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Abstract: Epitranscriptomics is the study of RNA base modifications, including functionally relevant
transcriptomic changes. Epitranscriptomics has been actively studied in recent years and has been
reported to play important roles in development, homeostasis, the immune system, and various
life phenomena such as cancer, neurological diseases, and infectious diseases. However, a major
problem is the development of sequencing methods to map RNA base modifications throughout
the transcriptome. In recent years, various methods for RNA base modification have been actively
studied, and we are beginning to successfully measure base modifications that have been difficult to
measure in previous years. In this review, we will discuss in detail the biological significance of RNA
modifications and the latest techniques for detecting RNA modifications.
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1. Introduction

Ribonucleic acid (RNA) can also be modified, just like deoxyribonucleic acid (DNA)
and proteins. There are approximately 170 kinds of RNA modifications [1]. This RNA mod-
ification is called the “epitranscriptome”. The transcriptome indicates the amount of RNA,
while the epitranscriptome indicates qualitative changes in RNA through modifications,
which have been widely studied in recent years.

The changed bases are identified by RNA-binding proteins known as “readers”, which
control the fate of the RNA, and are rigorously regulated by RNA-modifying enzymes
known as “writers” and RNA-de-modifying enzymes known as “erasers”. The regulation
of RNA stability, subcellular localization, conformation, splicing, and other functions is
known as RNA destiny control [2]. In the 3'-UTR of an mRNA, for instance, the “leader”
protein of the m6A alteration, YTH N6-methyladenosine RNA-binding protein 2 (YTHDEF2),
recognizes the m6A modification. The Carbon Catabolite Repression-Negative on TATA-
less (CCR-NOT) protein complex, which YTHDF?2 interacts with, promotes mRNA de-
adenylation, mRNA instability, and rapid degradation [3]. Similarly, it has been noted that
YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1) increases the mobilization
of translation factors such as eukaryotic translation initiation factor 3 (elF3) to resume
mRNA translation when it identifies m6A alterations [4]. As already indicated, “writers”
and “erasers”, which are identified by “readers”, strictly govern the outcome of RNA
alterations. These proteins are collectively known as RNA modification proteins (RMPs),
and dysregulation of these proteins has significant negative effects, such as cancer, infertility,
obesity, and neurological diseases [5-8]. The multiple gene duplications of RMPs that take
place at the root of eukaryotic, metazoan, vertebrate, and primate lineages have increased
the repertoire of RNA modification types and substrate ranges. In the currently indexed
human genome, there are 90 RMP “writers” [9,10].
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Previously, transfer RNA (tRNA) and ribosomal RNA (rRNA) were the main sources
of information about the epitranscriptome. Thin-layer chromatography (TLC), high-
performance liquid chromatography (HPLC), and liquid chromatography-tandem mass
spectrometry (LC-MS/MS) were used to analyze the quantity and stoichiometry of these
RNA molecules [11,12]. Recently, it has been reported that various types of RNA, including
mRNA, can also be modified. These modifications have been reported to regulate the sta-
bility and other functions of RNAs and to be involved in diseases such as cancer. Therefore,
the development of technology to comprehensively detect RNA modifications is an impor-
tant issue in understanding biological phenomena. Since the invention of next-generation
sequencing (NGS), a lot more RNA species have contributed to our understanding of the
epitranscriptome. In other words, because various RNA modifications are known to exist
in mRNA and non-coding RNA, the introduction of NGS has resulted in an explosion of
epitranscriptome knowledge. The biological importance of these RNA alterations and the
development of detection strategies for them will be covered in this review, with a focus on
single-molecule assay methods.

2. RNA Modification
2.1. 5-Methylcytosine

RNA modifications such as 5-methylcytosine (5mC) are present in rRNA, tRNA, and
mRNA (Figure 1A). This modification is abundant in the 3’ untranslated region of mRNA,
close to the argonaute (AGO) binding site [13]. Eight 5mC writers have been identified so far
for methylated NOP2/Sun RNA Methyltransferase 1-7 (NSUN1-7) and DNA Methyltrans-
ferase 2 (DNMT2) mRNAs [14-17]. NSUNT1, 2, 5, and DNMT?2 are present in all eukaryotes,
while other NSUN members are only found in multicellular organisms, particularly during
brain development, and their expression is differential [18,19]. Studies have linked several
cranial nerve system diseases, such as Dubowitz-like syndrome [20], autosomal recessive
intellectual disability [21], and neurogenic and brain developmental problems, to altered
5mC. Mutations in the NSUN2 gene have been linked to these disorders [16,22]. NSUN?,
which is mainly expressed in the testes, is critical for male germination [23].
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Figure 1. Major RNA modifications and their modification enzymes. (A) Cytosine is methylated
by NDUN1-7 or DNMT7 to 5-methylcytosine (5mC). (B) Adenosine is methylated by TRMT10,
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TRMT61A, or TRMT61B to N1-methyladenosine (m1A). M1A is demethylated by ALKBH1 or
ALKBHS to adenosine. (C) Adenosine is methylated by METTL3, METTL5, or METTL16 to N6-
methyladenosine (m6A). M6A is demethylated by ALKBHS5 or FTO and returned to adenosine.
(D) RNA ribose is methylated to 2/-O-Methyl-Ribose regardless of the base. FBL and FTS] are known
to be methyltransferases.

2.2. N1-Methyladenosine

Alteration of N1-methyladenosine (m1A) (Figure 1B) can be found in mRNA, tRNA,
rRNA, and mitochondrial RNA (mtRNA) [24]. Three well-known m1A-writing enzyme
types are tRNA Methyltransferase 10C (TRMT10C), TRNA Methyltransferase 61B (TRMT61B),
and TRNA Methyltransferase 61A (TRMT61A), while AlkB Homolog 1 (ALKBH1) and AlkB
Homolog 3 are two well-known eraser enzyme types (ALKBH3). Three reader proteins,
YTHDF1, YTHDEF2, YTH N6-Methyladenosine RNA Binding Protein 3 (YTHDE3), and
YTH Domain Containing 1 (YTHDC1), have also been identified and strictly regulate
post-transcriptional regulation of mRNA and ncRNA through the combined action of a
writer, eraser, and reader [25-27]. It has been reported that the key modifier that affects
translation in mRNA is the 5’ untranslated region (5'-UTR) [28]. Additionally, m1A is
thought to prevent reverse transcription [29].

2.3. N6-Methyladenosine

In eukaryotic cells, m6A (Figure 1C) is the most common mRNA modification and
accounts for about 80% of mRNA modifications [30]. It is prevalent in the 3'-UTR and
around termination codons. m6A facilitates translation by cap-independent 5'-UTR [4].
METTL3 is a common m6A writer, reader, and eraser for mRNA [31,32], while METTL5
is for rRNA [33], and METTL16 is for small nuclear RNA (snRNA) [34]. METTL3 methy-
lates mRNA with m6A and modifies mRNA stability co-transcriptionally [35-37]. It also
regulates heterochromatin in embryonic stem cells [38] and encourages homologous recom-
bination to repair double-strand breaks [39] by regulating DNA-RNA hybrid accumulation.
METTL16 [40] controls expression by retaining an intronic enzyme that makes the methyl
donor S-adenosylmethionine [41], which is essential to mouse embryonic development.
The addition of m6A to 185 rRNA, mediated by METTLS5, is required for the translation
mechanism [42], and its absence is linked to heart hypertrophy [43] and neurological impair-
ment [44]. In contrast, LINE1 RNA interacts with the m6A reader YTHDC1 in mouse ESCs
and early embryos, changing the scaffold function [45]. Another m6A reader, Proline-Rich
Coiled-Coil 2A (PRRC2A), plays a role in oligodendroglia and myelination determina-
tion [46]. In male germ cells, the ALKBHS5 m6A eraser controls translation [47], as well as
the stability and splicing of lengthy 3'UTR mRNAs [48]. FTO Alpha-Ketoglutarate Depen-
dent Dioxygenase (FTO) demethylase regulates correct mRNA splicing [49] and snRNA
processing [50] by operating on both m6A and N6, 2’-O-dimethyladenosine (m6Am) [50].

2.4. 2’-O-Methylation

The 2’-O-methylation (Nm) (Figure 1D) pathway is essential in numerous biological
processes. Nm modifications are directed by small nucleolar RNAs (snoRNAs) that detect
certain sequences and are carried out by RMPs, such as fibrillarin (FBL) and Fts] RNA
2'-O-Methyltransferases (FTSJ]) family members [51]. The overexpression of the 2/-O-
methyltransferase FBL enzyme enhances translational interactions and accelerates breast
cancer cell proliferation [52], while its lack of activity disrupts translation [53]. 2'-O-
methylation is also essential for spliceosome organization and operation and is present in
small nuclear RNAs (snRNAs) [54]. Its absence in U6 snRNAs results in aberrant splicing
and poor mouse spermatogenesis [55].
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3. RNA Modification and Cancer

In several forms of cancer, a correlation has been observed between cancer malignancy
and RNA modifications. METTL3 increases m6A levels in lung cancer, interacts with the
translation initiation machinery to enhance mRNA translation, and activates hippo path-
way effector transcription in human cancer cells through binding to the epidermal growth
factor receptor and Post-synaptic density protein 95, Disc large homolog 1, and Zonula
occludens-1 (PDZ) motifs. Moreover, it has been demonstrated that the mRNAs hippo
pathway effector and transcriptional co-activator with PDZ-binding motif are among those
that METTLS3 helps to translate [56]. Based on this study, METTL3 may be a promising ther-
apeutic target as it promotes the proliferation, survival, and invasion of human lung cancer
cells (Figure 2) [56]. Hypoxia stimulates the expression of the m6A demethylase ALKBH5
and the 3'-UTR sequence AAACU, which have been found to decrease NANOG mRNA
methylation levels, increase NANOG protein levels, and enhance stem cell populations in
studies using human breast cancer cells (Figure 2) [57]. Hypoxia-inducible factor-1 (HIF-1a)
and hypoxia-inducible factor-2 (HIF-2)-dependent mechanisms have also been shown to
induce NANOG expression [57]. Another study found that, in breast cancer, exposure to
hypoxia leads to m6A modification of the mRNAs encoding NANOG and Kruppel-like fac-
tor 4 (KLF4) being inhibited in a zinc finger protein 217 (ZNF217)-dependent manner [58].
ZNF217 or ALKBH5 may play a role in controlling the expression of pluripotency factors
in breast cancer under hypoxic conditions [58]. Additionally, RNA modifications have
been proposed to contribute to the malignant transformation of gastrointestinal malig-
nancies. For example, it has been suggested that m6A modifications play a role in the
malignant transformation of colorectal cancer [59]. The oncogene c-myc is implicated in
the transcription of the M6A reader YTHDF1 in colorectal cancer, according to epigenetic
data obtained by chromatin immunoprecipitation (Figure 2) [59]. YTHDF1 expression has
been found to be related to various malignancy behaviors based on immunohistochemistry
analysis of YTHDF1 expression and has been discovered to be an independent predictive
factor in patients with colorectal cancer [59]. Case-control research on genetic alterations in
pancreatic cancer has also revealed a link between FTO mutations and pancreatic cancer
risk in Japan (Figure 2) [60]. Additionally, clear links between the FTO rs9939609 mutant
polymorphism and endometrial and pancreatic cancer, particularly in Asian populations,
have been established, suggesting that these markers could be used for early detection [61].

Malignant pleural mesothelioma risk has also been linked to the FTO rs9939609
mutation [62]. Another investigation into pancreatic cancer revealed that METTL3-deficient
cells were more responsive to radiation, gemcitabine, and other anticancer medications
such as 5-fluorouracil and cisplatin. Patients with pancreatic cancer may benefit from using
METTLS3 as a therapeutic agent since it is a potent target that boosts efficacy compared to
other therapeutic agents [63]. Additionally, recent studies have demonstrated that m6A
levels of miRNAs in the blood can accurately and sensitively identify stage I and stage 11
pancreatic cancer [64], making m6A levels a potentially novel yet valuable biomarker.

Furthermore, numerous associations between RNA modifications and tumors and
epithelial cancers have been reported. FTOs have been linked to acute myeloid leukemia
(AML) (Figure 2), including mixed lineage leukemia (MLL) (Figure 2) with t (11q23) rear-
rangements, t (15; 17), involvement of the retinoic acid receptor-a (RARA), mutations in the
FMS-like tyrosine kinase 3 (FLT3) gene with internal tandem duplication (ITD) mutations,
and nucleophosmin 1 (NPM1) mutations. In a recent study, FTO was used as a therapeutic
method against AML cells. The demethylation from m6A reduce the expression of ankyrin
repeat, SOCS box containing 2 (ASB2), and RARA. This led to leukemogenesis (Figure 2).
The development of therapeutic medicines and the clarification of disease mechanisms
have generally resulted from these results [65].
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Figure 2. RNA modifications associated with cancer malignancy. RNA modifications reported to

be associated with malignant transformation of each cancer type (Leukemia, Glioblastoma, Breast
cancer, Lung cancer, Hepatocellular carcinoma, Pancreatic cancer, and Colorectal cancer) and their
structural formulas are shown. The red part of the structural formula indicates the structure added
by the modification.

Moreover, in glioma studies, it has been demonstrated that the knockdown of METTL3
or METTL14 changes the m6A enrichment of mRNA and the mRNA expression of tar-
get genes such as ADAM Metallopeptidase Domain 19 (ADAM19), which is crucial for
glioblastoma stem cells (Figure 2) [66]. Additionally, blocking the m6A demethylase, FTO,
slows tumor growth and lengthens survival in mice receiving glioblastoma stem cell trans-
plants [65]. This study showed that m6A is crucial for the self-renewal and carcinogenesis
of glioblastoma stem cells, indicating that m6A alteration is a possible therapeutic target
for glioblastoma.

Other modifications besides the modification of m6A have reportedly been linked to
cancer. In 5-azacytidine (5-AZA)-resistant leukemia cell lines and clinically in samples from
patients with 5-AZA-resistant myelodysplastic syndrome and acute myeloid leukemia, the
cytosine-modifying enzyme DNMT?2 has been linked to AML [67]. DNMT2 may;, therefore,
be useful in the management of leukemia. Additionally, the cytosine acetylase NAT10 has
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been discovered to play a role in the development of numerous cancers and malignancies,
such as glioblastoma, HCC, colon cancer, breast cancer, and leukemia.

METTL1 is an enzyme that converts guanine into N7-methylguanine (m7G), which is
overexpressed in hepatocellular carcinoma and has carcinogenic activity via the PTEN/AKT
serine/threonine pathway (Figure 2). High METTL1 expression has been associated with
worse prognosis, larger tumor size, higher serum alpha-fetoprotein levels, and tumor
vascular penetration in two separate cohorts of 892 patients with hepatocellular carci-
noma [68]. These findings suggest that the METTL1/PTEN axis has therapeutic potential
for the treatment of HCC and that METTL1 is a useful predictive biomarker [69]. Ad-
ditionally, METTL1 has been linked to colorectal cancer drug sensitivity, and through
regulation, METTL1 overexpression is connected to the hsa-miR-149-3p/S100A4/p53 axis
and sensitizes cisplatin-resistant colorectal cancer cells (Figure 2) [69]. As described above,
RNA modifications are altered by various modification species in different cancer types
and are associated with malignant transformation. Therefore, accurate measurement of
changes in RNA modifications can be useful in detecting these cancers and may have
therapeutic applications.

4. RNA Modification and Viral Infection

Numerous viruses, including the Rous sarcoma virus [70], flavivirus [71], Zika virus [72,73],
Kaposi’s sarcoma-related herpesvirus [74,75], human immunodeficiency virus-1 (HIV-
1) [76], influenza A virus [77], tobacco mosaic virus [78], and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [79], have been shown to affect RNA modifications.
Furthermore, the epitranscriptomic state has been linked to viral RNA replication within
the host cell nucleus [69-78]. These viruses use RNA modifications to enhance protein
translation and multiply themselves within the host. In addition to utilizing RNA modifi-
cations for host growth, viruses also use them to increase their chances of survival within
their host. For example, to promote survival and genomic stability in host cells, HIV-1
uses DNMT2’s RNA methylation activity [80]. After HIV-1 infection, DNMT2 relocates
from the nucleus to the cytoplasm and methylates HIV-1 RNA. This DNMT2-dependent
methylation promotes the post-transcriptional stability of HIV-1 RNA [80]. In addition,
DNMT?2 overexpression increases HIV-1 viral titer and shedding [80]. HIV-1 also uses
NAT10 to boost viral gene expression. NAT10 depletion results in the loss of Ac4C from
viral transcripts, reducing viral RNA stability and preventing HIV-1 reproduction [81].
Therefore, DNMT2 and NAT10 are potential targets for the development of antiviral drugs.

5. Detection Methods for RNA Modifications
5.1. Quantitative Methods for Modified Bases

To accurately examine and profile RNA modifications, various challenging methods
must be used due to the differences in the position and splicing of adducts as well as the
length and structure of the nucleotide strand [2,82]. Several methods have been reported
for measuring base modification levels, including dot blotting [83], Northern blotting
with antibodies [84], Maz RNA endonuclease [85], high-resolution melting (HRM) [72],
RNA photo-crosslinkers and quantitative proteomics (PCL-Proteomics) [86], and silver
Si02-based electrochemical immunosensors (ECI) [87].

RNA modifications are chemical alterations to RNA bases that can occur in various
types of RNA molecules. These modifications can regulate RNA structure, stability, and
function and play crucial roles in gene expression and disease development. Therefore,
detecting and analyzing RNA modifications has become a significant area of research in
molecular biology and biomedicine. Several techniques have been developed to detect RNA
modifications, including mass spectrometry, high-performance liquid chromatography
(HPLC), antibody-based assays, and next-generation sequencing (NGS). Mass spectrometry
is a powerful tool for identifying and quantifying RNA modifications with high accuracy
and resolution. However, it requires sophisticated instrumentation, sample preparation,
and expertise, and it is not suitable for high-throughput analysis [88]. HPLC is another
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widely used technique for detecting RNA modifications based on the separation and
quantification of modified nucleosides using a chromatographic column. HPLC has high
sensitivity and specificity, but it is time-consuming, requires specialized equipment, and
may not be able to distinguish between closely related modifications [35]. Antibody-based
assays, such as enzyme-linked immunosorbent assay (ELISA) and dot blot, use specific
antibodies to recognize and quantify RNA modifications. These methods are relatively
simple, fast, and cost-effective, but they have limited sensitivity and specificity and may
cross-react with other modifications or non-modified nucleotides [89]. NGS-based methods,
such as m6A-seq and miCLIP, are emerging as powerful tools for detecting and mapping
RNA modifications at a transcriptome-wide scale. These methods use RNA sequencing and
specific probes or antibodies to enrich and sequence modified RNA molecules. NGS has
high sensitivity, specificity, and throughput, but it requires complex data analysis and may
generate false-positive signals due to technical artifacts or sequencing errors [90]. Other
emerging techniques for detecting RNA modifications include nanopore sequencing, single-
molecule imaging, and chemical probing [91]. These methods have their advantages and
limitations and are still under development. In conclusion, the choice of RNA modification
detection method depends on the research question, the available resources, and the desired
accuracy, sensitivity, and throughput. Therefore, it is essential to evaluate the performance
and limitations of each technique carefully and to validate the results using complementary
methods. Moreover, methods to determine both the position and the number of base
alterations have been published [2,4,92-96].

5.2. llumina Sequencer

To comprehensively investigate the epitranscriptome, high-throughput techniques are
required. In the past, RNA modification mapping was mostly carried out by enriching the
modification sites before sequencing and immunoprecipitating the modification sites with
modification-specific antibodies [27,97]. However, the m6A modification was initially stud-
ied using methylated RNA immunoprecipitation and subsequent sequencing (MeRIP-seq),
which revealed unexpectedly high levels and dynamic modulation of the modification in
mRNA [27,97]. Reverse transcription (RT) from RNA to cDNA is necessary for NGS, which
subsequently relies on synthetic methods for sequencing, such as second-strand synthesis
with fluorescently tagged DNA molecules [98]. As a result, NGS methods cannot directly
identify the existence of RNA modifications. However, some modifications (m1A, m3C,
m3U, m1G, m2,2G, and mlacp3Y) (Figure 3) disrupt Watson—Crick base pairs and cause re-
verse transcription errors, such as RT omissions and an increase in error frequency [99,100].
This has been shown to be effective in identifying these modifications [101,102]. Reverse
transcription can be chemically stopped by treating RN A with substances that react only
with modified bases [103], enabling read-end analysis to detect RNA modifications. Ex-
amples of such procedures include treatment with CMCT [104], treatment of 5mC with
hydrogen sulfite (Figure 3) [105], treatment of ac4C with sodium cyanoborohydride [106],
treatment of m3C with hydrazine and/or aniline (Figure 3) [107], and treatment of inosine
with glyoxal (Figure 3) [108].
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Figure 3. Types of sequencers and detectable RNA modifications. Sequencing technologies, RNA
modifications reported to be detectable by the technologies, and their structural formulas are
shown. The red-colored sites in the nucleotide structure formula indicate the portion added by
the modification.

5.3. Bio Nanopore

A more comprehensive answer could be provided by nanopore sequencing technolo-
gies, such as those developed by Oxford Nanopore Technologies (ONT) [109,110]. The
nanopore sequencing technique measures changes in ionic current that occur as nucleic
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acids move through protein nanopores encased in the membrane of the flow cell [111]. If
this long-read third-generation sequencing technology can directly sequence native RNA
and has a modified signal that can be distinguished from that of unmodified nucleotides, it
can theoretically detect multiple RNA modifications with a resolution of a single nucleotide
and a single molecule [110]. According to a recent groundbreaking study using direct
ONT RNA sequencing (Figure 3) [110], the m6A moiety in produced RNA had a different
current signal than non-modified moieties at the same site. Shortly after, variations in
current intensity were also noticed at the m7G alteration site, which was validated by
bacterial direct RNA sequencing of 165 rRNA (Figure 3) [112]. It was later demonstrated
in research that base-calling data mismatches, insertions, and deletions were likewise a
reflection of variations in electrical current intensity [113]. These findings led to several
subsequent studies [113-115] that discovered that m6A and other modifications exhibit
an “error signature” of base calling. Additionally, several studies used internal unmodi-
fied sequences from the same sequence run to discover single modification sites [9,116],
paired samples with few or no changes [9,117], or a machine learning strategy to estimate
the percentages of the modified molecule in the sample. With the aid of computational
tools, both unmodified and modified reads can be clearly distinguished based on their
distinctive current signatures, and even minute variations in the proportion of modified
molecules, known as modification chemistries, can be found between various conditions
and cell types [9,117]. Additionally, a current method termed nano-COP demonstrates that
nascent RNA can be identified directly using RNA nanopore sequencing, offering a promis-
ing foundation for future research on the interplay between splicing and co-occurring
RNA modifications [118]. However, the inability to distinguish between various RNA
modification signals within nanopore sequencing signals restricts the ability to increase
the repertoire of epitranscriptome changes that may be directly examined using RNA
nanopore sequencing. Therefore, the identification of all changes in full-length RNA has
become necessary [119]. Signals frequently require sophisticated signal processing and
analysis software because they often represent five nucleotides going through a pore at
once. Machine learning algorithms are necessary in various situations [9,109,117]. In theory,
a standard solution is to build training datasets for nanopore sequencing using synthetic
arrays, including all conceivable dimers that are in vitro transcribed with either unmodified
(A, C, G, or U) or modified nucleotides [113]. The basic calling signatures for the m6A, I,
5mC, m1G, m7G, and Nm (Figure 3) alterations were found using these and similar data
sets [120]. This has been useful for predicting de novo RNA modifications [9,118].

5.4. PacBio

Pacific Biosciences (PacBio) is based on kinetic changes in reverse transcription [120].
Unlike other sequencing systems, the PacBio sequencer is capable of sequencing full-length
RNA [120], which allows for the examination of full-length RNA sequences for m6A
modifications using this technique (Figure 3) [102,121]. However, there are no further
reports on epitranscriptome detection by the PacBio sequencer.

5.5. Nanogap Nanopore

It was reported that nanogap technology-based single molecule detection system can
sequence DNA /RNA [122]. The basic conductance value of each nucleotide in DNA/RNA
is determined by its molecular energy level, which enables a comprehensive investigation
of the epigenome and transcriptome by detecting all known and unknown modified nu-
cleotides [123]. The researchers focused on the 5mC and m6A modification sites, which are
common miRNA epigenetic modifications produced by various distinct methyltransferases
in nature (Figure 3) [124]. This allows the sequencing of different RNA base modifications
in the context of RNA, thus improving our understanding of the epitranscriptome [124].
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5.6. Single Molecule Detection Using Raman Spectroscopy

It was reported that the method for detecting queuosine modifications of transfer
RNA in single living cells using a plasmonic affinity sandwich assay [125]. In this method,
specific antibodies against queuosine modifications are immobilized on affinity-controlled
nanoplates and selectively bind to transcriptional RNA in living cells. By using spectro-
scopic measurements based on plasmon resonance, the queuosine modification of RNA
can be detected [125]. This approach has demonstrated high sensitivity for detection at the
single-cell level for analyzing RNA modifications within cells. Furthermore, it is possible
to simultaneously detect multiple RNA modifications, indicating its potential as a valuable
tool for RNA modification analysis in the future.

However, there are still issues that need to be addressed with this method. For
example, the current method can only detect a single modification and is not suitable for the
simultaneous detection of multiple modifications. The specificity of the antibodies against
RNA modifications has not been fully validated either. Once these issues are addressed,
this method will become a more widely applicable tool for RNA modification analysis.

6. Software for Analyzing RNA Modification

There are several software tools available for the detection of RNA modifications.
For example, RiboMethSeq is a tool that can detect m6A, m5C, and pseudouridine ()
modifications from sequencing data with high accuracy [126]. It uses a two-step approach
that first identifies ribosome-protected regions and then analyzes read coverage to detect
modifications. RiboMeth-seq can detect a variety of RNA modifications, including m6A,
pseudouridine, and inosine. The software has been shown to have high accuracy in de-
tecting RNA modifications, and it can be used to identify the locations and abundance of
modifications in specific transcripts. Another tool, exomePeak, can detect m6A modifica-
tions with high sensitivity and specificity from m6A-CLIP-seq data [127]. It uses a statistical
model to detect significant differences in read coverage between modified and unmodified
regions of RNA. The software is optimized for detecting m6A modifications, which are
the most common type of RNA modification. However, it can also be used to detect other
types of modifications. The tool, exomePeak, has been shown to have high accuracy and
sensitivity in detecting m6A modifications. However, these tools also have their limitations.
For example, RiboMethSeq cannot distinguish between m5C and ¥ modifications due to
their similar chemical properties [126]. Additionally, exomePeak requires high sequenc-
ing depth to achieve optimal results, which may not be feasible in certain experimental
settings [127]. In the future, it is likely that new software tools will be developed that can
overcome these limitations and improve the accuracy and sensitivity of RNA modification
detection. For example, a recent study proposed a new method called MAZTER-seq that
can detect m6A and m5C modifications simultaneously from RNA sequencing data with
high accuracy [128]. This method uses a deep learning algorithm to distinguish between
the two modifications based on their distinct sequence contexts and has the potential to
overcome the limitations of current RNA modification detection tools. Overall, while there
are currently limitations to the available software tools for RNA modification detection,
new methods are constantly being developed, and it is likely that the field will continue to
progress rapidly in the coming years.

7. Discussion and Future Prospects

The epitranscriptome is known to play a role in the pathogenesis and malignant
transformation of various life phenomena and diseases. Therefore, the development of
single-molecule technologies to measure the epitranscriptome is crucial for understanding
these phenomena. Several equipment-based epitranscriptome measurement methods have
been developed, which can be classified into two categories.

The first category includes dot blotting [83], Northern blotting with antibodies [84],
Maz RNA endonuclease [85], high-resolution melting (HRM) [72], RNA photo-crosslinkers
and quantitative proteomics (PCL-Proteomics) [86], silver SiO2-based electrochemical im-
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munosensors (ECI) [87], [llumina Sequencer [99,100], and PacBio [100]. These methods
detect modified RNAs based on their chemical properties. For example, some detection
methods use antibodies that bind specifically to modified species [84,97], utilize resistance
to RNA-degrading enzymes [85], and use the differences in chemical reactivity with ani-
line [107], hydrogen sulfate [105], and other compounds [106,108]. However, the weakness
of these methods is that they cannot detect multiple modifications simultaneously. There
are about 170 types of RNA modifications [1], and RNA functions are regulated by their
interactions with each other [11,12]. Therefore, it is difficult to fully understand RNA
function with a measurement method that cannot detect multiple modifications at the
same time.

The second category includes Bio Nanopore [110,111] and Nanogap Nanopore [124].
These methods measure RNA bases on a molecule-by-molecule basis, allowing for the
direct measurement of RNA bases using single-molecule measurement techniques. They
can detect multiple types of modifications in a single measurement [124]. However, due to
the noise in the signals obtained from these single-molecule measurements, they are less
accurate at detecting modified RNA than chemical characterization techniques. The future
development of methods for single-molecule measurement of RNA bases and signal analy-
sis is expected to improve the accuracy of detecting multiple types of modifications. This
measurement technology is anticipated to reveal detailed mechanisms of life phenomena
that have not been understood so far.
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