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Abstract: The rapid development of the additive manufacturing industry is a great opportunity both
for the development of the industry in the context of rapid prototyping and for hobbyists using
3D printers at home. At the same time, such a rapid technological development poses a significant
challenge for specialists dealing with sources of pollutant emissions to the environment as well as for
Occupational Health and Safety (OHS) specialists dealing with the assessment of chemical hazards in
the workplace. In this article, the authors demonstrate the legitimacy of the concern regarding issues
relating to emissions from the 3D printing process, in particular FFF (fused filament fabrication).
We carried out tests on the emission of volatile organic compounds from the printer chamber and
compared them with the results of analyses conducted for the same materials in laboratory conditions
by heating in a vial. They showed that the spectrometric analysis differed in both cases, which proved
a clear influence of the parameters of additive manufacturing on both the amount and type of the
emitted substances. The article also presents the sizes and shapes of the solid particles emitted during
the process and aggregated during pollutant analyses.
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1. Introduction

Additive manufacturing, fused filament processing, and 3D printers are becoming
increasingly widespread. Rapid developments in technology have led to the production of
better and more modern printers, which, in turn, have become less expensive and more
readily available. There are many manufacturers and many different types of printers
available. Some have open or closed printing chambers. Many people can now afford home
printers, especially since they are not complicated to operate. Many FFF printers are used
for educational purposes in schools and for training purposes in offices [1,2]. They are also
used at home for small-scale needs and hobbies.

Three-dimensional printers are used to print objects with complex shapes. Unlike sub-
tractive manufacturing, this object can be easily, inexpensively, and very quickly produced
using additive techniques. Additive manufacturing is used in medicine, nanomedicine,
radiology, surgery, diagnostics, prosthetics, orthopedics, and any other field where indi-
vidual adjustment of a single product and manufacturing time are critical [2–8]. Ankle
braces, foot braces, wrist braces, artificial pelvises, and mandibles can be printed with
3D printers. Preoperative support and surgeon preparation using additive manufacturing
technology, especially in complex cases, may help to create more accurate treatment plans
and assist with performing simulated surgery [9]. Future orthopedic surgeons or general
surgeons can train on organs printed in such a way. Doctors can simulate difficult surgeries
on printed organs.

Different types of filaments are used for printing, including ABS, PLA, PET, HIPS, and
PS, in a variety of color combinations. In melt filament printing, the nozzle through which
the material passes is heated to 180–270 ◦C. In some cases, in addition to the nozzle, the
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heat bed is also heated to 40–240 ◦C. In some cases, in addition to the nozzle, the heat bed is
also heated to temperatures in the 40–110 ◦C range. The heating of the nozzles and plastics
releases gases and solid particles that are harmful to the natural environment (Figure 1).
The volatile organic compounds released in the process are also indifferent to the human
body [10–12].
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Figure 1. Schematic diagram of particle formation, growth, and disappearance processes.

Numerous researchers have demonstrated that 3D printers are a source of many
volatile organic compounds and particles that are released into the air of the room where
additive manufacturing takes place during printing [13–17]. These are solid or volatile
particles that penetrate the human body during respiration. These ultrafine particles
can even penetrate the bloodstream through the skin. Researchers emphasize that the
concentration of printers in one room further multiplies and intensifies the pollution that
adversely affects human health.

PM consists of solid or liquid particles that are uniformly distributed in the air. Their
size ranges from 1 to 10,000 nm, and they remain in the air for a long time. The smaller the
particles, the more difficult they are to measure and control. PM10 includes all particles less
than 10 µm in diameter. These particles can affect the environment and can be hazardous
to human health. The primary route of exposure to these particles is inhalation; large
molecules such as PM10 are expelled from the body by sneezing, coughing, or swallowing.
Molecules smaller than 10 µm in diameter can penetrate deep into the lungs and enter the
bloodstream. The greatest health threat is fine particles (less than 2.5 µm in diameter), or
PM2.5. Inhalation of these solid particles can cause asthma, lung cancer, respiratory disease,
cardiovascular disease, birth defects, low birth weight, and premature death. Figure 2
is characterized by small particles, ultrafine particles, and nanoparticles compared to a
human hair.
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The research conducted by the authors [12] showed that the printers operated by
students in their apartments were located in the bedroom, living room, kitchen, and general
purpose room. This indicates that many people are unaware of the harmfulness of the
fumes emitted during fused filament fabrication. In recent years, many research teams
have addressed the problem of the emission of solids from the FFF process. Tests have also
been conducted on the respiratory effects of emitted contaminants [14], and studies have
shown a toxic response to particulate matter released from different types of plastics used
in 3D printers. Scientists have studied the chemical composition of the particles and their
potential toxicity in detail. The FFF process requires that the filament be quickly heated to
its melting point in a heating block just before the extruder. After leaving it, the molten
plastic is rapidly cooled by the external temperature or by a blast of air. Such violations
of the temperature of the material cause numerous physical and chemical changes in the
substances contained in the plastic. These changes may include thermal depolymerization
of the basic ingredient, oxidation of additives to the material, or the release of plasticizers
and non-pyrolytic agents. As a result of these changes, it is possible for both VOCs (volatile
organic compounds) and various particles to be emitted. A major threat to humans is the
emission of particles in the PM10, PM5, and PM2.5 ranges and below. Diameter is the most
important of the many parameters of solid particles. Depending on their values, particles
are classified into predetermined types (Figure 3).
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SPME (solid phase microextraction) is an extraction technique developed in 1990.
This technique is particularly useful when the purpose of the analysis is to identify and
quantify volatile and intermediate volatile organic compounds, and the matrix is very
complex. It is often used to analyze volatile compounds released from various plant
materials, environmental samples, foods, insects, etc. SPME is a sample preparation
method that is fast, economical, and versatile. The fibers that adsorb the analytes are coated
with a polymeric material. SPME consists of adsorbing volatile compounds on a quartz
fiber covered with a suitable sorption material (stationary phase). This method has many
advantages over conventional extraction methods. The most important advantages of
this technique are its simplicity, low cost of analysis, and the possibility of field use, and
most importantly, it is not a time-consuming technique and does not require the use of
solvents, high sensitivity, small-sized SPME fibers, or sorbing of volatile and medium-
volatile analytes. One of the stages of each analytical procedure is extraction, which
consists of separating the components of the mixture. Gases, liquids, or solids can be
used for extraction. For example, solvent extraction involves the transfer of analytes from
a matrix to an immiscible liquid phase. Typically, organic solvents such as methanol,
chloroform, hexane, dichloromethane, petroleum ether, or mixtures thereof are used for
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this type of extraction. One technique that uses solids to isolate analytes is SPME. During
extraction, the fiber can be placed directly into the aqueous sample to be tested, and the
analytes are transferred directly from the sample matrix to the stationary phase (direct
immersion, DI-SPME) or to the headspace above the liquid or solid sample (headspace,
HS-SPME). SPME proceeds in two basic stages. The first one is the adsorption of analytes
on the surface of the sorbent. The fiber is exposed to the components of the sample, and the
compounds present in it are partitioned between the sorbent and the matrix. The amount
of adsorbed analyte depends on the values of the analyte partition constants between
the sample matrix and the headspace and between the sorbent covering the fiber and the
headspace. The second stage is the desorption of the analytes under the influence of the
high temperature of the gas chromatograph dispenser. Analytes are released into the gas
phase and, together with the carrier gas, are transported to the chromatographic column,
where they are separated and then detected by an appropriate detector [21–25].

GC (gas chromatography) is an analytical chromatographic technique in which the
mobile phase is gas (usually helium, argon, high-purity nitrogen, and, less often, hydrogen),
and the stationary phase is an adsorbent or absorbent covering the carrier (filling of the
column or its walls). The GC technique makes it possible to determine the percentage
composition of mixtures of chemical compounds, of which there are several hundred.
Using classical detection (e.g., with the use of catarometers) it is possible to approximate
the identification of mixture components based on their retention times. Using a mass
spectrometer as a detector, almost univocal identification is possible (gas chromatography–
mass spectrometry, GC-MS). Gas chromatography is the most commonly used method
to rapidly analyze complex mixtures of compounds and to assess the purity of these
compounds. Gas chromatography is based on the phenomena of molecular interactions
between the chemical compounds that are components of the mixture to be analyzed and
the packing material in the column. In gas chromatography, the mixture to be analyzed
is first converted to the gas phase in a vaporizer, an important element of the injection
system. If the sample to be analyzed is a gas, it can be added to the column, bypassing the
vaporizer. The sample is entrained in a carrier gas (usually helium or hydrogen) and passes
through a long column, where the mixture is separated into individual chemicals. At the
outlet is a detector that detects and measures the concentration of subsequent components
of the mixture in the carrier gas. The time it takes for a given chemical to pass through
the entire column is called the retention time. The retention time is strongly influenced
by the conditions of the analysis, such as temperature and the flow rate of the carrier gas,
which is forced by the pressure applied to the top of the column. The retention time under
certain conditions is a specific value for each component of the mixture being analyzed.
This allows for a very good approximation of the identification of the components by
comparison with known pure substances. An identification obtained in this way should
be treated with great care, as it may be the case that there is also another substance with
the same retention time. A more reliable result can be obtained by analyzing the sample
using several different columns (with different properties of the stationary phase). The
most reliable result is obtained by combining gas chromatography with other analytical
techniques, most often with mass spectrometry (GC-MS). The components of the sample
to be analyzed by gas chromatography must be volatile and stable at the temperature
of analysis. Most often, these are various gas mixtures and solutions containing volatile
chemical compounds [26–30].

2. Materials and Methods

The aim of the study was to identify organic compounds emitted into the air during
3D printing. The technique used was solid phase microextraction (SPME), in combination
with gas chromatography coupled with mass spectrometry (GC-MS).

The first research object was a Zortrax M200 3D printer with a closed chamber and
without a cleaning filter, made from Olsztyn, from Poland. This printer had one printing
nozzle and a heated table. Four objects from four different materials were printed. The
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manufacturing of each sample lasted for, on average, 90 min. The emission tests were
conducted with a standard setup for each material based on the manufacturers’ suggestion.
The research sample was manufactured from the following filaments: black ABS, colorless
PET-G, black PLA, and natural PVA. The print parameters are included in Table 1.

Table 1. Print parameters of the tested material.

Material Parameter Value

ABS Black nozzle temperature 275 ◦C
printbed temperature 80 ◦C
finished product mass 2.71 g × 3

weight with raft 17 g
print time 95 min

PET-G Colorless nozzle temperature 240 ◦C
printbed temperature 30 ◦C
finished product mass 2.85 g × 3

weight with raft 21
print time 93 min

PLA Black nozzle temperature 210 ◦C
printbed temperature 30 ◦C
finished product mass 2.9 g × 3

weight with raft 23 g
print time 95 min

PVA Colorless nozzle temperature 190 ◦C
printbed temperature 50 ◦C
finished product mass 2.68 × 3 g

weight with raft 21
print time 91 min

The measuring station (Figure 4) consisted of the Zortrax M200 printer that printed
the research object (Figure 5).
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Figure 5. Dogbone manufactured for the purpose of the research; (a) finished product
(150 mm × 10–20 mm × 8 mm); (b) printed product before post-processing.

Research was carried out in two variations. In the first method (Figure 6), the research
sample was collected with an SPME fiber made of PDMS (polydimethylsiloxane). The
SPME fiber was exposed in the printer chamber during the 3D printing process for 1 h. The
desorption was carried out in the chromatograph dispenser for 10 min.
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Figure 6. Sample collection with the SPME fiber during the 3D printing process.

In the second method, the research sample was collected with SPME fiber made of
PDMS. For this experiment, 3 g of crushed plastic was placed in a headspace vial and
conditioned at 200 ◦C for 25 min. The SPME fiber was then exposed inside the test vial for
5 min, and the desorption was carried out in the chromatograph dispenser for 10 min.

Flow charts of the research plan are presented in Figures 7 and 8.
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The designation was carried out using the Bruker 436-GC gas chromatograph coupled
with the Bruker Scion SQ mass spectrometer (single quadrupole, EI ion ionization), made
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from Mannheim, from Germany. The chromatograph and mass spectrometer settings are
given in Table 2.

Table 2. Technical data of the chromatograph and mass spectrometer.

Parameter Value

Column BR-5 ms; 0.25 mm × 30 m, df = 0.25 µm
Column temperature program 50 ◦C (3.5 min),

Dispenser temperature 10 ◦C/min do 150 ◦C (0 min),
Sample division 25 ◦C/min do 280 ◦C (11.3 min)

Carrier gas 250 ◦C
Flow Exclusive

Transfer line temperature Helium
Source temperature 1.0 mL/min
Ionization energy 300 ◦C
Scanning range 220 ◦C

3. Results

Chromatographic signals were identified on the basis of a comparison of the mass
spectra obtained with the NIST 11 library. Identification results are shown in Tables 3–9.

Table 3. Black ABS—compounds emitted during the process.

No. Retention Time (min) Compound Name

1 10.55 Nonanal
2 12.16 Decanal
3 15.11 Benzene, 3-cyclohexen-1-yl-
4 15.37 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis-
5 16.65 Benzene, 1,1′-(1,3-propanediyl)bis-
6 16.76 2-Propenoic acid, tridecyl ester
7 16.90 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, trans-
8 17.02 1,7-di-iso-propylnaphthalene
9 17.18 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, trans–Dup1
10 18.09 2-[1-(4-Cyano-1,2,3,4-tetrahydronaphthyl)]propanenitrile

Table 4. PLA Black—compounds emitted during the process.

No. Retention Time (min) Compound Name

1 11.54 1,4-Dioxane-2,5-dione, 3,6-dimethyl-, (3S-cis)-
2 12.17 Decanal
3 15.12 5,9-Undecadien-2-one, 6,10-dimethyl-
4 15.37 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis-
5 15.53 Nonadecane
6 16.90 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis–Dup1
7 17.02 1,3-di-iso-propylnaphthalene
8 17.18 Cyclobutane, 1,3-diphenyl-, trans-

Table 5. Colorless PVA—compounds emitted during the process.

No. Retention Time (min) Compound Name

1 8.31 Glycerine
2 10.32 1,2,3-Propanetriol, 1-acetate
3 12.16 Decanal
4 15.12 5,9-Undecadien-2-one, 6,10-dimethyl-
5 17.18 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis-
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Table 6. Black ABS heating in headspace vial—compound identification.

No. Retention Time (min) Compound Name

1 4.14 Toluene
2 5.11 Cyclotrisiloxane, hexamethyl-
3 5.49 Cyclohexene, 4-ethenyl-
4 6.01 Ethylbenzene
5 6.67 Styrene
6 7.29 Benzene, (1-methylethyl)-
7 7.69 Cyclohexane, 1,2-diethyl-, cis-
8 7.90 Benzene, propyl-
9 8.04 Benzaldehyde
10 8.70 Heptane, 2,2,4,6,6-pentamethyl-
11 8.98 Benzene, 1-methyl-2-propyl-
12 9.32 D-Limonene
13 9.98 Acetophenone
14 11.23 Cyclohexane, 1,2,4-triethenyl-
15 12.22 Decanal
16 12.99 Methyl 6,9,12,15-hexadecatetraenoate
17 14.05 Benzenebutanenitrile
18 14.81 Dodecanal
19 14.93 Quinoline, 2,4-dimethyl-
20 15.18 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis–Dup1
21 15.38 Cyclododecane
22 15.44 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis–Dup2
23 15.51 5-Octadecene, (E)-
24 15.56 Heptadecane
25 16.67 Benzene, 1,1′-(1,3-propanediyl)bis-
26 16.74 1,3-di-iso-propylnaphthalene
27 16.79 2-Propenoic acid, tridecyl ester
28 16.82 1-Decanol, 2-hexyl-
29 16.92 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, cis-
30 17.03 Benzene, 1,1′-(2-butene-1,4-diyl)bis-
31 17.20 Benzene, 1,1′-(1,2-cyclobutanediyl)bis-, trans-
32 17.32 Naphthalene, 1,2,3,4-tetrahydro-1-phenyl-

Table 7. Colorless PET-G heating in headspace vial—compound identification.

No. Retention Time (min) Compound Name

1 4.45 2,4-Hexadiene, 2,3-dimethyl-
2 5.45 5,5-Dimethyl-1,3-dioxane-2-ethanol
3 10.35 Cyclohexanemethanol, 4-methylene-
4 10.58 Nonanal
5 11.97 2-Tetradecanone
6 12.19 Decanal
7 12.92 Caprolactam
8 13.45 2-Undecanone
9 13.53 Cyclohexasiloxane, dodecamethyl-
10 13.67 Undecanal
11 14.70 Heptadecane
12 14.80 Dodecanal
13 15.14 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)-
14 15.25 Cycloheptasiloxane, tetradecamethyl-
15 15.36 1-Undecanol
16 15.49 5-Octadecene, (E)-
17 15.65 Tridecanal
18 16.38 Cyclooctasiloxane, hexadecamethyl-
19 16.78 Dodecyl acrylate
20 17.19 Cyclononasiloxane, octadecamethyl-
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Table 8. Black PLA heating in headspace vial—compound identification.

No. Retention Time (min) Compound Name

1 4.20 Toluene
2 5.99 Ethylbenzene
3 6.20 p-Xylene
4 6.63 Styrene
5 8.08 Benzaldehyde
6 11.67 3,4-Dimethyldihydrofuran-2,5-dione
7 12.10 Dodecane
8 12.20 Decanal
9 12.97 Dodecane, 4-methyl-
10 13.05 Dodecane, 2-methyl-
11 13.17 1-Decanol
12 13.57 Tetradecane
13 14.18 Tridecane, 6-methyl-
14 14.21 Tridecane, 5-methyl-
15 14.27 Tridecane, 4-methyl-
16 14.33 Tridecane, 2-methyl-
17 14.41 Tridecane, 3-methyl-
18 14.71 Hexadecane
19 15.14 5-Ethyldecane
20 15.17 Tetradecane, 5-methyl-
21 15.22 Tetradecane, 4-methyl-
22 15.27 Triacontane
23 15.33 Tetradecane, 3-methyl-
24 15.56 Hexadecane-Dup1
25 15.81 Phenol, 4,6-di(1,1-dimethylethyl)-2-methyl-
26 15.89 Pentadecane
27 15.92 Eicosane, 10-methyl-
28 15.96 Pentadecane, 4-methyl-
29 16.00 Tetradecane, 3-methyl–Dup1
30 16.05 Pentadecane, 3-methyl-
31 16.24 Hexadecane-Dup2
32 16.51 Hexadecane, 7-methyl-
33 16.58 Hexadecane, 4-methyl-
34 16.62 Triacontane-Dup1
35 16.66 Heptadecane, 2-methyl-
36 16.90 Pyrene, hexadecahydro-
37 17.27 4-Methyl-hexadecahydro-pyrene

Table 9. PVA colorless heating in headspace vial—compound identification.

No. Retention Time (min) Compound Name

1 3.65 3-Penten-2-one
2 4.14 Toluene
3 4.67 1,3,5-Heptatriene, (E,E)-
4 5.25 2-Buten-1-ol, acetate
5 5.82 2-Hexenal, (E)-
6 6.35 p-Xylene
7 6.63 Styrene
8 7.00 2,4-Hexadienal, (E,E)-
9 8.10 Benzaldehyde
10 8.45 4,4-Dimethyl-2-cyclopenten-1-one
11 8.63 trans,trans-3,5-Heptadien-2-one
12 9.67 2,4,6-Octatrienal
13 10.06 Acetophenone
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Table 9. Cont.

No. Retention Time (min) Compound Name

14 10.68 Methoxyphenamine
15 10.98 Methyl m-tolyl carbinol
16 11.14 Ethanone, 1-(3-methylphenyl)-
17 11.45 Benzene, (1-methylene-2-propenyl)-
18 11.59 Acetic acid, phenylmethyl ester
19 11.67 Cycloprop[a]indene, 1,1a,6,6a-tetrahydro-
20 11.82 3-Methylene-2-norbornanone
21 11.87 Bicyclo[4.1.0]hept-2-ene
22 12.02 1H-Indene, 1-methylene-
23 12.22 Decanal
24 12.53 Benzenepropanal, .beta.-methyl-
25 12.83 2-Butanone, 4-phenyl-
26 12.92 2-Propenal, 2-methyl-3-phenyl-
27 12.97 1-Butanone, 1-phenyl-
28 13.02 Methyl m-tolyl carbinol-Dup1
29 13.10 4-Ethylbenzoic acid, 2-phenylethyl ester
30 13.23 2-Isopropylbenzaldehyde
31 13.35 Ethanone, 1-(2,3-dihydro-1H-inden-5-yl)-
32 13.46 1-Tridecene
33 13.71 Undecanal
34 13.79 m-Toluic acid, cyclobutyl ester
35 14.63 1-Tetradecene
36 14.71 Tetradecane
37 14.82 Dodecanal
38 15.25 4-(N-Methyl-N-methoxy)indancarboxamide
39 15.52 n-Heptadecanol-1
40 15.57 Heptadecane
41 15.66 Tridecanal
42 15.72 m-Toluic acid, 4-cyanophenyl ester
43 16.24 Heptadecane-Dup1
44 16.34 Tetradecanal
45 16.79 1-Nonadecene
46 16.83 2-Pentadecanone
47 16.93 Pentadecanal-
48 17.43 Tetradecanal-Dup1
49 17.81 2-Heptadecanone
50 17.89 Pentadecanal-Dup1

3.1. Process Emissions

The compounds emitted during the 3D printing process are shown in Tables 3–5. The
test sample was taken with the SPME fiber made of PDMS (polydimethylsiloxane). The
SPME fiber was exposed in the printer chamber during the 3D printing process for 1 h, and
the desorption was carried out in the chromatograph dispenser for 10 min.

In the collected sample of the black ABS filament, the best visible spectrum was that
of an aromatic compound, benzene (Figure 9).

In the collected sample of the black PLA filament, the best visible spectrum was that
of the cyclic ethers dioxan of the sulfoxide dimethyl (Figure 10).

In the collected sample of the natural PVA filament, the best visible spectrum was that
of propanetriol (Figure 11).
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Unfortunately, samples from colorless PET-G could not be obtained with this method.

3.2. Material Emissions

The compounds emitted while heating the chipped filament are shown in Tables 6–9.
The test sample was collected with the SPME fiber made of PDMS (polydimethylsiloxane).
A sample consisting of 3 g of shredded plastic was placed into a headspace vial and
conditioned at 200 ◦C for 25 min. The SPME fiber was then exposed inside the headspace
vial for 5 min, and the desorption was carried out in the chromatograph dispenser for
10 min.

In the collected sample of the black ABS premium filament, the visible spectrum were
benzene, styrene, acetophenone, and cyclohexene (Figure 12).

In the collected sample of the natural PET-G filament, the visible spectra were decanal,
dodecyl acrylate, cycloheptasiloxane, and tetradecamethyl (Figure 13).

In the collected sample of the black PLA filament, the visible spectra were toluene,
styrene, benzaldehyde, and hexadecane (Figure 14).

In the collected sample of the neutral PVA filament, the best visible spectra were
acetophenone, acetic acid, phenylmethyl ester, heptadecanol, and pentadecanal (Figure 15).
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3.3. Solid Particles Emitted during the Process

Pictures of aggregated particles emitted during the FFF process are shown in Figure 16.
The particles were embedded in an organic solvent and then photographed with a scanning
electron microscope (SEM).
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As shown in Figure 14, particles emitted during 3D printing aggregate relatively
easily in organic solvents, forming larger clusters. Individual particles and their clusters
have porous and irregular structures, in many cases with numerous acute angles. Such
a configuration may significantly facilitate their entry into the bloodstream. Importantly,
there is a reasonable risk that nanoparticles released during 3D printing may enter the
alveoli or bloodstream directly, where they may aggregate, posing a significant health risk
to the operator exposed to the emissions.

4. Discussion

In the course of their research, the authors have found that the tested plastics are
a source of many volatile chemicals, and that these compounds are emitted into the air
during 3D printing. The detected volatile substances can be classified into the following
groups: aliphatic hydrocarbons, aromatic hydrocarbons, aldehydes, alcohols, ketones,
esters, and siloxanes. Due to the very large number of detected substances and their strong
coelution (overlap), in many cases, it has not been possible to precisely identify them.
The chemical compounds given in Tables 3–9 should, therefore, be treated as selected,
exemplary substances, the presence of which is subject to identification error.
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Among the organic compounds mentioned in the study, particular attention was
paid to substances harmful to health, such as toluene, ethylbenzene, xylenes, styrene,
benzaldehyde, and other aldehydes, as well as harmful substances (not directly detected),
the presence of which is very likely: benzene, acrylates, phenol derivatives, and polycyclic
aromatic hydrocarbons (PAHs). The test samples emitting the most potentially harmful
substances were ABS Premium in black and PLA in black; to a lesser extent, colorless
PET-G; and to the least extent, natural PVA.

5. Conclusions

An important element of the presented research is the comparison of the emissions
from the same material, tested with the same method, but released as a result of 3D printing
and simple heating of the material to a given temperature. The resulting differences
may be due to special conditions in the heat block and nozzle of the 3D printer. Rapid
thermodynamic changes, including a very rapid increase in temperature and pressure, may
lead to changes in the composition of waste gases formed during the process. This piece
of information is important for the methodology of future research on emissions from the
additive manufacturing process, in particular, fused filament fabrication.

Such a significant discrepancy between the results of emission measurements from the
same substances and those made with different methods may also be the reason for the
discrepancies in comparison with the results obtained by authors who conducted research
on emissions from the 3D printing process earlier [31]. This state of affairs requires a
thorough review of the available measurement methods and the development of a unified
methodology for the analysis of emissions from the printout preparation to the completion
of the analyses. The lack of a unified methodology for emission analysis significantly
hinders the comparison of various results of studies carried out by different authors using
various process parameters. As a result, it is not possible to clearly indicate the impact
of pollution from the additive manufacturing process on the health of the operators and
on the environment, which, in turn, prevents the development of an effective method to
reduce this risk.
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