2+1
√

p2(x,y)+q2(x,y)+1
. . .

Im(x, y) = ρ(x, y) psm p(x,y)+qsmq(x,y)+1√
p2

sm+q2
sm+1
√

p2(x,y)+q2(x,y)+1

(5)
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Figure 1. Photometric 3D reconstruction models. (a) SFS; (b) PS.

For the convenience of calculation, note that the light unit direction vector is Si =
Li/‖Li‖, the unit normal vectors on the surface of the object are N(x, y) = n(x, y)/‖n(x, y)‖
and g(x, y) = ρ(x, y)N(x, y), and the system of irradiance equations for photometric stereo
images is obtained by collating the above equations.

I1(x, y) = g(x, y) · S1
I2(x, y) = g(x, y) · S2

. . .
Im(x, y) = g(x, y) · Sm

, i(x, y) = Sg(x, y) (6)

In the formula, i(x, y) = (I1(x, y), I2(x, y), . . . , Im(x, y))T , S = (ST
1 , ST

2 , . . . , ST
m)

T . Ob-
viously, g(x, y) can be obtained by solving the linear system in Equation (6). Typically,
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when m ≥ 4, the least-squares solution (Equation (7)) for the linear system in Equation (6)
can be calculated and then ρ(x, y), N(x, y) can be reconstructed.

g(x, y) = (STS)
−1

STi(x, y) (7)

ρ(x, y) = ‖g(x, y)‖ (8)

N(x, y) =
g(x, y)
ρ(x, y)

=
g(x, y)
‖g(x, y)‖ (9)

Further, if the 3D morphology z(x, y) of the object surface needs to be reconstructed,
it this can be achieved by integrating the normal vector N(x, y). The specific integration
method can be found in the literature [35–40]. However, photometric stereo reconstruction
is often applied in the field of defect detection, where the object is usually an object that
can move rather than a scene, and the method requires more pre-processing steps to carry
out experiments, which has a greater impact on the real-time processing.

Aiming at the defects and deficiencies of these existing 3D reconstruction techniques
based on stereo vision, we propose a scene reconstruction method with better accuracy and
real-time performance. Our contributions can be summarized as follows:

• Based on the FAST feature detection algorithm, a SAD-FAST feature detection al-
gorithm with newer and smarter decision conditions is proposed. This algorithm
changes the fixed grayscale difference threshold used by the traditional FAST detection
into a self-adaptive grayscale difference threshold based on the light and dark stretch
contrast of the image to avoid missing the necessary feature points and improves the
feature point judgment conditions to screen the feature points with higher quality;

• In this study, the three-step correlation algorithm in the stereo-matching system based
on feature points was adopted to “select the essence and discard the dross”, and a
combination method of FAST feature detection + SURF feature description + FLANN
feature matching is proposed. Furthermore, the Mahalanobis distance was used to
reduce the mismatching between different dimensions when matching, which ensured
efficiency and accuracy when facing complex texture scenes. We propose a GVDS
feature extraction algorithm to adjust the distribution of feature points, avoiding the
loss of 3D information caused by the absence of feature points in part of the scene to
be reconstructed and thus making the final reconstruction effect more realistic and
improving the reconstruction efficiency.

As can be seen, our proposed algorithms focus on the two most critical steps (stereo
matching and depth value calculation) in stereo 3D reconstruction. The SAD-FAST feature
detection algorithm can perfectly solve the problem that feature points are difficult to
detect in weak-texture regions and can find the feature points with the strongest feature
information in a certain region to solve the problem of overly dense distribution. The
improved stereo-matching system had a significantly improved matching success rate and
real-time performance compared to the inherent system, and it finally yielded disparity
maps with good disparity in weakly textured regions without the help of hole filling or filter
denoising. In the depth value calculation, our proposed GVDS algorithm could effectively
avoid the loss of 3D information in weakly textured regions without neglecting the key
points in regions with strong depth variations, making it possible to derive complete
3D point-cloud maps, which are irreplaceable for the generation of the final complete
models. We took pictures with the stereo camera platform that we built for experimental
evaluation. The experimental results showed that the proposed algorithm has strong
real-time performance and robustness, and the reconstruction effect was good.
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2. Stereo Reconstruction Algorithm for Unstructured Scenes

Three-dimensional scene reconstruction is a process of obtaining 3D information for
an actual scene and finally producing a visual model according to the 2D information from
the image shot by the relevant camera [41]. Using a stereo-vision system to complete 3D
reconstruction is the key and difficult point in today’s 3D reconstruction systems [42]. As
shown in Figure 2, 3D reconstruction with stereo vision was achieved through steps such
as stereo matching, depth value calculation, triangulation, and texture mapping.
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Figure 2. Steps in 3D scene reconstruction.

Stereo matching refers to establishing the corresponding relation between a pair of
images according to the extracted features; that is, mapping the same physical space points
in two different images one by one [43–45]. Image preprocessing is required before stereo
matching [46].

Depth value calculation [47] refers to the process of reconstructing the 3D point cloud
for the scene using the camera model and the disparity map and is divided into two parts:
selecting the corresponding feature points and calculating the 3D coordinates.

The ultimate goal of 3D reconstruction is to visually display the reconstructed model,
and triangulation is equivalent to building a 3D mesh skeleton model for the scattered 3D
point set [48].

Texture mapping [49–51] refers to extracting the texture of a scene from a 2D image
and mapping it onto a mesh skeleton to obtain a realistic 3D model of the scene.

2.1. SAD-FAST Feature Detection and Recombination Stereo-Matching System

As the most critical step in stereo 3D reconstruction technology, the commonly used
algorithms are divided into the following broad categories: matching based on regions,
matching based on phases, and matching based on feature points. Region matching uses
feature vectors for matching, and it is computationally intensive, inefficient, and prone to
mismatching. Phase matching is based on the assumption that the local phases between
the corresponding pixels of two corresponding images should be equal and has a low
bit error rate, but phase deviation has a huge impact on the matching accuracy. Feature
matching is currently the most researched algorithm in the field of stereo matching and
is based on special pixel points, such as corner points and edges. It has the advantages
of low computation requirements, strong stability, and high real-time efficiency, and the
probability of such feature points disappearing over time is very small, so the feature
matching algorithm can basically meet the needs of 3D reconstruction projects.

The algorithm for matching based on feature points can be divided into the following
three steps, as shown in Figure 3: feature detection, feature description, and feature matching.
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In recent decades, research scholars have not stopped studying feature detection
algorithms, and many algorithms with excellent performance have emerged, such as
AKAZE, FREAK, and BRISK, which focus on corner point detection; the Harris and features
from accelerated segment (FAST) algorithms, which have been the most commonly used in
recent years; and SIFT, SURF, and ORB. Considering the uncertainty regarding the strength
of the texture information in different regions of unstructured, outdoor scenes, we propose
a combination of FAST feature detection + SURF feature description + a FLANN matcher for
stereo matching under the general framework of the existing stereo-matching algorithms
based on feature points for the sake of both matching accuracy and effectiveness, and we
used the Mahalanobis distance instead of the Euclidean distance to determine the matching
degree. For the contrast uncertainty affecting illumination and environmental information,
an improved SAD-FAST feature detection method is proposed that uses the contrast of the
image to adaptively adjust the threshold value during feature point detection and resets
the process of determining feature points, solving the problem of too many feature points
being adjacent to each other.

2.1.1. SAD-FAST Feature Detection

The FAST feature detection algorithm was proposed by Rosten in 2006 and is one of
the currently accepted fast corner-point detection algorithms. The FAST feature detection
algorithm determines whether a pixel is a feature by comparing the magnitude of the
gray value of the pixel with those of its surrounding neighborhood and characterizes the
feature orientation by determining the gray gradient around the feature. This process is
simple, easy to implement, and efficient. However, in the actual environment, due to the
uncertainty of light and surrounding environment information, it is very easy for a sharp
decrease in the number of feature points to occur when the environmental contrast ratio
decreases. Based on the above, we propose a self-adaptive threshold value method for
SAD-FAST feature detection.

When using conventional FAST for feature point detection, the grayscale difference
threshold used is artificially set. When the light intensity and the surrounding environ-
ment’s contrast ratio changes, the number of detected feature points will be reduced, which
can easily lead to inaccurate experiments and other results. Based on the above problems,
we propose a self-adaptive threshold value calculation method. Firstly, we calculate the
image contrast ratio; i.e., the degree of stretching contrast between light and dark.

C = ∑
δ

δ(i, j)2Pδ(i, j) (10)

where δ(i, j) = |i− j| is the grayscale difference between adjacent pixels. Pδ(i, j) is the
probability of a pixel distribution with a grayscale difference of δ between adjacent pixels.
Based on the derived image contrast ratio C, the self-adaptive threshold value t can be
designed with the formula:

t = αC (11)

where α is the self-adaptive parameter, and the value is determined according to the
experimental data.

As shown in Figure 4, let the point to be detected be P, with P being the center of a
circle and three pixel points as the radius forming a circle field. Take 16 pixel points on
the edge of the circle, set the grayscale threshold t > 0, and compare the magnitude of the
grayscale value I(x) of each pixel point x on the circle with the grayscale value I(P) of P. It
is easy to see that three cases can occur:

• I(x)− I(P) > t, and point x is brighter than point P;
• I(P)− I(x) > t, and point x is darker than point P;
• −t ≤ I(x)− I(P) ≤ t, and the two points are of equal brightness.

Although a large number of non-angular regions can be eliminated with the traditional
FAST detection algorithm, there are still several obvious shortcomings. First, in the pixel
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test of 16 surrounding pixel points, the traditional FAST algorithm only considers the pixel
difference or brightness degree of 4 pixel points to determine whether a point should be
classified as a corner point, without more stringent screening. Second, the choice of pixels
is not exactly optimal. Third, multiple features are easily detected in close proximity to
each other. To address the above issues, we improved the feature determination of FAST.
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First, define a threshold value. The pixel difference between P(1), P(9), and the center
P are then calculated. If their absolute values are less than the threshold, the point P cannot
be a feature point; otherwise, it is classified as an alternative point for the next step.

If point P is an alternative point, the pixel differences between P(1), P(9), P(5), P(13),
and the center P are calculated, and if at least three of their absolute values exceed the
threshold, then point P is classified as an alternative point; otherwise, it is not.

If point P is an alternative point, the pixel difference between a total of 16 points from
P(1) to P(16) and the center P is calculated, and if at least 12 of them exceed the threshold,
then P is determined to be the alternative point.

When multiple alternative points are detected at adjacent locations, we can use non-
maximum suppression to solve the selection problem. First, the FAST score value is
calculated with the feature points, and if there are multiple feature points in a neighborhood
centered on the feature point P, the score value of each feature point is judged (the sum of
the absolute values of the differences between each of the 16 points and the center point). If
P is the largest among all feature points in the neighborhood, it is retained; otherwise, it
is not.

The overall process of the improved SAD-FAST detection algorithm is shown in
Figure 5.

2.1.2. SURF Descriptor

The SURF algorithm stands out for its good rotational and fuzzy robustness. After the
feature corner points have been pinpointed by the SAD-FAST algorithm, our idea was to
use these feature corner points to replace the scale- and selection-invariant feature points
already identified by Hessian detector in the SURF algorithm. Before performing feature
matching with image pairs, the position and orientation information for feature corner
points needs to be computed to obtain and then generate the required 64-dimensional
feature descriptors.

2.1.3. FLANN Feature Matching

The FLANN feature matching algorithm was proposed in 2009 by Muja et al. [52]
It implements a collection of search algorithms, including KD-TREE, which is the most
complete open-source library of nearest neighbors available. For the SURF descriptor used
in our experiments, the FLANN matcher used the Euclidean distance to find the nearest
neighbors of the instances because of its float descriptor nature.
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2.1.4. Mahalanobis Distance

Euclidean distance treats the differences between different dimensions as equivalent,
which is very likely to lead to mismatching of feature points. The Mahalanobis distance
corrects this shortcoming by considering the relationship between various characteristics. In
addition, cross-matching was added to the calculation, for which it is commonly understood
that, after a feature point in the matching image searches for a corresponding point in the
image to be matched, the corresponding point returns to search for a feature point in the
matching image, and the two points derived from the two processes are observed to see
if they correspond; if so, they are regarded as a pair of matching points. The formula for
calculating the Mahalanobis distance between two feature points X and Y is shown below.

D(x,y) =

√
(X−Y)TS−1(X−Y) (12)

S = cov(X, Y) = E{[X− E(X)][Y− E(Y)]} (13)

where S is the covariance matrix of the two feature points and E is the mean value. When the
covariance is the identity matrix—that is, each dimension is independently distributed—the
Mahalanobis distance becomes the Euclidean distance. The method substantially reduces
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the risk of mismatching and demonstrates a good matching effect and real-time perfor-
mance with only a subtle increase in the number of operations.

2.2. GVDS Feature Extraction Algorithm

The calculation of the depth value is the process of finding the set of spatial 3D points
and includes two parts: the selection of feature points and the calculation of the depth value.
When conducting a stereo 3D reconstruction project, the stereo camera can generally use a
fixed camera position and parallel structure pose to shoot the scene to be reconstructed.
The schematic diagram of the depth value calculation with the stereo parallel optical axis
structure is shown in Figure 6.
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Figure 6. Principle diagram for parallel optical axis depth value calculation.

As shown in Figure 6, point P(Xw, Yw, Zw) is an observed point in 3D space that
corresponds to points P(ul , vl) and P(ur, vr) on the imaging planes of the left and right
cameras, respectively, and points OCL and OCR indicate the optical centers of the left and
right cameras, respectively. It is obvious from observation that the relationship between
these five points in space is in accordance with the triangulation principle.

Since the main ray axes of the left and right cameras are horizontal and parallel, the
x-axes of the coordinate systems of the two cameras overlap; that is, disparity only exists in
the direction of x. The formula for calculating disparity d is:

d = Ll − Lr (14)

According to Figure 6, using the similar triangle determination property, we can
conclude that:

f
Zw

=
Ll

B/2 + Xw
=

Lr

B/2− Xw
(15)

Combining the above two equations, the depth value z of point P can be expressed as:

z =
B• f

Ll − Lr
=

B• f
d

(16)

Combined with the depth calculation formula, the depth information for point P can
finally be determined as follows: 

Xw = B•ul
ur−ul

Yw = B•ul
vr−vl

Xw = B• f
ur−ul

(17)

where f is the camera focal length, B indicates the distance between the left and right
camera optical centers, and d is the disparity value. The formula shows that the depth
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information for the object can be determined with only the corresponding point positions of
the spatial points on the left and right images when the relevant parameters of the camera
are known.

The above solution process can accurately obtain the 3D coordinates of a point in space.
In order to reach the accuracy and efficiency required for scene reconstruction, it is necessary
to first consider the distribution of the extracted feature point set and then calculate the
3D coordinates of the feature points. However, it is difficult to reconstruct the scene with
weak texture information because this area contains very little information compared to
the surrounding scene, and it is extremely difficult to guarantee the reconstruction quality
while ensuring scene reconstruction efficiency. In the usual, fixed depth value calculation
step, the feature points are extracted mechanically only in the areas with strong texture
information and depth variation, and it is extremely difficult to extract feature points in
the weak-texture and low-comparison areas with the same scene background. When faced
with a scene that itself occupies a large number of weakly textured areas, the difficulty of
extracting feature points can be the primary problem that prevents the formation of an
effective visual 3D model.

To meet the dual criteria of accuracy and efficiency, it is necessary to consider the
distribution of extracted feature points and then calculate the 3D coordinates of feature
points to form a more efficient 3D point cloud. The distribution of feature points is closely
related to the environment to be reconstructed, and unstructured scenes are often in natural
environments with different distributions and intensities of texture information, which
can easily lead to too dense or sparse a distribution of feature points, and this can affect
the accuracy of subsequent texture mapping. Therefore, the distribution of the extracted
feature points should be focused on before the depth values are calculated.

First, the feature points should be extracted in the region where the depth information
varies widely; that is, the feature points of excellent quality should be selected.

Second, the distribution of feature points should not be too dense.
Third, some feature points should also be extracted from the regions with weak depth

variation.
Based on the above idea, we propose a homogenized feature extraction algorithm with

gradient value decreasing step by step (GVDS), and the calculation steps for this algorithm
are as follows:

(1) Set the total number of feature extraction points as N, the number of feature points
with strong depth variation as I, the shortest Euclidean distance between adjacent
feature points as d, and the disparity map derived from stereo matching as P;

(2) Calculate the gradient value for the disparity map P, and then the point C1 with the
largest gradient value can be found, which is the first feature point selected;

(3) In order to avoid too dense a distribution of feature points, the gradient of the sur-
rounding pixels within a certain range should be set to zero after a feature point is
selected. In the disparity map P, the gradient-zeroing operation is carried out in the
surrounding area with point C1 as the center of the circle and d as the radius;

(4) Repeat steps (2) and (3) until the number of selected feature points is not less than I;
(5) Feature point extraction is performed for the remaining scattered regions with low

depth variation in the disparity map P. A pixel coordinate in the disparity map
P is defined as (d, d) so that it traverses the region with a non-zero gradient value
starting from the top left of the disparity map P. If the gradient values of the pixels
with distances of d in the top, bottom, left, and right directions are not zero when
the traversal reaches a certain point, the point is selected as the feature point and is
called C2;

(6) The gradient of the surrounding area with point C2 as the center and d as the radius is
set to zero;

(7) Repeat steps (5) and (6) until the total number of feature points that have been selected
is N.
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The schematic diagram for the GVDS algorithm is shown in Figure 7. In order to
obtain a better reconstruction effect, the GVDS feature extraction algorithm considers that
the feature points are best taken in regions with strong depth variations, and the gradient-
zeroing operation also avoids a dense distribution of feature points, while some feature
points are further extracted in flat regions with weak depth variations.
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2.3. Triangulation and Texture Mapping

After calculating the spatial information for the feature points by calculating the
depth value, these feature points are scattered in the three-dimensional space. If we
want to complete the reconstruction of the three-dimensional scene, we also need to
build these scattered three-dimensional points into a three-dimensional mesh skeleton
model. Considering that the x and y projections of some of the point cloud data in the
xyz coordinate system overlapped, we combined the Delaunay triangulation algorithm
with the idea of a partitioning algorithm to perform region segmentation, triangulate each
subset of points according to the Delaunay triangulation algorithm, and, finally, merge
each subset of points to triangulate the boundary of the subset of points.

Texture mapping is the process of mapping the 2D pixel coordinates of an image to
spatial 3D coordinates. The three-dimensional mesh skeleton model formed with triangula-
tion cannot yet make the objects in the scene feel realistic or achieve a realistic display of
the scene. Texture mapping extracts the texture from the 2D image and maps it onto the
stereo mesh skeleton model to recover the real texture of the surface and provide a realistic
3D model of the scene.

3. Experimental Results and Analysis

In our experiments, a four-megapixel camera was used to build a stereo experimental
platform for outdoor scenes. The distance between the left and right cameras was set to 12
cm, and the images used in our experiments were taken from our stereo camera platform.
The experimental platform used PyCharm and Microsoft Visual Studio 2017, the computer
operating system was Windows 10, and the graphics card was an NVIDIA TITAN XP
model with 12G of video memory. The stereo experimental platform is shown in Figure 8.

3.1. Stereo-Matching Experiments

We used the stereo camera platform to take pictures of random indoor scenes, and
each image effect was arranged as an overexposure effect using light exposure. The pairs
of images obtained were used to experimentally compare the currently commonly used
feature detection and feature matching algorithms. The experimental results are shown in
Tables 1 and 2.
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Table 1. Performance comparison of feature detection algorithms.

Detection Algorithms
Number of Feature Points

Detected by Image
Pair/Points

Time Consumption for
Feature Point Detection/ms

KAZE [53] 275 141
AKAZE [54] 222 120
BRISK [55] 311 276
FREAK [56] 98 56

SIFT [57] 406 952
SURF [58] 601 174
BRIEF [59] 98 92

FAST-50 [60] 514 19
FAST-40 602 27

SAD-FAST-t 874 32

Table 2. Performance comparison of several feature extraction algorithms using FLANN matching.

Algorithms Matching Success Rate/% Matching Time/ms

ORB [61] 64 36.6
SIFT [57] 87.7 156.7
SURF [58] 79.4 312.1

AKAZE [54] 71.6 41.7
BRISK [55] 75.2 46.3

ORB + SURF 81.4 73.2
AKAZE + SURF 82.1 149.4

SIFT + SURF 76.7 243.9
BRISK + SURF 79.6 376.1
KAZE + SURF 81.9 69.4

SAD-FAST-t + SURF 85.1 57.9

Table 1 compares the performances of the commonly used feature detection algorithms,
where FAST-50 and FAST-40 indicated that the threshold value was set to 50 and 40 when
deploying the FAST detection algorithm, respectively, and SAD-FAST-t indicated that the
threshold value was a self-adaptive threshold t when deploying the SAD-FAST detection
algorithm. As can be seen from Table 1, the FAST series feature detection algorithms not
only had much lower computation times than the seven other algorithms when performing
feature detection for any scene but also detected more feature points than the other algo-
rithms. Furthermore, the use of our proposed self-adaptive-threshold SAD-FAST detection
algorithm showed that the improved algorithm was significantly more adaptable and could
detect 70% and 45.1% more feature points than FAST-50 and FAST-40, respectively.

Figure 9 shows the experimental results for the feature matching with the FLANN
matching algorithm and the Mahalanobis distance determination after feature extraction
with several feature extraction algorithms. Figure 9a–e show the result plots for the ORB
algorithm, SURF algorithm, SIFT algorithm, AKAZE algorithm, and BRISK algorithm after
extracting the image features and then using FLANN matching, respectively. Figure 9f–j
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show the results of feature matching using FLANN for five types of “disorganized” stereo-
matching systems; namely, ORB + SURF, AKAZE + SURF, SIFT + SURF, BRISK + SURF, and
KAZE + SURF. Figure 9k shows a result graph for the use of the SAD-FAST algorithm for
feature detection, the SURF feature description algorithm for the obtained feature points,
and, finally, the FLANN matching algorithm for matching. Table 2 shows the matching
performances of several corresponding feature extraction algorithms. From Table 2, we can
see that our proposed SAD-FAST feature detection + SURF feature description + FLANN
matching algorithm, in a combination of stereo-matching experiments, was slightly slower
than the ORB algorithm, AKAZE algorithm, and BRISK algorithm at matching in real
time when dealing with feature matching in scenes strongly affected by illumination, but
the number of feature-point pairs and the matching success rate were much higher than
for these three algorithms. Compared with the SURF and SIFT algorithms, the matching
success rate with our proposed combination was slightly lower than that with the SIFT
algorithm, but the real-time performance was much higher than with these two algorithms.
Compared with the other five types of recombinant stereo-matching systems, our proposed
combination is clearly in an advantageous position in terms of the number of detected
feature points, matching success rate, and real-time performance.
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3.2. Experimental Results for Feature Extraction with Depth Value Calculation

Figure 10 shows three image pairs acquired with our stereo camera experiment plat-
form. The acquisition areas were concrete pavements in different natural scenes.
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We performed stereo matching based on the proposed SAD-FAST feature detection,
SURF feature descriptor, and FLANN matching algorithms, combined with an overall
strategy of discarding feature points that were too close together, followed by extracting
features and calculating depth values. The disparity results are shown in Figure 11.
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It can be seen that our disparity result maps connected very smoothly in the flat areas
with weak textures, showing good results without any large voids.

Figure 12a shows the results of the feature extraction for the three scenes when it was
difficult to extract feature points from flat areas. The distributions of the feature points in
the figures were mostly concentrated in areas with large gradient changes; that is, bushes,
crops, trees, and areas where the road surface and strong texture information divided in the
original figures. For the road surface, very few feature points were extracted in the slightly
wider area of the existing crack defect site. For most of the flat areas with weak depth
variation and narrow fracture areas, it was not possible to extract feature points, resulting
in serious loss of 3D information in such areas. Figure 12b shows the results of feature point
extraction with our proposed GVDS feature extraction algorithm. It can be seen that not
only did it satisfy the requirement for more feature points in the region with strong texture
information but it also extracted feature points in the region with weak depth variation,
thus avoiding the loss of 3D information in this region and achieving the overall desired
3D reconstruction effect.
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Figure 13a shows the effect for the 3D point cloud scene when it was not possible to
extract the feature points of the flat area, and Figure 13b shows the effect for the 3D point
cloud scene after the feature points were extracted using our algorithm.

Figure 14a shows the final reconstruction effect for the unextracted flat area after
texture mapping, Figure 14b shows the reconstruction effect for the extracted flat area after
texture mapping, and Figure 14c shows the top view of the reconstructed flat area. It can
be seen that, in Figure 14a, large areas of 3D information were lost due to the inability
to extract feature points, so the reconstruction effects for such critical parts as cracks and
pavements were extremely poor, which is what directly leads to the difficulty of forming
a visualized 3D model with integrity and practicality. As can be seen in Figure 14b, our
proposed algorithm retained the feature points with important texture information while
extracting the feature points in the nearly texture-free area so that the 3D information for
such areas could be obtained and the final 3D model built. At the same time, we combined
the reconstruction with the top view in Figure 14c, and the reconstruction effect for the flat
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areas reached a fine level that can be used for engineering projects after texture mapping.
In summary, it can be seen that our proposed algorithm is competent for the reconstruction
task with arbitrary unstructured natural scenes and demonstrated good reconstruction
results and nearly realistic texture information.
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The reader can refer to Table 2 for a comprehensive comparison of traditional algo-
rithms. We chose three types of algorithms—SURF and SIFT, which had higher matching
success rates, and ORB, which had slightly lower time consumption—to perform feature
detection and feature description, respectively, and then used the FLANN feature matching
algorithm to perform comparison experiments based on Euclidean distance. The disparity
map derived after the stereo-matching experiment was mechanically extracted from the
feature points, and then the 3D coordinates were calculated to finally reconstruct the 3D
point cloud for the same scenes, as shown in Figure 15.
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(b) SIFT [57]; (c) ORB [61].

It can be seen that, for unstructured and large scenes with significant differences in
the intensity of texture information in different regions, the traditional algorithms selected
too few feature points and the feature information contained was not optimal, resulting in
poor point cloud effect maps that could no longer be triangulated to achieve a complete
and effective structured network and, therefore, could not meet the requirements of high-
precision 3D models.

We conducted 3D reconstruction real-time performance tests using the three scene
images taken with the stereo-camera platform, and the average test data for the images
are shown in Table 3. It can be seen that our algorithm showed a large improvement in
real-time performance over the traditional, widely used 3D reconstruction techniques when
reconstructing such unstructured scenes with intricate texture information, and it can meet
the high real-time performance standard.
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Table 3. Real-time testing of different traditional algorithms.

3D Reconstruction Steps
Traditional Algorithms/ms Our Algorithm/ms

SURF [58] SIFT [57] ORB [61] SAD-FAST + SURF + GVDS

Camera and image pretreatments 47.361 + 51.12 47.361 + 51.12 47.361 + 51.12 47.361 + 51.12
Stereo-matching experiment 336.27 182.61 61.632 64.301

Depth value calculation 57.94 42.46 25.73 17.82
Triangulation and texture mapping — — — 35.134

Deep learning has made excellent progress in many computer-vision problems in
recent years, and the field of stereo matching in 3D reconstruction is certainly no excep-
tion. We referred to the large framework for each network for stereo matching based on
deep learning and found that the most frequently used stereo models usually include four
steps; that is, feature extraction, cost volume construction, cost aggregation, and disparity
regression. We used three network structures for stereo matching from [62–64] to derive the
disparity maps and the GVDS algorithm to extract feature points based on the correspond-
ing disparity maps and finally mapped the texture features of the 2D images to 3D point
clouds to form the final visualized 3D models. In order to allow a good comparison of the
disparity maps derived from different algorithms, we used the ApplyColorMap function,
which is commonly used in the OpenCV library for color conversion of disparity maps, to
convert the disparity maps from [63,64] into grayscale disparity maps. They are displayed
in Figure 16.
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After referring to Figure 15, in order to reflect the difference between the traditional
algorithms and the other four algorithms, we also selected the SURF algorithm, which was
able to form the densest point cloud among the traditional algorithms, for inclusion in
the disparity comparison shown in Figure 16. As can be seen in Figure 16, the traditional
algorithm SURF, due to its own limitations, had difficulty in detecting a larger number of
feature points when facing such scenes with nearly countless detailed textures (numerous
leaves, flowers, and plants) and large, flat, diffuse reflective areas, resulting in difficulties
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in forming matches between image pairs and, eventually, the formation of disparity maps
of very poor quality. The 3D point clouds formed by feature extraction on the basis of
these disparity maps were so sparse that effective mesh skeletons could not be constructed,
which was the reason why it was difficult to form the final models of texture mapping
after feature extraction. The disparity maps generated by the algorithm from [62] had
high numbers of voids in the junction areas of both complex and weakly textured regions
of texture information in all three scenes. Although the areas with the voids were small
compared to the whole disparity maps, the overconcentrated distribution led to the loss
of 3D information when feature extraction was performed, and eventually voids or black
impurities that did not have texture were formed in the texture models, as shown in the
red boxes in Figure 16b. The disparity maps generated by the algorithm from [63] also had
a few voids in the ground of scene one, and this drawback was also reflected in the final 3D
model. The disparity maps generated by the algorithm from [64] did not show voids in
weakly textured regions in any of the three scenes, nor did they show large voids in adjacent
regions due to overly dense distribution of strong information feature points in texturally
complex regions. In our proposed stereo-matching algorithm, the upper left corner of the
ground in scene one had a very small number of voids compared to the algorithm from [64],
but the area and size of the voids were smaller than those with the other three algorithms.
Due to the low number and small area, feature points could still be extracted around the
tiny voids without losing this part of the 3D information when reconstructing using our
proposed GVDS algorithm. For scene two, our proposed algorithm did not show voids
in the road surface, while for the junction parts of the road surface and the field canyon,
due to the fineness of the weeds themselves and obscuration, the algorithm from [63], the
algorithm from [64], and our algorithm all showed voids in different locations in the same
area in the green box in scene two. However, since this region was not a large area with
continuous disparity loss, 3D information could still be obtained with the 3D reconstruction
using GVDS. In scene three, neither the algorithms from [63,64] nor our proposed algorithm
showed voids, but the algorithm from [62] showed a too obvious hole in the junction parts.

In summary, the disparity effect developed by the algorithm from [62] was significantly
weaker than that of the other three algorithms when they were utilized for disparity
comparison. The algorithm from [63] was weaker than the algorithm from [64] and our
proposed algorithm in some regions. Our proposed algorithm showed very few voids
in the upper left region of the ground in scene one and, similarly to the disparity maps
formed by the algorithm from [64], it showed good disparity results in other regions of
scene one and in the rest of the scenes. At the same time, it should also be noted that many
of the stereo-matching algorithms proposed so far have shown excellent results compared
to traditional algorithms when dealing with individual cases with almost limitless strong
texture information (e.g., countless leaves along with a single leaf with a very small area
compared to the overall area of the image), but it is also difficult for them to avoid a few
voids, which can be studied further in the future.

We performed feature extraction using GVDS for the disparity maps formed by the
three algorithms from [62–64] on the basis of Figure 16 and finally formed 3D models, as
shown in Figure 17.

It can be seen that, in scene one in Figure 17a, because the disparity map of the
algorithm from [62] had more concentrated and slightly more numerous holes in the
junction area between the road surface and the bushes, distortion of the fine line pattern
of the road surface and of the schoolbag ultimately resulted during texture mapping. In
scene one in Figure 17a, firstly, the disparity map formed by the algorithm from [62] had
a large number of large voids on the road surface, which directly led to the presence of a
large number of black impurities on the road surface in the 3D model. It can also be seen
that there were some yellow voids in the area with crops in the field canyons, which were
caused by the absence of point clouds. In scene three in Figure 17a, the 3D model formed
by the algorithm from [62] had a slight hollow in the depths of the leaves. For the 3D model
formed with the algorithm from [63], there were more black impurities on the pavement
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in scene one due to the existence of a disparity map with a wide distribution of fine voids
on the pavement. For scene two, the 3D model had very few cavities in the crop area of
the field canyon. In scene three, there was a cavity in the ground and foliage junction area.
In the 3D models of the three scenes formed by the algorithm from [64], only a few black
impurities appeared in some areas of the road surface in scene one, and the remaining two
scenes were well-reconstructed.

For comparison, we show details for the areas that were not easily observed in the
three scenes reconstructed by the different algorithms in Figure 18.
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As can be seen from Figure 9, since the proposed stereo-matching algorithm and
system could detect a large number of feature points and the mismatching rate was very
low when stereo matching was performed, the 3D reconstruction based on the good
disparity maps formed could produce good 3D models, and they were not inferior to those
of the deep learning stereo-matching algorithm. We performed real-time tests with different
algorithms and the results are shown in Table 4.
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Table 4. Real-time testing of different deep learning algorithms.

3D Reconstruction Steps
Traditional Algorithms/ms

Our Algorithm/ms
[62] [63] [64]

Camera and image pretreatments 47.361 + 51.12 47.361 + 51.12 47.361 + 51.12 47.361 + 51.12
Stereo-matching experiment 137 263.2 243 64.301

Triangulation and texture mapping 32.17 35.784 37.263 35.134

As can be seen, in the stereo-matching stage, the stereo-matching algorithms using
deep learning consumed more time because they contained more network structures and
modules, and our proposed stereo-matching algorithm was faster than the algorithm
from [62], which is known for its speed, on the basis of the good disparity results achieved.
In the 3D reconstruction task overall, our proposed algorithms showed better real-time
performance and can better meet the needs of engineering applications

4. Discussion

In summary, our proposed algorithm showed good results in the corresponding steps
in stereo-vision reconstruction, and none of the other algorithms achieved the desired
reconstruction of unstructured, weakly textured scenes on the basis of the same level of
experimental equipment. Since the experimental platform utilized only consisted of a pair
of stereo cameras that could not generate pgm files to obtain disparity truth values as
3D laser instruments can, the evaluation index step of comparing disparity truth values
could not be performed. In future research, it is our aim to select higher-performance
stereo cameras and explore better reconstruction algorithms to achieve more complex
scene reconstruction. Meanwhile, our algorithms should be able to demonstrate excellent
applicability across a wide range of national road infrastructure projects (bridges, tunnels,
etc.) around the world.

5. Conclusions

Aiming at the task of 3D reconstruction of unstructured scenes with differing inten-
sity texture information, this paper proposed a 3D scene reconstruction method that can
meet the requirements for high precision and good real-time performance. A new stereo-
matching system was first used on the preprocessed 2D images; that is, the SAD-FAST
feature detection with an improved self-adaptive threshold value was used to find the key
points, and then the SURF descriptor and FLANN matcher were used with the Mahalanobis
distance to reduce the mismatching to obtain the disparity maps. Next, the GVDS algorithm
was used to adjust the distribution area of the feature points to retain the 3D information for
the flat area with weak depth variation, which made the reconstruction effect more realistic
and the reconstruction process more efficient. Experiments proved that our method had
high accuracy and good real-time performance unmatched by traditional algorithms when
facing a large range of unstructured scenes for reconstruction, and the proposed algorithm
had strong robustness and wide applicability, making it capable of performing most 3D
scene reconstruction tasks.
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