
Citation: Vaz, M.; Summavielle, T.;

Sebastião, R.; Ribeiro, R.P.

Multimodal Classification of Anxiety

Based on Physiological Signals. Appl.

Sci. 2023, 13, 6368. https://doi.org/

10.3390/app13116368

Academic Editors: Andrea Prati,

Lucia Billeci, Maurizio Varanini and

Alessandro Tonacci

Received: 31 January 2023

Revised: 28 April 2023

Accepted: 15 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multimodal Classification of Anxiety Based on
Physiological Signals
Mariana Vaz 1, Teresa Summavielle 2,3 , Raquel Sebastião 4,† and Rita P. Ribeiro 1,5,*,†

1 Computer Science Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
2 Addiction Biology Group, i3S—Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
3 Escola Superior de Saúde, Polytechnic of Porto, 4200-072 Porto, Portugal
4 Institute of Electronics and Informatics Engineering of Aveiro (IEETA), Department of Electronics,

Telecommunications and Informatics (DETI), Intelligent Systems Associate Laboratory (LASI),
University of Aveiro, 3810-193 Aveiro, Portugal

5 INESC TEC—Institute for Systems and Computer Engineering, Technology and Science,
4200-465 Porto, Portugal

* Correspondence: rpribeiro@fc.up.pt
† These authors contributed equally to this work.

Abstract: Multiple studies show an association between anxiety disorders and dysregulation in
the Autonomic Nervous System (ANS). Thus, understanding how informative the physiological
signals are would contribute to effectively detecting anxiety. This study targets the classification of
anxiety as an imbalanced binary classification problem using physiological signals collected from
a sample of healthy subjects under a neutral condition. For this purpose, the Electrocardiogram
(ECG), Electrodermal Activity (EDA), and Electromyogram (EMG) signals from the WESAD publicly
available dataset were used. The neutral condition was collected for around 20 min on 15 participants,
and anxiety scores were assessed through the shortened 6-item STAI. To achieve the described
goal, the subsequent steps were followed: signal pre-processing; feature extraction, analysis, and
selection; and classification of anxiety. The findings of this study allowed us to classify anxiety with
discriminatory class features based on physiological signals. Moreover, feature selection revealed
that ECG features play a relevant role in anxiety classification. Supervised feature selection and
data balancing techniques, especially Borderline SMOTE 2, increased the performance of most
classifiers. In particular, the combination of feature selection and Borderline SMOTE 2 achieved the
best ROC-AUC with the Random Forest classifier.

Keywords: anxiety; classification; wearable sensors; multimodal dataset; machine learning; physiological
signals; self-reports

1. Introduction

Stress and anxiety have become buzzwords of the present time, affecting many people
worldwide, irrespective of gender, age group, or work profile. This trend may be due to the
challenging demands of contemporary work culture, changing lifestyles, and technological
interactions [1–3].

According to the 2021 health statistics report of the Organization for Economic Co-
operation and Development (OCDE), in 2019 and 2020, Portugal was the OCDE country
with the highest anxiolytic consumption [4]. Moreover, the ability to understand and per-
ceive mental disorders has even more relevance considering the new challenges associated
with the COVID-19 pandemic, which include increased anxiety and depression rates at a
global level.

Anxiety is a specific reaction to stress that may persist even after a concern has passed.
Anxiety can manifest psychologically and physiologically through particular responses of
the nervous system. A strong association has been reported between prolonged and severe
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anxiety with mental disorders, such as depression and anxiety disorders, and an increased
risk for other health complications, like cardiovascular diseases [5–9].

Furthermore, multiple studies show an association between anxiety disorders and
depression and an imbalance of the Autonomic Nervous Ssystem (ANS), characterized
by increased sympathetic activity and reduced parasympathetic or vagal activity [6,10,11].
The ANS maintains the homeostasis of unconscious bodily functions such as heart and
respiration rates, blood pressure, and sweating, among others. The two main branches of
the ANS are the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous
System (PNS) [5]. The SNS responds to emergencies, activating our organs and functions
to respond to stress (fight-or-flight responses), while the PNS relaxes these functions back
to rest (rest-and-digest activity) [12].

Physiological signals can reflect spontaneous, ongoing activity or activity that results
from external stimulation. Physiological signals of interest for stress and anxiety detection
include hormone levels, Electrocardiogram (ECG), Electrodermal Activity (EDA), Electroen-
cephalogram (EEG), Blood Pressure (BP), Skin Temperature (ST), Electromyogram (EMG),
Respiration Volume (BV), and Pupil Diameter (PD) [13,14]. Several parameters associated
with the physiological processes of anxiety can be obtained from the physiological signals,
reinforcing the need to pre-process these signals to remove noise and artifacts during
collection.

Relying on physiological signals, namely ECG, EDA, and EMG, recorded with wear-
able sensors and self-reported, specifically the 6-item State-Trait Inventory questionnaire
(6-STAI) [15], this study proposes to attain the following objectives that can help in the
current increased needs for the management of mental health:

1. physiological characterization of anxiety levels, providing further knowledge about
the physiological responses and the physiological interactions ruling anxiety levels;

2. automatic detection by classifying anxiety levels using machine learning algorithms;
3. understand how to improve the classification of anxiety levels in such an imbalanced

domain and if data-level pre-processing techniques can be good solutions to the
imbalanced class distribution problem in mental health datasets.

Our approach differs from conventional studies in that it addresses anxiety levels
without controlled elicitation. This ensures the classification of anxiety as a neutral condi-
tion, providing valuable insights that can contribute to developing better techniques and
strategies for people to manage their health and well-being [16].

Moreover, by tackling this from a multimodal perspective, we ensure higher classification
accuracy, as research has pointed out that recognition systems that base their decisions on
multiple physiological data tend to be more accurate than their single-signal counterparts [17].

Our results suggest that physiological signals can detect anxiety levels and could be
beneficial in diagnosing and managing mental disorders such as depression and anxiety
disorders. By understanding the wearable physiological biomarkers and the machine learning
techniques that can effectively detect and classify anxiety, even when not in the presence of
anxiety stimuli, this work supports the research and development of real-time systems for the
early detection of anxiety and biofeedback therapy to overcome related undesirable health
outcomes. In real-life situations, wearable devices, such as smartwatches, combined with
biofeedback strategies allow for more effective and on-time monitoring of anxiety.

Resuming, Section 1 introduces the motivation, goals, and contributions of this study.
Section 2 presents key concepts and related work in the literature. Section 3 describes the data
and methods used in this study. Sections 4 and 5 present and discuss the obtained results,
respectively, and Section 6 addresses the main conclusions, limitations, and future work.

2. Related Works

Anxiety recognition and detection is a highly interdisciplinary research field with links
to signal processing, machine learning, and neuroscience. Anxiety disorders’ prevalence
across the population vastly exceeds the capacity of mental health services to provide
face-to-face therapy for all those affected, demanding novel approaches for delivering
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therapy. Traditional monitoring methods rely on retrospective reports, which are subject to
recall bias and limit the ability to understand behavior accurately in real-time settings [18].
Therefore, having access to valuable physiological information would greatly enrich the
process of intervening in these situations [18]. In this context, several works have been
proposed addressing the classification of anxiety levels.

Several machine learning algorithms have been used to classify anxiety and stress
based on their physiological mechanisms’ unique characteristics. Often, self-reported
results are used as part of the labels, which puts the participant in charge of the labeling
process. One of the advantages of self-reports is that they can be easily applied, although
this method carries individual bias [18]. Authors have labeled anxiety in multiple ways:
binary (stressed or relaxed), three classes (no anxiety, low anxiety, and high anxiety), or
four classes (no, low, mild, or high anxiety) [19].

Supervised learning algorithms used for anxiety detection include Decision Tree (DT),
Adaptative Boosting (ADB), Support Vector Machines (SVM), Naïve Bayes (NB), Markov
Models (MM), Logistic Regression (LR), Random Forest (RF), Artificial Neural Networks
(ANN), Linear Discriminant Analysis (LDA), etc. [18,19].

Previous machine learning studies have been conducted to classify distinct levels of
anxiety, showing that combining different physiological signals increases the accuracy of
anxiety detection systems [14].

The EDA signal was used to detect and measure stress in call center employees at work
and during each call. In a binary classification task—stressful/non-stressful calls—SVMs
achieved an accuracy across participants of 78.03% [20].

Accuracies higher than 95% were obtained in binary and multi-class classification of anxiety
levels, in either subject-dependent or independent studies, using Linear Discriminant Analysis
(LDA) with a combination of physiological signals such as GSR (Galvanic Skin Response), EMG,
ECG, ST, and respiration data, with as many as three different physiological signals at a time [19].

In classifying anxiety during Virtual Reality Exposure Therapy (VRET) sessions, a
combination of Blood Volume Pulse (BVP), GSR, and ST were used with an SVM to
classify four different anxiety classes (“low”, “mild”, “moderate”, and “high”), achieving
an accuracy of 80.1% [19]. In this research study, the feature selection was addressed by
using Random Forest (RF), i.e., considering the relationship of the features with the target
variable when selecting the optimal features [19].

In another study [21], the heart activity, skin conductance, and accelerometer signal
were collected from 21 participants of an algorithmic programming contest for nine days
to discriminate contest stress, relatively higher cognitive load (lecture), and relaxed time
activities. Principal Component Analysis (PCA) was used for data dimensionality. This
study used an imbalanced dataset; therefore, to deal with the imbalance problem, a com-
bined strategy of undersampling the majority class and oversampling the minority class
was applied. When combined with ECG and EDA information, a multilayer perceptron
algorithm achieved the best classification accuracy of 92.15%.

To grant an immersive experience, Virtual Reality (VR) video games incorporate
high-quality auditory and video feedback along with vibrotactile cues. Nonetheless, the
user’s state is not considered to assess the video game experience. Using information
extracted from ECG, EDA, and EMG signals of users while playing a VR video game
with different difficulty levels, the work [22] estimates the users’ stress levels, showing
statistically significant differences between the rest and gaming stages. Moreover, using a
KNN classifier, an accuracy of 83.1% was obtained for the three difficulty levels.

A study created a benchmark on the dataset using different standard machine learning
methods and well-known features. Considering the three-class classification problem
of neutral (baseline) vs. stress vs. amusement, the authors achieved 80% classification
accuracy. In the binary case of stress vs. non-stress, accuracies of 93% were reached [1].

Compared to the studies presented above, our study addressed the anxiety classifi-
cation from a different perspective, focusing only on physiological data collected under a
neutral condition without any state elicitation. Moreover, we also tackled the imbalanced
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distribution of anxiety classes to improve performance on typically less represented but
more severe levels of anxiety.

3. Materials and Methods

The data processing and analysis were performed using Python version 3.8 [23],
NeuroKit2 version 0.2.1 [24], scikit-learn version 1.1.1 [25], and imblearn version 0.101 [26].

This research follows a data processing chain consisting of the following steps: pre-
processing of the physiological signals, segmentation, feature extraction, feature selection,
classification, and classification performance evaluation. Figure 1 illustrates these different
steps, which are further detailed in this section.
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3.1. Dataset Description

To achieve the proposed goals, we used a publicly available multimodal dataset for
stress and affect detection—the WESAD dataset [1]—containing self-reports, motion, and
physiological data of 15 healthy participants during a lab study designed for stress and
affect detection.

The data were collected under a study protocol designed for stress and affect de-
tection, in which the subjects were exposed to different affective stimuli (neutral, stress,
and amusement) and two meditation periods (to de-excite the participants). Besides the
physiological signals collected during these conditions, the dataset also includes context
notes about the participants and self-assessment report results. Self-reports were collected
from all participants after each affective stimulus condition. The responses to the 6—STAI
S questionnaire [15] applied after the baseline condition were used to assess their current
anxiety level.

According to the authors of the dataset, two subjects were excluded from the initial seven-
teen subjects that participated in the study due to sensor malfunction, resulting in 15 healthy
subjects (three of whom were women). The mean age of the subjects is around 27.5 years,
ranging from 25 to 29 years old.

Our study aims to address the classification of anxiety levels without any state elicita-
tion for those or any pre-designed affective stimuli. Thus, only the data collected during
the 20-min baseline condition was used to ensure a neutral affective state. The selection of
the physiological signals for anxiety is supported by the literature [17,19], being described
as reliable indicators of anxiety.

The dataset contains high-resolution data sampled at 700 Hz from a chest-worn device
(RespiBAN) and a lower-resolution wrist-worn device (Empatica E4); nonetheless, only
data from the RespiBAN device was employed in this study. The RespiBAN device contains
multimodal sensors that allow obtaining the following physiological signals: ECG, EDA,
EMG, respiratory activity (RESP), temperature (TEMP), and motion accelerometer (ACC).
In this study, EMG data was recorded on the upper trapezius muscle on both sides of the
spine, and the EDA signal was recorded on the rectus abdominis.

A short excerpt of these signals from two participants with anxiety levels of “High”
and “Low and moderate”, with STAI-S scores of 16 and 10 (respectively), is shown in
Figure 2. Regarding the ECG, depicted on the left-hand side of the figure, it can be seen that
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the participant with a higher level of anxiety presents a higher heart rate (HR), as the signal
presents more R-peaks for the same period. From the EDA signals, we can observe an
almost constant Tonic Skin Conductance Level (SCL) for the participant with a “Low and
moderate” level of anxiety. In contrast, besides showing more fluctuation, the participant
with a “High” level also presents a higher number of SCR (Skin Conductance Response)
peaks and higher amplitude values. Regarding the EMG signal, the right-hand side figure
shows that higher anxiety levels present a higher number of bursts of activity and that
these active muscle periods are longer than for lower anxiety levels. These observations in
the physiological signals, supporting an increased sympathetic activity in higher levels of
anxiety, are in accordance with what has been reported in the literature regarding reactions
in the ANS related to anxiety disorders [6,10].
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Figure 2. Excerpt of ECG, EDA, and EMG (left, middle, and right, respectively) of two participants with
anxiety levels “High” and “Low and moderate” (orange and blue, respectively) from the WESAD dataset.

3.2. Raw Signals Filtering

After extracting the signals from the baseline condition, all signals were shortened to
19 min to ensure the same length for all participants. Thereafter, the signals were filtered to
remove the noise and isolate frequencies of interest, improving the overall signal quality by
removing different noises and artifacts. Besides the powerline interference (around 50 Hz),
different noises affect the ECG, EMG, and EDA signals.

In an ECG, there are mainly two types of noises present. High-frequency noises,
including electromyogram noise and additive white Gaussian noise; low-frequency noises,
including baseline wandering due to movement and respiration (normally the content of
the baseline wander is below 0.5 Hz) [27].

EDA signals show expected skin conductance morphology at a low amplitude. Hence,
it is mainly affected by the noise caused by electrical interference, which can manifest in
the data as a small amount of fuzz on top of the signal [28].

Regarding EMG signals, common low-frequency artifacts occur when the signal cables
move due to the subject’s motion or incorrectly attached electrodes. In addition, other
muscles near the testing site can generate an EMG signal, and crosstalk can be recorded.
EMG recordings close to the subject’s heart may detect the subject’s pulse as a regular beat
underlying the EMG signal [27].

The physiological signals were filtered after power spectral density (PSD) analysis,
supporting which frequencies contained the most information. Thus, different orders
of Butterworth bandpass filters, with cutoff frequencies defined accordingly with the
frequency components of interest for the various signals, were used to process the signals.
Although it is an infinite impulse response filter, the Butterworth filter was chosen due to
the insurance of a frequency response that is as flat as possible in the passband. Moreover,
the nonlinear phase distortion was eliminated by processing all the signals in both the
forward and reverse directions. After that, the order or filter was decided based on the
mean absolute error and mean squared error computed from the raw and filtered signals.
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Regarding the ECG signal, the baseline wander, although not significant, was present in all
participants. Thus, a 4th-order Butterworth bandpass filter was applied between 0.5–40 Hz.
The EDA signal was filtered using a 4th-order Butterworth 5 Hz lowpass filter. As for the
EMG signal, the powerline interference was removed in the 50 Hz range with a Notch filter,
and a 4th-order Butterworth bandpass filter was applied between 20–200 Hz.

3.3. Anxiety Class Assignment

Based on the self-report results of the participant’s anxiety, we distinguished two
classes for the classification of anxiety levels: “Low and moderate” vs. “High” anxiety.
These classes were then used as labels in the classification task, and the features obtained
from the physiological signals served as predictors to classify the levels of anxiety. When
analyzing the self-reported results in Figure 3a, the distribution of the anxiety scores is not
balanced since they are not equally represented. The median of the anxiety scores is 12, and
the mean is 12.567 with a standard deviation of ±1.726, ranging from 10 to 16.
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Considerable evidence attests to the construct and concurrent validity of the STAI
scale. Short forms were highly correlated with the 20-item STAI score, and all internal
consistency reliability was greater than 0.90 [29,30]. Commonly, the 20 items of the STAI
questionnaire divide individuals into three levels of anxiety: No/Low anxiety (1–11.1),
moderate anxiety (11.4–13.2), and high anxiety (13.5–24) [30].

Based on the cut points described in the literature, we defined the following classes:
“Low and moderate” anxiety (6–13) and “High” anxiety (14–24). As shown in Figure 3b,
the higher level is less represented in the dataset, even though it is more important to
detect and classify anxiety correctly. Therefore, as described in the literature [31], balancing
techniques were implemented to improve the classification of anxiety.

3.4. Features Extraction

An essential part of learning a model from physiological signals is feature extraction.
Thus, after filtering the raw signals, features in time and/or frequency domains and non-
linear features were extracted from each physiological signal.

After dividing the signals into equal time segments, ECG, EDA, and EMG features
were extracted using the NeuroKit2 package [24]. It is important to select a suitable signal
window size, specifically because some features of HR and Heart Rate Variability (HRV)
have a minimal time window required to be collected [32]. Each physiological signal was
divided into short-term segments with a 5-min time length and a 4-min overlap. Thus,
15 segments were obtained for each subject, and 109 features were computed for each
segment (shown in Table A1).

From the ECG-filtered signal, statistical features, such as the signal’s variance (Var)
and dynamic range (Range), were calculated, and peak detection algorithms were used to
compute peak features (peak standard deviation (SD), mean, and median (Med)). Through
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the detected peaks, the HR and corresponding statistical features (mean and median HR,
mean area under the cardiac cycles (AUCC)) were also estimated.

The HRV was derived from the heartbeats’ location and corresponding statistical
features. HRV time-domain indices quantify the HRV observed during monitoring periods
that range from around 1 min to more than 24 h. Generally, resting values obtained from
short-term monitoring periods correlate poorly with 24 h indices. Thus, it is important to
consider only HRV features that can be extracted with validity in a 5-min time window
(short-time measures) or less (ultra-short-term measures) [32].

For short-term data, the time domain measures mean and median N-N intervals
(MeanNN and MedianNN), with N-N representing the interval between normalized
R peaks (N) intervals, the Standard Deviation of the N-N intervals (SDNN), square Root of
the Mean of the Sum of Successive Differences between adjacent R-R intervals (RMSSD),
and the proportion of N-N intervals greater than 50 ms or 20 ms (pNN50 and pNN20) out
of the total of RR intervals, and the frequency domain measuring the total power, very
low-frequency HRV (VLF), low-frequency HRV (LF), high-frequency HRV (HF), and the
ratio between low-frequency HRV and high-frequency HRV (LF/HF) can be used. Their
normalized and log-transformed versions are also considered appropriate [32].

Some ultra-short-term studies mentioned Approximate Entropy (ApEn), Sample En-
tropy (SampEn), Triangular Interpolation of N-N interval histogram (TINN), the Standard
Deviation of the Successive Differences between N-N intervals (SDSD), Median absolute
deviation of the N-N intervals (MadNN), SDNN divided by the MeanNN (CVNN), RMSSD
divided by the MeanNN (CVSD), and MadNN divided by MedianNN (MCVNN) were
suitable for short-term measures of HRV [32].

From the EDA-filtered signal, statistical features were computed. Furthermore, the two
components of the EDA signal—SCL and SCR—were separated, and additional statistics
from both components and peak features from the SCR, such as onsets, peak amplitude
(Amp), and half-recovery time, were extracted.

Statistical and peak features were computed to assess muscle activity for the EMG-
filtered signal. The EMG linear envelope (Env) was also extracted, and its statistical and
peak features, such as activation (Activ) and pulse onsets, were computed. The EMG linear
envelope consists of the smoothed EMG signal obtained through the low-pass filtering of
the full-wave rectified signal [20].

3.5. Feature Selection

Feature selection is crucial before processing any high-dimensional data for clustering
or classification. It can be supervised or unsupervised, depending on whether it considers
the target variable. The main objective is to reduce the data’s dimensionality by removing
redundant or non-discriminatory features, which helps in the efficient execution of the
classification step. Notwithstanding, not all features are relevant, leading to the need to
determine the ones that best represent the analyzed condition—the two anxiety classes.

The feature selection applied consisted of three steps: (a) missing values and variance
analysis; (b) unsupervised correlation threshold evaluation; and (c) supervised wrapper
method. After this step, all features were normalized using the Min-Max scaling.

Concerning unsupervised methods for feature selection, the correlation between
features was analyzed. This step aims to remove redundant variables that can cause bias
in classification. Redundancy or collinearity may indicate very correlated processes or
different ways of representing the same thing. The normality of the data was tested using
a Shapiro-Wilk (SW) test. With a 95% interval confidence, the features LnHF and Corr
SCR showed to follow a normal distribution. Thus, since not all variables followed a
normal distribution, we used the Spearman correlation coefficient and checked the Pearson
coefficient for the normal ones. The correlation coefficients that were shown to be significant
(with a 0.01 or 0.05 significance level) were analyzed. The correlation coefficient threshold
method—with a threshold of 0.90—was used, in which, between two highly correlated
features, the one with the higher variance was selected.
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Supervised feature selection selects features based on the target variable and is divided
into three types of methods: filter, wrapper, and embedded methods. In this case, a wrapper
method was used, Recursive Feature Elimination with Cross-Validation (RFECV), from the
package scikit-learn [25]. With this method, a subset of features is used to train a model, and
then features are added or removed based on the inferences drawn from the model until a final
subset is determined. RFECV derives the best feature subset using the same process as RFE, but
unlike RFE, the number of features can be unspecified, and cross-validation is possible [33].

A minimum of 10 features and a step equal to 1 (determining that one feature is
eliminated in each computation) were the parameters for the RFECV method. The F1 was
used as the scoring metric to choose the best set of features.

3.6. Feature Scaling

In this work, outliers were not eliminated because they may represent important
cases as they can embody more severe cases of anxiety. When working with physiological
signals, it is important to avoid subject-wise dependency (e.g., one person’s sweating can
be extraordinarily high). Thus, the features were normalized before the classification task
by the Min-Max scaling to map the data to an [0, 1] interval by applying the transformation
Xn = (X − Xmin)/(Xmax − Xmin).

By normalizing all the observations, we reduce subject dependency and guarantee
that all features are on the same scale, which is important for the classification task.

3.7. Data Balancing Techniques

As previously mentioned, the dataset is imbalanced, with an imbalance ratio of anxiety
of 2.75 (165/45). Consequently, we used several data balancing techniques that changed
the data distribution. Under-sampling techniques are not an appropriate choice as we
already have a small number of observations, and this technique would further reduce our
data size. Therefore, four data balancing techniques were applied—Random Oversampling
(Over), SMOTE (SMO), ADASYN (ADA), and Borderline SMOTE 2 (Border). All these
methods were settled to perform oversampling of the minority class; the parameters were
set to guarantee a 1:1 class ratio.

Random oversampling involves randomly selecting examples from the minority class
and adding them to the training dataset [34]. SMOTE (SMO) was proposed to improve
random oversampling and works by choosing a random minority class example, founding
the k nearest neighbors for that example, and then creating a new synthetic example by
interpolating the features’ values of the two examples [35].

Contrary to Random Oversampling and SMOTE, which are random methods, ADASYN
and Borderline SMOTE 2 are informed methods as they act on specific observations.
ADASYN (ADA) is a SMOTE version that works similarly but with one important differ-
ence: after creating the synthetic samples as described in SMOTE, ADASYN uses a density
distribution as a criterion to automatically decide the number of synthetic samples that
need to be generated for each minority data example. The resulting dataset will be balanced,
and thus it will force the learning algorithm to focus on difficult-to-learn examples [36].
Borderline SMOTE is also a version of SMOTE but differs from other oversampling tech-
niques since it only makes synthetic data along the decision boundary between the two
classes. Borderline SMOTE 2 (Border) not only generates synthetic examples using each
minority example and its positive nearest neighbors but also does that using each minority
example and its nearest negative neighbor [37].

3.8. Classification of Anxiety Levels

Anxiety classification was addressed as a binary classification problem. Based on the
literature, we have chosen seven different machine learning algorithms: Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Decision Tree (DT), Support Vector Machines (SVM),
Adaptative Boosting (ADB), Random Forest (RF), and Extreme Gradient Boosting (XGB).
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These classifiers were reported in the literature [17,19] to attain good results and to
be suitable for the problem and the type of data available. Furthermore, the choice was
motivated by evaluating different machine learning algorithms that are easily reproducible,
optimized, and do not take much computing power.

To apply supervised selection and the data balancing techniques, we used nested
stratified cross-validation [38], where inner cross-validation is used to tune the parameters
and select the best model. Outer cross-validation is used to evaluate the model chosen.
With the package imblearn [26], we used the data from the training set to compute the
scaling parameters (min and max values of each feature), which were applied to normalize
the data in both the training and test sets. We also guarantee that the data balancing
techniques, while nested stratified cross-validating, are only applied to the training set,
maintaining the original class imbalance ratio in the validation set.

It is well known that standard evaluation metrics, such as accuracy, are not suitable
for imbalanced domains, as they might yield misleading results. Thus, it is of crucial
importance to choose appropriate evaluation metrics. Accuracy evaluates the fraction
of predictions the model got right. This is not an appropriate measure for imbalanced
classification problems, since the majority (negative) class predictions will have a higher
impact on the final results when compared to the minority (positive) class predictions [31].
Nevertheless, other measures, such as precision and recall, were proposed to capture that
impact better. Precision is the fraction of predicted relevant (positive) instances among
all retrieved ones, while recall is the fraction of retrieved instances among all relevant
(positive) ones. Nonetheless, these two measures exhibit a trade-off that may be impractical
to monitor [31]. Thus, combined measures are recommended, such as F1 and ROC-AUC.
F1 is interpreted as a harmonic mean of precision and recall. In contrast, ROC-AUC can be
described as the probability of the classifier assigning a higher rank to a random positive
example than a random negative one [31].

For the hyperparameter tuning, we used, in the inner loop, the grid-search method
(from the package sklearn [25]), which consists of an exhaustive search over a set of specified
hyperparameters of a learning algorithm. The best hyperparameter combination is chosen
using the F1 metric through 2-stratified-fold inner cross-validation.

The performance of the models was assessed through suitable metrics: accuracy, F1,
ROC-AUC, precision, and recall. For estimating the model’s performance, the outer loop
used a 5-stratified fold outer cross-validation with a train and validation percentage of
80%/20%. The mean value of the performance metrics and their standard error (SE) were
computed and analyzed.

3.9. Pipeline Description

All the steps were implemented using a pipeline comprising feature scaling, super-
vised feature selection with the RFECV method, the application of several data balancing
techniques, and the optimization of the hyperparameters of the different models trained.

When applying the different data balancing techniques to our data while cross-validating,
although the supervised feature selection technique selects the feature sets before the data
balancing, the best feature set is chosen considering the classifier’s performance after the data
balancing technique and classifier hyperparameter tunning. Then, for each classifier and data
balancing technique, the best combination of features may be different.

The pseudocode of our pipeline is shown in Algorithm 1.
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Algorithm 1: Pipeline for performance estimation of sampling techniques and learning
algorithms for a set of metrics, using grid-search for model tuning

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21 
 

When applying the different data balancing techniques to our data while cross-vali-

dating, although the supervised feature selection technique selects the feature sets before 

the data balancing, the best feature set is chosen considering the classifier’s performance 

after the data balancing technique and classifier hyperparameter tunning. Then, for each 

classifier and data balancing technique, the best combination of features may be different. 

The pseudocode of our pipeline is shown in Algorithm 1. 

Algorithm 1: Pipeline for performance estimation of sampling techniques and learning algo- rithms for a set of met-

rics, using grid-search for model tuning 
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In this section, we present and detail the results obtained by feature selection and data
balancing techniques on the classification of anxiety levels.

4.1. Feature Selection

Unsupervised feature selection was performed by missing value and variance analysis
and based on the pair-wise correlation method. No feature showed zero variance or missing
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values, and in the case of two features with a correlation coefficient higher than 0.90, the
feature with the higher variance was selected. A total of 60 features were selected out of
109 from the three physiological signals (as shown in Table 1).

Table 1. Features selected after the unsupervised feature selection.

Signals Features

ECG
AUCC, Mean ECG, Med ECG, Max ECG, Min ECG, Var ECG, Range

ECG, MeanNN, MadNN, TINN, pNN50, CVNN, LnHF, LF, VHF, LFn,
SampEn, ApEn, SDTT, Max HR, Min HR, Var HR, Range HR,

EDA

Min EDA, SD EDA, Range EDA, Mean SCR, Med SCR, Max SCR, Min
SCR, SD SCR, Range SCR, Corr SCR, Nr SCR Peaks/sec, Mean and Med

SCR Peaks Amp, Med SCR
Onsets Amp, Med and Mean SCR Recovery Amp, Mean and Med SCR

Recovery Time and Rise Time, Max SCL, Med SCL, Range SCL, Corr SCL

EMG
Min EMG, Mean EMG, Med EMG, Range EMG, Perc 10 EMG, Min Env,
Range Env, Perc 10 Env, Nr Pulse Onsets/sec, Nr Activ Peaks/sec, Mean

and Med Amp Activ Peaks, Med Pulse Onsets Amp

Thereafter, supervised feature selection with RFECV was applied to this feature set,
implemented inside a pipeline with nested cross-validation, considering the imbalanced
data and data balancing techniques, as well as classifier hyperparameter tuning. Thus,
we retrieved for each model the best hyperparameters and the best set of features found
through the grid-search method applied in the inner loop to the selected features.

For the imbalanced data, the frequencies of the features chosen at least three times by
RFECV are presented in Figure 4. As RFECV was performed inside the pipeline, different
sets of features were selected for the various classifiers, with a total of 55 features selected.
Thus, Figure 4 displays the number of times that 34 features, out of 55 different features, were
selected (for different classifiers). We can observe that Range ECG and Med EMG are present
in the feature sets selected for all the classifiers, while Max HR and Range HR are chosen
for six of the seven classifiers. Max ECG, Var ECG, MeanNN, TINN, pNN50, Min HR, and
Perc 10 EMG are present in five of the seven chosen feature sets. This analysis allows the
visualization of which features could be of greater importance for classifying anxiety levels.
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The features selected for the highest scores found for each classifier and the data
balancing techniques are presented in Table A2.

4.2. Anxiety Classification

We compared the estimated performance of the classification models when using
RFECV for feature selection and four different data balancing techniques—Random Over-
sampling (Over), SMOTE (SMO), ADASYN (ADA), and Borderline SMOTE 2 (Border). For
comparison purposes of the different balancing techniques between the different classifiers,
the parameters were chosen for each technique and applied to all classifiers.

To better understand the performance and behavior of the data balancing techniques,
we look at how the observations are distributed in the data space without the use of
supervised feature selection in Figure 5. It can be seen that in the original imbalanced
dataset, there is a slight overlap of classes where the instances might be easily misclassified
and that there is no relevant noise or small disjuncts in the data. Nevertheless, although the
class overlap persists and is even slightly increased by the data balancing techniques, the
number of minority examples increased, and therefore the classification of those difficult
cases might be improved, especially along the decision border.
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The anxiety classification performance of each classifier, using RFECV with the differ-
ent data balancing techniques, is presented in Figure 6 and Table A3.
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Using the imbalanced dataset, some of the classifiers showed relatively lower measures
of F1-score because of low recall or precision, while maintaining good accuracy values. This
may reflect the impact of data imbalances on the classification performance of the models.
Considering our problem, recall is more relevant than precision since misclassifying severe
cases of high anxiety is more prejudicial.

Concerning the F1 metric, Random Oversampling (Over) improved all classifiers’ per-
formance except DT and SVM, and SMOTE (SMO) showed improvements in all classifiers’
performance aside from LDA, DT, and SVM. At the same time, ADASYN (ADA) appeared
to increase the performance of all classifiers, and Borderline SMOTE 2 (Border) did not
improve the score of ADB. The best F1 result was achieved using SMOTE and ADB, with a
mean score of 0.864 (SE = 0.057). Regarding ROC-AUC, Over showed improved scores for
LDA, SVM, and XGB, while SMO increased the evaluation scores of all classifiers except
LR. ADA improved all models’ performance apart from LR and RF, and Border boosted
the performance of all classifiers. The best ROC-AUC score was obtained with Border and
RF, with a mean score of 0.980 (SE = 0.017).

The execution time of our pipeline (without the data balancing techniques) is presented
in Figure 7. It is worth noticing that the classifiers with the worst performance results
had lower execution times: 1.91 s, 1.07 s, 0.47 s, and 0.58 s, respectively. As for the best-
performant algorithms, ADB presented intermediate runtimes of 14.73 s, whereas RF and
XGB presented higher execution times.
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5. Discussion

We tackled the problem of predicting anxiety levels from physiological data collected
without any emotional elicitation (under a neutral condition) as an imbalanced binary
classification problem. Rather than proposing new techniques for addressing this problem,
we relied on a systematic approach to predict anxiety, combining several pre-processing and
machine learning methods, including signal analysis, feature extraction, and re-sampling
strategies for classifying anxiety. Thus, this section discusses the obtained results and main
findings from feature selection and anxiety classification perspectives.

5.1. Feature Selection

The main challenges faced were concerned with the physiological characterization
through the different signals, arising either from the combination of several features ex-
tracted from them or from the potential of each signal to contribute more to a better
description. This required feature importance and selection to be carefully attained.
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The frequencies of the features chosen at least three times by RFECV, as depicted
in Figure 4, allow for identifying which features were more relevant when classifying
anxiety. We can say that the top 10 most frequently selected features are predominantly
ECG-extracted features, while Med EMG was the only EMG-extracted feature. However,
Med EMG was the only feature present in the feature sets for all classifiers, reinforcing
its ability to distinguish between anxiety classes. It is also worth noting that no features
extracted from the EDA signal are in the top 10. This might suggest that the ECG and EMG
features are more important when combined with other physiological signals, while the
EDA features do not add relevant information.

It is also important to notice that five features were not chosen for any of the classifiers.
Three of them were extracted from the EDA signal—Range SCR, Mean, and Median Rise
Time—and the other two were extracted from the EMG signal—Range Envelope and Mean
EMG. Again, this further confirms the lower importance of the EDA signal on anxiety
classification when compared to the ECG signal.

5.2. Anxiety Classification

Concerning the multimodal classification of anxiety, another challenge is that, fre-
quently, in a non-clinical population, more severe cases of anxiety are rare [1]. Nevertheless,
training machine learning models to predict those levels accurately is of crucial importance
as they represent higher health risks. The WESAD dataset [1] used in this work is imbal-
anced, as more severe cases of anxiety are not as common, and consequently, the various
levels are not equally represented. As this poses difficulties for standard classification algo-
rithms, we resorted to techniques that involve oversampling and synthetic data generation
to improve anxiety classification.

Overall, for both F1 and ROC-AUC, a pattern can be distinguished in the global
efficacy of the balancing techniques, which reveals a better performance with Borderline
SMOTE 2 and ADASYN. In Table A3, it can be seen that Borderline SMOTE 2 attained
the highest results in both metrics with two classifiers—LR and SVM in F1 with DT and
ROC-AUC with LDA and RF. SMOTE was the best technique with two classifiers—in both
metrics with ADB and F1 with RF. ADASYN outperformed the other techniques with XGB
and ROC-AUC with DT. Random oversampling was the least efficient technique in both
metrics, achieving only the best results in F1 with LDA.

Ordering the combination of data balancing techniques, considering the number of classifiers
that obtained the best results, we get the following sequence: Borderline SMOTE 2, ADASYN
together with SMOTE, and Random Oversampling. The success of Borderline SMOTE 2 and
ADASYN can be explained by the way they synthesize new instances in an informed rather than
random manner, acting on the examples that are more likely to be misclassified.

Our results support a comparison study [39] that used Random Oversampling, SMOTE,
ADASYN, and Borderline SMOTE 1 and 2. For both true positive rate (TPR) and F1, Borderline
SMOTE 1 and Borderline SMOTE 2 performed better than the other data balancing techniques.

Analyzing F1 and ROC-AUC metrics, the balancing techniques have been shown to
improve, in general, the classification results. Moreover, in some cases, the addition of class
overlaps, noise, and even overfitting of the classifiers prevented the enhancement of the
results. Borderline SMOTE 2 showed the most consistent results. Regarding precision and
recall, there is a notable overall pattern of increased values. However, recall is consistently
higher than precision, which is valuable since misclassifying severe cases of high anxiety
is more harmful. In cases where the data balancing did not improve F1, both metrics
decreased or precision worsened considerably.

As a final remark, concerning the balancing techniques, the “default” sampling rate of
1:1 was used, which might not always be the best option for every classifier. It would be
beneficial to tune the sampling ratio on our dataset while considering each classifier at a
time. Since the same parameters were chosen for each balancing technique and applied to
all classifiers, some classifiers may respond better to the parameters selected, which can
also partially explain the differences encountered in the results for each technique.
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Although our study uses only the data collected during the neutral condition, and
therefore comparisons of the obtained results to anxiety-stimulating conditions may be
inaccurate, we can observe the results of the benchmark study performed on the WESAD
dataset [1]. In the binary classification task (stress vs. non-stress, or neutral and amusement
conditions), the best F1 scores using the RespiBAN physiological modalities—ECG, EDA,
EMG, RESP, and TEMP—were obtained by the RF, ADB, and LDA classifiers for the binary
task and ranged from 86.0% (RF) to 90.9% (LDA) [1]. For our study, the best F1 results were
obtained by ADB, RF, and XGB, ranging from 84.5% (RF) up to 86.4% (ADB). Our F1 results
are close but slightly worse than the results from the benchmark study, even though we are
solely working with the neutral condition.

As for the computational complexity, our study presented the highest execution times
with ADB, RF, and XGB, congruent with the complexity of these three algorithms.

5.3. Comparison with Other Works

Multiple studies have been developed in the field of anxiety and mental stress detec-
tion, either using a single signal or multi-signal approach, to attain anxiety as an induced
condition using different stimuli such as driving or public speaking. Our study did not use
anxiety stimuli since we relied on the data collected during a neutral affective condition.
Therefore, these methods are not directly comparable to ours. However, it is important to
place our results in comparison with the existing anxiety detection systems.

Concerning studies conducted in real-life settings, the study [17] relies on the classifier
LDA and the EDA signal to discriminate between three mental stress levels—low, medium,
and high—corresponding to three driving conditions: at rest, on the highway, and city
driving. The study used the MIT Media lab “stress database” and eighteen EDA-extracted
features. The Fisher projection was applied for dimensionality reduction, and LDA was
used to classify the mental stress levels, achieving a recognition rate of 81.82%. Additionally,
as described in the review article [40], in research carried out by Healey et al., the same
driving task was used to induce mental stress. Using the signals EDA, ECG, EMG, and
respiration combined, the classifier LDA reported a recognition rate of 100%, 94.7%, and
97.4% for low, medium, and high stress levels, respectively. In the work [21], regarding a
programming contest scenario, heart activity, skin conductance, and accelerometer data
from 21 participants were gathered to discriminate between contest stress, higher cognitive
load, and relaxed time. The dataset is imbalanced, so minority examples were added and
the majority ones were removed. The study evaluated six classifiers, and when combining
ECG and EDA, MLP attained an accuracy of, at most, 92.15%.

For the VR-based approaches introduced in Section 2, when evaluating five classifiers
using features from ECG, EDA, and EMG signals, the study [22] obtained an accuracy
of 89.7%. Relying on BVP, GSR, and ST signals from 30 participants collected during a
VRET-based public speaking anxiety treatment session, the work [19] attained a four-level
anxiety (low, mild, moderate, and high) classification. The authors used RF to select the best
features. The SVM penalty parameter C was set for class balancing by adjusting weights
inversely proportional to class frequencies, and the obtained accuracy was 86.3%.

Concerning the laboratory-induced anxiety studies, the review work [17] analyzed
mental stress and anxiety recognition approaches, mostly using multimodal binary clas-
sification, like our study, and reported accuracies ranging from 40% to 95%. Hovsepian
et al. [41], who conducted both a lab and a field study, achieved a 92% mean accuracy in
detecting stress based on laboratory data and 62% on field data. In the survey [21], the
EDA and HR combination yielded the best results with more than 95% accuracy.

While inducing stress and alleviation through several stimuli and based on a multi-
modal approach with ECG, GSR, BP, respiration, and oximeter data, Akmandor et al. [42]
applied SVM and KNN for binary classification and achieved 95.8% accuracy. Attaining
a binary mental stress classification task, the laboratory study by Sandulescu et al. [43],
which used GSR and BVP with an SVM classifier, reported an accuracy of 80%.
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When compared to other studies, we can state that our results are consistent. Our
study’s accuracy ranges from 62.7% (LDA with Borderline SMOTE 2) to 92.0% (RF with
SMOTE). Thus, even though none of these works tackled the classification problem from
an imbalanced domain learning perspective as we did, we can report:

1. compared to real-life driving and contest scenario studies, our study shows better
accuracy results than the first driving study [16] but slightly worse results than the
second one and the contest scenario study [21,40].

2. our study attained better accuracy results than both VR-based studies [19,22].
3. we achieved lower accuracy scores than the Akmandor et al. [21,42] study but very

similar and better results than the Hovsepian et al. study [41] and the Sandulescu
et al. study [43], respectively.

6. Conclusions

Our study used the WESAD dataset and the combination of three physiological
signals—ECG, EDA, and EMG—collected under a neutral condition to classify different
anxiety levels, with particular emphasis on more severe and less frequent levels of these
mental conditions. The physiological signals were processed, and relevant features were
extracted for classification purposes. A supervised feature selection algorithm, seven
machine learning algorithms, and four data balancing techniques were analyzed.

Concerning the features selected for the classification task, we concluded that ECG-extracted
features were revealed to have more importance than features extracted from EMG and EDA
signals. Additionally, the balancing techniques have been shown to improve, in general, the
classification results.

Two main shortcomings of this study are the reduced number of participants, which
restricts the data’s representativeness, and the neutral condition of the data set used, whose
protocol was not specifically designed for this study. Although it is already challenging to
achieve a neutral condition, the fact that the participants knew they would face different
stimuli after the neutral condition may lead them into an anticipation state. Additionally,
the fact that half the participants were sitting down and half were standing up during the
neutral condition can influence the physiological signals, especially the EMG signal.

Despite the limitations, our findings allowed us to successfully classify anxiety in a
neutral state, providing a deeper understanding of this condition. Through our outcomes,
we concluded that it is viable to use classification models in applications connected with
wearable devices (e.g., watches, smartphones), which can help detect and manage anxiety.

In future work, there are some topics to be considered further in this line of research.
At first, by considering a protocol specifically designed for attaining neutral conditions and
engaging more participants. In addition, by addressing anxiety classification tasks from
a multiclassification perspective or as ordinal classification tasks. Concerning the feature
selection techniques, supervised feature selection, such as sequential feature selection or
filter methods, may be an option as well. Regarding the data balancing techniques, when
facing a data imbalance problem, the use of techniques that combine over/under-sampling
methods and the integration of those into machine learning algorithms are also worth
trying. Further tuning the balancing parameters and the classifier hyperparameters may
improve the results.
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Appendix A. Tables Related to Extracted and Selected Features and with Results from
the Classification Tasks

Table A1. Features extracted from the three physiological signals.

Category Features Names

ECG

ECG Min ECG, Max ECG, Mean ECG, Med ECG, SD ECG,
Var ECG, Range ECG

HR Min HR, Max HR, Mean HR, Med HR, SD HR, Var HR,
Range HR, AUCC

HRV time, freq, non-linear
RMSSD, MeanNN, CVNN, MadNN, CVSD, MCVNN,
SDNN, SDSD, MedNN, pNN50/20, TINN, ULF, VLF,
LF, HF, VHF, LFHF, LFn, HFn, LnHF, ApEn, SampEn

Peaks interval
SDQQ, SDRR, SDSS, SDTT, SDPP, MeanQQ, MeanRR,
MeanSS, MeanTT, MeanPP, MedQQ, MedRR, MedSS,

MedTT, MedPP

EDA

EDA Min EDA, Max EDA, Mean EDA, Med EDA, SD EDA,
Var EDA, Range EDA

SCR Min SCR, Max SCR, Mean SCR, Med SCR, SD SCR, Var
SCR, Range SCR, Corr SCR

SCR Peaks
Nr SCR Peaks/sec, Mean and Med SCR

Peaks/Recovery/Onsets Amp
Mean and Med Rise/Recovery time

SCL Min SCL, Max SCL, Mean SCL, Med SCL, SD SCL, Var
SCL, Range SCL, Corr SCL

EMG

EMG Min EMG, Max EMG, Mean EMG, Med EMG, SD EMG,
Var EMG, Range EMG, Perc 10/90 EMG

Envelope Min Env, Max Env, Mean Env, Med Env, SD Env, Var
Env, Range Env, Perc 10/90 Env

EMG Peaks
Nr of Activation (Activ) Peaks/sec, Nr of Activation

(Activ) Pulse Onsets/sec, Mean and Median Activ Peaks
Amp, Median Activ Pulse Onsets Amp
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Table A2. Best feature sets selected by RFECV for anxiety classification according to the data
balancing techniques.

Classifiers F1 ROC-AUC Selected Features

LR Border Border

AUCC, Range ECG, Max ECG, Min ECG, Med ECG,
ApEn, Min HR, Max HR, Range HR, Var HR, Min EDA,
SD EDA, Mean SCR Peaks Amp, Med EMG, Nr Pulse

Onsets/sec

LDA Border Border

Max ECG, Min ECG, Mean ECG, MeanNN, TINN,
pNN50, SampEn, Min HR, Range HR, Min EDA, Med
SCR, Med SCR Peaks Amp, Med SCR Recovery Amp,

Med Recovery time, Max SCL, Med SCL, Med EMG, Min
Env, Activ Peaks Mean Amp, Activ Peaks Med Amp

DT Border ADA

Range ECG, Max ECG, Var ECG, Med ECG, MeanNN,
MadNN, TINN, pNN50, CVNN, LnHF, LF, VHF, LFn,

SampEn, ApEn, Min HR, Max HR, Range HR, SDTT, Corr
SCL, Med EMG, Min EMG, Range EMG, Perc 10 EMG,
Min Env, Perc 10 Env, Nr Pulse Onsets/sec, Nr Activ

Peaks/sec, Activ Peaks Mean Amp, Activ Peaks Mean
Amp, Med Pulse Onsets Amp, Min ECG, Mean ECG, Var

HR, Range EDA, Min SCR, Mean SCR, Range SCL

SVM Border Border

Range ECG, Min ECG, Med ECG, pNN50, ApEn, Min HR,
Max HR, Range HR, Var HR, SD EDA, Corr SCR, Med

EMG, Min EMG, Perc 10 EMG, Min Env, Nr Pulse
Onsets/sec

ADB SMO SMO

AUCC, Range ECG, Max ECG, Var ECG, Median ECG,
MeanNN, MadNN, TINN, pNN50, LnHF, VHF, LFn, Min
HR, Max HR, Range HR, SDTT, Min EDA, Med SCR, Max
SCR, Corr SCR, Nr SCR Peaks/sec, Med SCR Peaks Amp,
Med SCR Onsets Amp, Med SCR Recovery Amp, Mean

SCR Recovery Amp, Med Recovery Time, Mean Recovery
Time, Max SCL, Med SCL, Med EMG, Perc 10 EMG, Perc
10 Env, Nr Pulse Onsets/sec, Nr Activ Peaks/sec, Activ
Peaks Mean Amp, Activ Peaks Med Amp, Pulse Onsets

Med Amp, Min ECG, Var HR

RF SMO Border

AUCC, Range ECG, Max ECG, Var ECG, Med ECG,
MeanNN, MadNN, TINN, pNN50, CVNN, LnHF, VHF,

LFn, SampEn, ApEn, Min HR, Max HR, Range HR, SDTT,
Min EDA, SD EDA, Max SCR, SD SCR, Nr SCR Peaks/sec,
Mean SCR Peaks Amp, Med SCR Peaks Amp, Med SCR

Onsets Amp, Med SCR Recovery Amp, Mean SCR
Recovery Amp, Mean Recovery time, Med EMG, Perc 10
EMG, Perc 10 Env, Activ Peaks Mean Amp, Activ Peaks
Med Amp, Med Pulse Onsets Amp, Min ECG, Var HR

XGB ADA ADA AUCC, Range ECG, Max ECG, Var ECG, pNN50, Max HR,
Range HR, Med EMG, Perc 10 EMG, Nr Activ Peaks/sec
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Table A3. Anxiety classification performance estimation of each classifier (mean value and standard error),
without (Imb.) and with the different data balancing techniques considered (highlighted in bold is the best
performance of each classifier for each balancing technique).

Accuracy

LG LDA DT SVM ADB RF XGB

Imb. 0.707 (0.061) 0.658 (0.107) 0.711 (0.061) 0.693 (0.091) 0.867 (0.052) 0.844 (0.039) 0.809 (0.044)

Over 0.671 (0.069) 0.671 (0.114) 0.711 (0.028) 0.702 (0.096) 0.902 (0.036) 0.898 (0.027) 0.822 (0.046)

SMO 0.671 (0.069) 0.631 (0.095) 0.756 (0.036) 0.667 (0.081) 0.920 (0.038) 0.893 (0.061) 0.893 (0.047)

ADA 0.676 (0.067) 0.636 (0.100) 0.751 (0.030) 0.622 (0.062) 0.884 (0.043) 0.840 (0.058) 0.916 (0.031)

Border 0.711 (0.076) 0.627 (0.102) 0.733 (0.075) 0.627 (0.111) 0.818 (0.064) 0.858 (0.073) 0.907 (0.057)

F1

LG LDA DT SVM ADB RF XGB

Imb. 0.490 (0.067) 0.573 (0.092) 0.583 (0.088) 0.547 (0.139) 0.805 (0.047) 0.655 (0.101) 0.705 (0.070)

Over 0.521 (0.067) 0.615 (0.109) 0.520 (0.060) 0.473 (0.145) 0.817 (0.067) 0.784 (0.062) 0.735 (0.039)

SMO 0.521 (0.067) 0.561 (0.077) 0.570 (0.094) 0.468 (0.144) 0.864 (0.057) 0.845 (0.078) 0.840 (0.059)

ADA 0.576 (0.038) 0.575 (0.087) 0.657 (0.021) 0.559 (0.038) 0.818 (0.059) 0.767 (0.070) 0.860 (0.048)

Border 0.656 (0.056) 0.595 (0.088) 0.664 (0.064) 0.605 (0.091) 0.745 (0.069) 0.806 (0.081) 0.840 (0.082)

ROC-AUC

LG LDA DT SVM ADB RF XGB

Imb. 0.784 (0.067) 0.649 (0.136) 0.723 (0.057) 0.690 (0.148) 0.932 (0.026) 0.971 (0.012) 0.927 (0.028)

Over 0.754 (0.070 0.671 (0.134) 0.692 (0.044) 0.702 (0.063) 0.920 (0.030) 0.965 (0.019) 0.947 (0.022)

SMO 0.752 (0.070) 0.669 (0.124) 0.733 (0.063) 0.691 (0.060) 0.961 (0.026) 0.973 (0.017) 0.945 (0.026)

ADA 0.762 (0.070) 0.674 (0.122) 0.793 (0.020) 0.706 (0.062) 0.935 (0.031) 0.956 (0.024) 0.955 (0.021)

Border 0.852 (0.080) 0.731 (0.104) 0.781 (0.051) 0.832 (0.081) 0.937 (0.027) 0.980 (0.013) 0.951 (0.036)

Recall

LG LDA DT SVM ADB RF XGB

Imb. 0.467 (0.159) 0.717 (0.077) 0.750 (0.118) 0.683 (0.174) 0.833 (0.033) 0.650 (0.142) 0.717 (0.115)

Over 0.650 (0.101) 0.800 (0.087) 0.650 (0.128) 0.550 (0.179) 0.833 (0.097) 0.733 (0.123) 0.850 (0.083)

SMO 0.650 (0.101) 0.800 (0.084) 0.683 (0.138) 0.550 (0.179) 0.867 (0.038) 0.917 (0.075) 0.917 (0.047)

ADA 0.783 (0.087) 0.833 (0.094) 0.883 (0.069) 0.817 (0.089) 0.883 (0.069) 0.867 (0.069) 0.917 (0.047)

Border 0.933 (0.060) 0.883 (0.065) 0.883 (0.073) 0.883 (0.087) 0.867 (0.073) 0.917 (0.075) 0.933 (0.060)

Precision

LG LDA DT SVM ADB RF XGB

Imb. 0.522 (0.186) 0.521 (0.114) 0.533 (0.106) 0.485 (0.133) 0.801 (0.110) 0.844 (0.0809) 0.697 (0.101)

Over 0.472 (0.075) 0.531 (0.125) 0.478 (0.034) 0.537 (0.160) 0.878 (0.079) 0.901 (0.064) 0.739 (0.106)

SMO 0.472 (0.075) 0.443 (0.071) 0.512 (0.072) 0.523 (0.158) 0.875 (0.082) 0.826 (0.096) 0.806 (0.089)

ADA 0.492 (0.056) 0.450 (0.079) 0.554 (0.054) 0.462 (0.103) 0.820 (0.099) 0.733 (0.104) 0.830 (0.072)

Border 0.527 (0.065) 0.466 (0.095) 0.567 (0.080) 0.520 (0.118) 0.712 (0.1109 0.760 (0.097) 0.805 (0.104)
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