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Abstract: The elastodynamic stress field near a crack tip propagating at a constant speed in isotropic
quasi-brittle material was investigated, taking into account the strain gradient and inertia gradient
effects. An asymptotic solution for a steady-state Mode-I crack was developed within the simplified
strain gradient elasticity by using a representation of the general solution in terms of Lamé potentials
in the moving framework. It was shown that the derived solution predicts the nonsingular stress state
and smooth opening profile for the growing cracks that can be related to the presence of the fracture
process zone in the micro-/nanostructured quasi-brittle materials. Note that similar asymptotic
solutions have been derived previously only for Mode-III cracks (under antiplane shear loading).
Thus, the aim of this study is to show the possibility of analytical assessments on the elastodynamic
crack tip fields for in-plane loading within gradient theories. By using the derived solution, we
also performed analysis of the angular distribution of stresses and tractions for the moderate speed
of cracks. It was shown that the usage of the maximum principal stress criterion within second
gradient elastodynamics allows us to describe a directional stability of Mode-I crack growth and an
increase in the dynamic fracture toughness with the crack propagation speed that were observed in
the experiments with quasi-brittle materials. Therefore, the possibility of the effective application
of regularized solutions of strain gradient elasticity for the refined analysis of dynamic fracture
processes in the quasi-brittle materials with phenomenological assessments on the cohesive zone
effects is shown.

Keywords: quasi-brittle fracture; steady-state crack growth; asymptotic solution; strain gradient
effects; dynamic toughness

1. Introduction

The application of high-grade continuum theories for the simulations of materials
and structures allows us to provide a refined analysis of their mechanical and physical
properties [1,2]. The influence of the size effects is one important feature that arises
in nanostructured materials and can be effectively captured by generalized continuum
theories [3,4]. In this study, we consider the variant of generalized theory that is known as
the strain gradient elasticity theory (SGET) [5], which was efficiently applied for the analysis
of the size effects in quasi-brittle fractures [6,7] for the nonsingular description of dislocation
cores [8,9], for the wave dynamics analysis in granular materials and metamaterials [10,11], etc.

The subject of this study is the steady-state problem of a Mode-I crack propagated
in isotropic quasi-brittle material with an internal structure. The classical asymptotic
solution for this problem that does not contain the microstructural characteristic length
parameters is well known [12]. Within gradient theories, this problem has been considered
using numerical simulations [13]. The Wiener–Hopf technique for full-field analysis was
applied within the couple stress theory for mode-II [14,15] and the mode-III [16,17] cracks.
Our goal is to show that the strain gradient elasticity (in its dynamic formulation, here
called second gradient elastodynamics) allows us to predict the regularized stress state and
smooth opening profile for growing Mode-I cracks. For quasi-static problems, such effects
in simplified SGET (also known as dipolar gradient elasticity) with a single length scale
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parameter have been shown based on the Williams asymptotic method in Refs. [18,19]. A
more general solution within Mindlin’s Form II of SGET with five length scale parameters is
presented in Ref. [20]. A discussion on the correct methods of the derivation of asymptotic
solutions within gradient theories accounting for traction-free boundary conditions is
presented in Ref. [21].

In this work, we consider the simplified SGET and develop an asymptotic solution by
using the Lamé potential method [22,23]. This method is usually used for moving crack
problems in classical elasticity [15], as well as in gradient theories [14]. The important
feature of this method (in comparison with the Williams asymptotic technique used for
static problems [18,19]) is that it allows us to satisfy the motion equations exactly, so that
only boundary conditions and additional bounded energy conditions should be involved
in further analysis.

To the best of the author’s knowledge, the steady-state in-plane problems of crack tip
fields within the simplified SGET and the more general gradient theories have not been
considered previously. It was shown that the couple stress theory (which can be considered
an incomplete SGET [24]) allows us to describe the stabilizing effect [25] and the crack
tip shielding effect [14] due to microstructural contributions. However, the couple stress
theory does not allow us to describe the regular stress state at the crack tip for in-plane
loading [14,26], so more general gradient theories can be preferable for such analysis, with
assessments on the fracture process zone effects [20].

Notably, the presented smoothed solution for moving cracks can be related to the
phenomenological description of cohesive zone effects, as was discussed previously for
the static problems in SGET [20,27]. Although the size effects known for the quasi-brittle
materials [28] cannot be captured within the asymptotic analysis, the nonclassical effects in
stress distribution can be evaluated within the considered method. As will be shown, the
SGET solution allows us to avoid the classical paradox of stable crack propagation under
in-plane loading when no standard criteria can be used to validate the initial assumption
about straight growth of a crack [12]. This improvement of the classical asymptotic solution
is similar to known results with moving Dugdale cracks [29] and the full-field classical
solutions for brittle materials [30]. Moreover, the SGET solution predicts the maximum
stress behind the crack tip (i.e., in the cohesion zone) that was observed recently within the
atomistic simulations of the crack growth processes [31].

A number of assumptions are essential in this work and will be introduced in the
following sections for the simplification of analytical derivations. Namely, we consider:

1. The quasi-brittle linear elastic material under small strain conditions.
2. The simplified dynamic formulation of SGET and the particular case of two equal

length scale parameters.
3. The steady-state process with the constant speed of crack growth that is much lower

than the Rayleigh wave speed.
4. The opening mode (mode I) of a crack under remotely applied symmetric

loading conditions.
5. Asymptotic analysis in the small (compared to the material’s length scale parameter)

region around the tip of the growing crack.
Some of these assumptions can be dropped for more general analysis. However, that

will bring additional difficulties in analytical derivations, and that is out of consideration
in this study.

2. Second Gradient Elastodynamics

The dynamic formulation of the considered simplified SGET is the following [5,32]:

∇ · σσσ = ρ(1− g2∇2)ü, r ∈ Ω (1)

t = t̄, m = m̄ r ∈ ∂Ω (2)
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where Ω is the domain under consideration, whose surface is denoted as ∂Ω; ρ is the mass
density; g is the microinertia length scale parameter [32]; u(r, t) is the displacement vector
at a point r = {X1, X2, X3} and at time moment t; ∇ is the nabla operator; superposed dots
denote the differentiation with respect to time; t̄ and m̄ are the prescribed surface traction
and double traction, whose definitions are the following:

t = n · σσσ−∇S · (n ·µµµ)− 2H m + ρg2∂nü (3)

m = n⊗ n : µµµ (4)

where n is the unit outward normal vector on ∂Ω; H = − 1
2∇S · n is the mean curvature

of ∂Ω; ∇S = ∇− n∂n is the surface gradient operator; ∂n = n · ∇ is the normal gradient
operator; symbol ":" denotes double contraction; σσσ = τττ −∇ · µµµ is the total stress tensor,
and constitutive equations for stresses τττ and double stresses µµµ are the following within the
considered simplified SGET [33]:

τττ = λ I θ + 2µ εεε

µµµ = l2∇τττ = l2(λ I∇ · u + 2µ∇εεε)
(5)

where εεε = (∇u + (∇u)T)/2 is an infinitesimal strain tensor; ∇εεε is the strain gradient
tensor; λ, µ are the classical Lamé constants; l is the additional length scale parameter that
defines the nonlocal effects in the elastic strain field; I is the second-order identity tensor.

Note that the initial conditions and the edge-type boundary conditions of SGET are
not involved in this study, since we will consider only the steady-state processes and
the domains, which contain only the trivial edge-type boundary conditions at the tip
of the straight crack [19]. Discussion and detailed derivations of SGET can be found
elsewhere [5,32,34,35].

2.1. Motion Equation and Lamé Potentials

Substituting (5) into (1), we obtain the motion equations in terms of displacements:

(1− l2∇2)(c2
1∇∇ · u− c2

2∇×∇× u) = (1− g2∇2)ü (6)

where c1 =
√
(λ + 2µ)/ρ and c2 =

√
µ/ρ are the speeds of propagation of the dilatational

and the shear waves in the bulk of the material.
Following the classical approach, we can define the general solution for the displace-

ment field in the elastodynamics problems of SGET based on the Helmholtz theorem:

u = ∇φ1 +∇×φφφ2 (7)

where φ1(r, t) and φφφ2(r, t) are the Lamé potentials, and without loss of generality, we can
assume that ∇ ·φφφ2 = 0.

Substituting decomposition (7) into the motion equations (6), we obtain the high-order
governing equations for the Lamé potentials:

(1− l2∇2)c2
1∇2φ1 = (1− g2∇2)φ̈1, (1− l2∇2)c2

2∇2φφφ2 = (1− g2∇2)φ̈φφ2 (8)

Thus, the considered gradient theory has the governing equations of the fourth order
with respect to the spatial coordinates (6) and (8) and the corresponding extended number of
boundary conditions (2). The formulation of classical elastodynamics can be obtained from
the given relations (1)–(8), assuming that the length scale parameters are zero: l = g = 0.

2.2. Plane Strain Steady-State Problem

Let us consider the plane strain problem, assuming that the displacement component
u3 is zero and that the other components are independent on X3, i.e., u = ui(X1, X2, t)ei
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(i = 1, 2). For the plane problems, the vector Lamé potential φφφ2 in (7) and (8) can be defined
by using the corresponding scalar potential φ2(X1, X2, t) as follows:

φφφ2 = φ2e3, (1− l2∇2)c2
2∇2φ2 = (1− g2∇2)φ̈2 (9)

In the following analysis, we will also assume that the crack propagates at a constant
speed V along the X1-axis (see Figure 1). In this case, it is convenient to introduce the
moving coordinate system with the center at the tip of the crack: x1 = X1 −Vt, x2 = X2,
x3 = X3, so that the following time-derivative rule for any field variable f is valid:

ḟ = −V
∂ f
∂x1

(10)

Figure 1. Illustration for the growing crack problem with global and local (moving) coordinate
systems. Opening mode under remotely applied loading is considered. Solution is found in the
vicinity of a crack tip, where r̄ � 1, i.e., r � l.

Using (10) in (8) and (9), we obtain the governing equations for the Lamé potentials in
the following form:

(1− l2∇2)∇2φi = m2
i (1− g2∇2) ∂2φi

∂x2
1

, (i = 1, 2) (11)

where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2

is the two-dimensional Laplace operator; m1 = V/c1 = cm2 and

m2 = V/c2 are the Mach numbers; c = c2/c1 =
√
(1− 2ν)/(2(1− ν)) < 1 is the ratio

between the dilatational and the shear wave speeds; and ν is the Poisson ratio.
We restrict the following analysis for the case of the same values of the length scale

parameters g = l. This case is generally admissible and corresponds to the materials
with an almost nondispersive nature of the elastic waves [36]. Moreover, this case can be
treated as a zero-order approximation for the materials with close values of the length
scale parameters g = l + ε, |ε| � 1. The governing Equation (11) can be reordered then
as follows: (

1− l2∇2
)(
∇2φi −m2

i
∂2φi
∂x2

1

)
= 0, (i = 1, 2) (12)

To the best of the author’s knowledge, the general solution for Equation (12) is not
available as of yet (as well as that for the more complicated one in Equation (11)). Moreover,
the possibility of the separation of the variables in these equations is not obvious and has
not been proven yet. A variant of such a solution in the asymptotic sense is presented in
the next section.
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Notably, that classical governing equations for the steady-state problem can be ob-
tained from (12), assuming l = 0 (see [12]):

∇2φi −m2
i

∂2φi
∂x2

1
= 0, (i = 1, 2) (13)

Introducing the polar coordinate system related to the moving framework (r =
√

x2
1 + x2

2
and θ = arctan(x2/x1)), the components of the displacement vector (7) and the stress ten-
sors (5) can be represented as follows [19]:

ur =
∂φ1
∂r + 1

r
∂φ2
∂θ , uθ = 1

r
∂φ1
∂θ −

∂φ2
∂r (14)

τrr = (λ + 2µ) ∂ur
∂r + λ( ur

r + 1
r

∂uθ
∂θ ),

τθθ = (λ + 2µ)( ur
r + 1

r
∂uθ
∂θ ) + λ ∂ur

∂r ,

τrθ = µ( 1
r

∂ur
∂θ −

uθ
r + ∂uθ

∂r )

(15)

µrrr = l2 ∂τrr
∂r , µrθr = l2 ∂τrθ

∂r , µθθr = l2 ∂τθθ
∂r , µrrθ = l2

r (
∂τrr
∂θ − 2τrθ),

µrθθ = l2

r (
∂τrθ
∂θ + τrr − τθθ), µθθθ = l2

r (
∂τθθ
∂θ + 2τrθ)

(16)

Definitions for traction (3) and double traction (4) at the flat surface θ = const, n = eθ

(crack face) are given by

tr = τθr −
∂µrrθ

∂r −
∂µrθr

∂r −
1
r

∂µrθθ
∂θ −

1
r µrrθ − 1

r µrθr +
1
r µθθθ + µl2m2

2
∂2

∂2x1

(
∂ur
∂θ

)
tθ = τθθ −

∂µθrθ
∂r −

∂µθθr
∂r −

1
r

∂µθθθ
∂θ −

1
r µθθr − 2

r µθrθ + µl2m2
2

∂2

∂2x1

(
∂uθ
∂θ

) (17)

mr = µrrr, mθ = µθrr (18)

3. Asymptotic Solution for Growing Crack

We consider the plane strain steady-state problem of a Mode I crack propagated along
the X1-axis with the constant speed v < cr < c2 (cr is the speed of the Rayleigh waves that
are studied within SGET in Refs. [14,36]). We assume that the crack propagates due to
remotely applied loading (Figure 1). We seek the symmetric asymptotic solution (opening
mode) around the tip of the crack in the moving coordinate system. We state that the
solution for the Lamé potentials should obey the governing Equation (12) and traction-free
boundary conditions at the crack faces (17) and (18) in the asymptotic sense, i.e., up to the
terms that decay as rn (n > 0) when r → 0.

The solution that obeys (12) can be defined in the following form:

φi =
∞

∑
n=−∞

(
ain r̄n

i cos(nθi) + bin In(r̄i) cos(nθi) + r̄n+2
i

∞

∑
j=1

cinj cos((n− 2j)θi)

)
, (i = 1, 2) (19)

ri =
√

x2
1 + α2

i x2
2 = r

√
cos2 θ + α2

i sin2 θ, θi = arctan(αi
x2
x1
) = arctan(αi tan θ) (20)

where ri and θi are the scaled radial distance and angular coordinate that are defined with

the scaling factors αi =
√

1−m2
i (similar scaled coordinates are introduced in the classical

solution [12]); In(r̄i) is the modified Bessel function of the first kind; ain and bin are the
independent constants that should be found from the boundary value problem; and cinj
are the auxiliary constants that are proportional to bin and that should be appropriately
chosen for each n-th term in series (19) so that they will asymptotically satisfy the governing
equations (12). Normalization for the radial coordinate r̄i = ri/l is introduced to prove that
all constants are nondimensional.
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The classical solution for the Mode I growing crack problem [12] can be obtained as the
particular case of (19), assuming that bin = cinj = 0. In this case, only harmonic functions
with polynomial variation along radial coordinate (rn) will remain. Bessel functions in
representation (19) correspond to the gradient part of the solution, and they arise due to
presence of the Helmholtz operator in the governing Equation (12) (see [37]). Internal series
in (12) arise as a consequence of the moving framework, while this part of solution vanishes
for the quasi-static problem. The validity of the solution (19) in the case of gradient theory
can be checked by its direct substitution into (12). We do not present here the derivation of
this solution (these long mathematical derivations will be the subject of the forthcoming
article). However, we should mention that it can be shown that auxiliary constants in (19)
have the order cinj ∼ bin O(m2j

i ), so the amplitudes of the terms in the internal series in (19)

decrease in m2j
i with the increase in j (since mi < 1). Therefore, the internal series provide

clarification only for the angular distribution of solution (19). When the speed of crack
propagation is not too high (low mi), we can use the limited number of these terms. Thus,
based on the given representation (19), we suppose to consider the following variant of the
approximate solution:

φi =
∞

∑
n=−∞

φ
(n)
i , (i = 1, 2)

φ
(n)
i = ain r̄n

i cos(nθi) + bin In(r̄i) cos(nθi) + cin1r̄n+2
i cos((n− 2)θi)

(21)

where we neglect all the terms with constants cinj (j = 2, 3...) that have the order m4
i and

higher. The single auxiliary constant cin1 remaining in (21) can be found by using governing
Equation (12) in the following form:

cin1 = −
binm2

i
2n+4(2 + m2

i )Γ(n + 1)
(22)

where Γ(...) is the Euler gamma function, and it is also seen that the ratio of amplitudes
cin1/bin decreases with the increase in n, so the influence of these auxiliary terms will be
reduced for the higher numbers of n.

To find the asymptotic solution of the problem, we should keep in series (21) only the
most singular admissible terms. The order of these terms (value of n) should be chosen
from the conditions of finite displacements and bounded total strain energy around the
tip of the crack. From (14), it is seen that if the Lamé potentials have the order rn, then
the displacement field will have the order rn−1. Therefore, all terms with n < 1 should
be excluded from the displacement solution or combined with each other to provide their
vanishing when r → 0 (corresponding discussion within SGET; see [37,38]). The strain
energy density within SGET is evaluated accounting for the quadratic form of the strain
gradients [5]. The order of the strain gradients is rn−3 (and for the strain it is rn−2).
Therefore, the energy integrability condition in the small circular area around the crack tip
requires 2(n− 3) + 1 > −1 ⇒ n > 2. Similar results for the quasi-static crack problems
within SGET were obtained in Refs. [18–20].

Thus, the representation (21), together with condition n > 2 for the nonvanishing terms
around the crack tip, can provide us the appropriate asymptotic solution that approximately
satisfies the governing equations in the body volume (12) and (6) for the not very high
Mach numbers. Specifically, for the Mach number mi = 0.1... 0.2, the amplitudes of the
neglected angular terms in (21) will be not higher than 1...4% of the remaining terms.

Traction-free boundary conditions at the crack faces θ = π (17) and (18) allow us to
find the admissible value of factor n and some of the constants ain, bin in (21). Following the
standard procedure for the crack tip field problems [12,19], we should use the condition of the
zero determinant of the system of boundary conditions (17) and (18) to find n. Substituting
φ
(n)
i (21) into (14)–(16) and the result into the boundary conditions (17) and (18) at θ = π, one
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can find that the determinant of the obtained system is proportional to sin2(2nπ). Therefore,
this determinant will be zero if n = p/2 (p = 0,±1,±2... ). Based on the energy integrability
condition, we find then that the leading terms rn in the asymptotic solution for the Lamé
potentials should have the order n = 5/2 > 2, and for the displacement field, we obtain the
asymptotics rn−1 = r3/2 (similarly to known solutions for the static SGET problems [18–20]).

Thus, we should extract all terms with asymptotic behavior r5/2 from representa-
tion (21). Notably, such terms will persist not only in the function φ

(5/2)
i , but also in the

functions φn/2
i , n = 5− 2p (p = 1, 2...) that follow from the series expansion for the mod-

ified Bessel function In(r̄i). At the same time, for the functions φ
(n/2)
i with index n ≤ 1,

we obtain the high-order singular components in the displacement field that should be
avoided by the appropriate choice of constants ain and bin (a similar analysis within the
generalized Flamant problem was presented recently in Ref. [37]). Based on the analysis
of the behavior of functions φ

(n)
i around r = 0, we found that the following terms should

remain for the asymptotic solution:

φi = φ
(1/2)
i + φ

(5/2)
i + φ

(0)
i + φ

(2)
i , (i = 1, 2) (23)

whose regularity around r = 0 can be provided by the following choice of constants:

bi1 = −
√

π
2 ai1 (24)

where for the shortness, we adopt the following notation for the fractional indexes: “n”
instead of “n/2” for odd values of n (i.e., ai1 means ai(1/2), bi1 means bi(1/2), etc.). This
notation is also used in the following derivations.

Note that apart from the mentioned functions in (23), all functions φ
(n/2)
i with the

negative index n/2 < 0 also contain the terms with behavior ∼ r3/2 . However, all these
functions allow for regularity for the displacement field around r = 0 only if both constants
are zero: ain = bin = 0. Therefore, these functions are excluded from the solution. The high-
order terms with n > 5/2 are also out of consideration within the asymptotic solution for
the crack tip fields only.

Separately, within SGET, one should consider the case that corresponds to the par-
ticular solution with vanishing strain gradients around the crack tip. Such a solution can
be obtained by using the Lamé potentials φ

(0)
1 , φ

(2)
i that produce the displacement field

with asymptotic behavior ∼ r1 . For this case (n = 0 and n = 2), the energy integrability
condition can be relaxed, and functions φ

(0)
1 , φ

(2)
i can be included in (23). These lower-

order terms can be related to the so-called generalized T-stress field that also arises in the
quasi-static SGET solutions [18–20].

Substituting definitions for φ
(n)
i (21) into (23) and taking into account (24), one can

obtain the final form of the Lamé potentials. Using these potentials in (14) and evaluating
the limit at r → 0, one can find the SGET asymptotic solution for the displacement field
around the tip of the propagated crack in the following form:

ūr = r̄ S0β10 + r̄
2

∑
i=1

Siβi1 cos 2θi + m2
2Fr(r̄, θi)

+ r̄3/2
2

∑
i=1

(
ai1κi1 cos θi

2 + ci11κi2 cos 3θi
2 + (ai5κi3 + bi5κi4) cos 5θi

2

)

ūθ = −r̄
2

∑
i=1

Siβi2 sin 2θi + m2
1Fθ(r̄, θi)

+ r̄3/2
2

∑
i=1

(
ai1κi5 sin θi

2 + ci11κi6 sin 3θi
2 + (ai5κi7 + bi5κi8) sin 5θi

2

)
(25)
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where r̄ = r/l, ūr = ur/l, ūθ = uθ/l are the normalized radial distance and components
of the displacement field, respectively; cin1 are defined by (22); κij, βij are the functions
of the angular coordinate, whose explicit form is given in Appendix A; the amplitudes
for the lower-order crack tip fields are defined by S0 = b10/2, S1 = 2a12 + b12/4 + 2c101,
S2 = 2a22 + b22/4− 2c201; and functions Fr, Fθ are introduced to define the terms that
arise only in the steady-state problem and that vanish in the quasi-static limit mi = 0
(see Appendix A).

Solution (25) contains six unknown constants that define the leading terms: a11, a15,
b15, a21, a25, b25. Three of these constants (e.g., a11, a21, b25) can be determined from the
boundary conditions (17) and (18) to provide their fulfilment in the asymptotic sense.
The representation for these constants can be easily found in analytical form by using
a symbolic algebra system, and they are not presented here for clarity. Additionally,
one should consider the low-order fields defined by constants aij, bij (i = 1, 2, j = 0, 2)
that combine together into three amplitudes Si (i = 0, 1, 2) in solution (25). The boundary
condition for traction tθ gives a single additional nontrivial relation between these constants
that can be fulfilled by the appropriate choice of one of them (e.g., b20). The remaining
constants left unspecified by the asymptotic analysis.

From (25), it is seen that in contrast to the classical elasticity solution, in SGET, we
have the smooth opening profile that varies according to the leading terms order ∼ r3/2.
Therefore, the strain field and the stresses that can be found by using the generalized
Hooke’s law (5) vary as r1/2, and they are bounded at the tip of crack. The double stresses
and tractions are singular and proportional to r−1/2 and r−3/2, respectively. Analyses of the
realized deformations and distribution of stresses and tractions in the developed solution
are presented in the next section.

As it follows from the presented derivations, the formal reason for the obtained regular-
ized SGET solution for the crack tip fields is the condition of the bounded total strain energy
in the vicinity of the crack tip. From the physical point of view, the smoothed opening profile
may arise due to the influence of degradation mechanisms (microvoiding, microcracking)
around the crack tip in quasi-brittle materials [39]. Such effects are usually described within
the nonlinear models of cohesion cracks with prescribed traction–separation lows [40].
The use of high-grade theories allows us to consider the phenomenological description of
cohesive-zone effects, even within the linear formulation [20,27].

Notably, the known form of the quasi-static solution for the crack tip fields within
SGET can be obtained from (25), taking the limit for zero speed of crack propagation v→ 0,
mi → 0 (see Appendix A).

4. Results and Discussion

For the examples of numerical calculations, let us clarify the physical meaning and
possible values of the constants S0, S1, S2, a15, a25, b15 that remain in solutions (23)–(25).
From (21), it can be seen that the constants a15, b15 are related to the scalar Lamé potential φ1,
and therefore, they define the dilatational strain field around the tip of the crack. Conversely,
constant a25 is related to the vector potential φφφ2 and defines the rotations in the vicinity of a
crack. Similar observations for two constants that persist in the asymptotic solution for the
stationary cracks within SGET are given in Ref. [18]. Note that constant b15 stays before
the modified Bessel function in Equation (21), and mostly defines the high-order effects in
the distribution of dilatation (interconnected with terms ∼ r7/2 and higher). The influence
of b15 on the crack tip field is negligible, and in further examples of calculation, we will
use b15 = 0, so only two independent amplitudes of the leading terms a15 and a25 will
be considered.

The amplitudes of the lower-order crack-tip fields Si in the case of the static problem
(mi = 0) have the physical meaning of the constant normal strains that can be represented
in the Cartesian coordinates as ε11 = S0 + S1 + S2 and ε22 = S0 − S1 − S2 (see [18]). These
components of the asymptotic solution do not make a contribution to the energy release rate
and to the crack tip open displacement [18,19]. For the nonzero speed of crack propagation
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constants, Si corresponds to the distorted lower-order strain fields around the growing
crack, whose distribution is defined by functions βij (Appendix A). For the examples of
calculations, we will define the lower-order crack tip fields, assuming that they correspond
to the uniform tension along the x2-axis in the quasi-static limit:

ε22 = −ε11/ν = ε0

Then, the values of amplitudes can be chosen as

S0 = ε0(1− ν)/2, S1 = S2 = −ε0(1 + ν)/4

which can be provided by using the following definitions for the constants of the Lamé
potentials (21):

b10 = ε0(1− ν), a12 = a22 = −ε0(1 + ν)/8, b12 = b22 = 0

and the last constant b20 is used to provide the fulfilment of traction-free boundary con-
ditions. Note that the case of the loaded crack faces can be also considered, and the
corresponding boundary conditions can be satisfied by the appropriate choice of constants
b12, b22, b20, though this case is out of consideration in this study.

Thus, for the following analysis, we can retain only four nondimensional parameters:
Poisson ratio ν, Mach number m2 (or m1), and the ratios between the amplitudes of local
dilatation and rotation fields to the amplitude of uniform tension denoted by kθ = −a15/ε0
and kω = −a25/ε0, respectively. In definitions for kθ and kω , we use the minus sign due to
the condition of the open mode-I crack that requires uθ(r, π) < 0 when ε0 > 0.

In the following, unless otherwise stated, we use the values of Poisson’s ratio ν = 0.3,
Mach number m2 = 0.1, and amplitude ratios kθ = 0.1 and kω = 0.1 with the prescribed
uniform tension amplitude ε0 = 1 (some of these quantities are varied, and this will
be denoted on the plots). All spatial dimensions, coordinates, and displacements are
normalized with respect to the length scale parameter l. Stresses and surface tractions
are normalized with respect to the Young’s modulus of material multiplied with the
prescribed amplitude of tensile strain ε0. These normalized quantities will be denoted with
a hat symbol (t̂θ , etc.). The stresses and surface tractions are calculated by using given
solution (21) and (23) and relations (14)–(17). All evaluations are performed by using the
initial definition for the solution with Bessel functions (21) to provide the correct values
of their derivatives and taking into account definitions for the scaled coordinates (20).
Asymptotic solutions for the crack tip fields are found for the resulting relations using the
series expansion for the Bessel functions around r = 0, and retaining only the leading terms.

Illustrations for the displacement field that is realized in the vicinity of a crack are
presented in Figure 2. Here, we show the deformations of a small circle with radius r = 0.1l
around the tip of a crack in SGET (left) and in classical [12] (right) solutions. It can be seen
that in contrast to the classical solution with r1/2 asymptotics, the smooth closure profile
is realized in SGET, which can be related to the presence of the fracture process zone in
quasi-brittle materials [20]. The dependence of crack tip open displacement on Poisson’s
ratio and the Mach number are similar in both solutions: the opening amplitude becomes
higher for the lower values of Poisson’s ratio and for the high Mach number (though in the
classical solution, we have to use higher values of m2 to obtain a more visible effect). At the
same time, the deformed state ahead of the crack tip varies differently in the classical and
SGET solutions. In the classical solution, a tension along the x1-axis always arises in this
zone. In SGET, there arises a compression along the x1-axis ahead of the crack tip for the
low values of Poisson’s ratio and for all considered values of the Mach number.

The influence of the amplitude ratios kθ , kω on the displacement field around the crack
tip is shown in Figure 3. It can be seen that the increase in dilatational amplitude kθ results in
a higher crack opening and a more intensive compression ahead of the crack tip (Figure 3a).
The influence of the rotational amplitude is much less pronounced, and can be seen only
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for relatively large values of kω, which results in the higher curvature of the deformed
crack face and additional distortion along the x1 axis of the plotted circles (Figure 3b).
The negative values of kω lead to the double curvature of the crack face (red curve in
Figure 3b). Note that in the vicinity of a crack tip, the change in kω does not influence
the crack tip open displacement (all curves coincide at the crack tip in Figure 3b), so the
rotational effects in tbe SGET asymptotic solution could be negligible for Mode-I loading.

a

 = 0.1

 = 0.3

 = 0.49

 = 0.1

 = 0.3

 = 0.49

b

m2 = 0.01

m2 = 0.2

m2 = 0.3

m2 = 0.01

m2 = 0.4

m2 = 0.6

Figure 2. Influence of Poisson’s ratio (a) and Mach number (b) of the deformations of small circles
around the crack tip in SGET (left) and classical (right) asymptotic steady-state solutions.

a

kθ = 0.01

kθ = 0.02

kθ = 0.03

b

kω = -0.5

kω = 0.01

kω = 0.5

Figure 3. Influence of dilatational (a) and rotational (b) amplitudes on the deformed state around the
tip of crack.

An illustration of the fulfilment of the traction-free boundary conditions by the devel-
oped asymptotic solution is presented in Figure 4. In Figure 4a, we show the typical angular
distribution of normalized tractions (17) and double tractions (18) that take zero values at
the crack face θ = π. The contour plots for the in-plane distribution of normalized hoop
traction tθ are presented in Figure 4b. This traction has a singular behavior ∼ r−3/2 and
growth rapidly close to the crack tip. Note that the angular distribution and dependence
on the Mach number of the tractions in the SGET solution are very similar to those in
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classical solutions (Figure 5), though their definitions are much more complicated (17).
Hoop traction tθ has a maximum at about θ = 60 deg. (Figure 5a), where the radial traction
tr changes the sign (Figure 5b). Similarly to the classical theory, in SGET, the maximum
values of tθ and tr increase with the increase in Mach number (solid lines in Figure 5).
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Figure 4. Typical dependence of normalized tractions and double tractions on angular coordinate (a)
and in-plane distribution of normalized hoop traction t̂θ ((b), crack is shown by thick black line) in
SGET asymptotic solution.
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Figure 5. Angular distribution of normalized hoop traction (a) and radial traction (b) for different
values of Mach number and Poisson’s ratio.

Recently, it was proposed that the nominal strength of materials with cracks can be
evaluated within SGET based on the regularized solutions for the stresses [28,41]. In SGET,
stress and strain are regular at the crack tip, and one can use their finite values to define
the criteria of the crack growth initiation and the direction of growth. A description of the
known experimental data for the quasi-static and fatigue tests with brittle and quasi-brittle
materials within SGET is given in Refs. [27,28,41]. It was shown that the size effect for the
nominal strength and transition between short and long crack regimes can be described
within SGET [27,28]. Thus, in this study, we evaluate the effects that can be captured by
using the regularized asymptotic solution for the steady-state crack in SGET. Note that since
the leading terms for stresses (5) vary as ∼ r1/2, they vanish exactly at the crack tip, and
only the low-order fields with the terms∼ r0 play a role in the fracture initiation if we adopt
the viewpoint of regularized analysis within SGET. This is illustrated in Figures 5 and 6.
In Figure 6, we show the angular distribution of stress tensor components at different
distances from the crack tip. It is seen that all components vary differently in the full range
of angles, though from the side of the crack face (θ = π), they reach the constant values
that are not affected by the distance r̂ at which they are evaluated. Note that these nonzero
stresses at crack faces are not restricted by the formulation of SGET, since the tractions (17)
are defined with additional terms related to the gradients of double stresses (these terms are
equilibrated by the stresses so that the traction-free boundary conditions are fulfilled, as can
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be seen in Figures 3 and 4). Thus, the non-zero stresses at the crack faces can be treated as
the cohesive forces that naturally arise in the SGET solutions for crack problems [27].
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Figure 6. Angular distribution of normalized stress components σ̂θθ (a), σ̂rθ (b), σ̂rr (c) evaluated at
different distances from the crack tip and for the values of Mach number m2 = 0.2 (solid lines) and
m2 = 0.01 (dashed lines).

Evaluating the normalized maximum principal stress σ̂I and maximum shear stress
τ̂max according to their standard definitions with components of stress tensor σσσ (5), we can
check the criterion for the direction of the crack growth within the regularized analysis.
In Figure 7a,b, we show the angular distribution of σ̂I and τ̂max. It is seen that the maximum
principal stress always arises at the crack tip from the side of the crack face (θ = π), while
the maximum stress has lower values and has a maximum at about θ = π/2. Therefore,
adopting the maximum principal stress criterion for the direction of crack growth, we found
that the crack should propagate straightly along the x1-axis direction with the permanent
destruction of cohesive bonds in the fracture process zone in the crack tip at θ = π/2, where
the maximum principal stress should reach the critical values of the cohesive stress. Note
that a similar observation is given based on the atomistic simulations in Ref. [31], where it
was shown that the maximum normal stress arises behind the position of the virtual crack
tip inside the cohesive zone. Note that the obtained SGET results do not contain paradoxes
of the classical elasticity solution, where the assumed straight propagation of the crack
cannot be validated by the criteria of the crack propagation direction [12].

a

r

= 0.01

r

= 0.05

r

= 0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

Angle, θ, rad

M
ax
im
um
pr
in
ci
pa
l
st
re
ss
,
σ
I

b
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Angle, θ, rad

M
ax
im
um
sh
ea
r
st
re
ss
,
τ
m
ax

c

kθ = 0.1

kθ = 0.05

kθ = 0.01

-0.10 -0.05 0.00 0.05 0.10

0.0

0.2

0.4

0.6

Coordinate, x , rad

M
ax
im
um
pr
in
ci
pa
l
st
re
ss
,
σ
I

Figure 7. Angular distribution of normalized maximum principal stress (a) and maximum shear
stress (b) and distribution of the normalized maximum principal stress along the crack propagation
direction (along x1 at x2 = 0) for different values of amplitude ratio kθ (c). The values of Mach
number are m2 = 0.2 (solid lines) and m2 = 0.01 (dashed lines).

Ahead of the crack tip, the maximum principal stress decreases, and the rate of its
decay is defined primarily by the value of the dilatation amplitude ratio kθ (see Figure 7c).
The maximum values of σ̂I do not depend on kθ and are defined by the low-order crack
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tip fields, which are reduced in the presented analysis to the amplitude of tensile strain
ε0. Moreover, the level of maximum principal stress depends on the Mach number. It is
interesting to note that σ̂I and hoop stress σ̂θθ decrease with the increase in Mach number
(compare solid lines and dashed lines in Figure 6a,c ). Thus, within the regularized analysis,
we can state that the dynamic toughness of materials governed by SGET is predicted to be
higher than those under quasi-static loading. Note that such effects have been observed in
experiments with quasi-brittle glassy polymers [42,43], where the toughness was higher
for the higher speeds of crack propagation (notably, that inverse dependences arise in the
purely brittle processes [12,44]). This effect was explained by the craze-widening process
and described by the rate-dependent cohesive models [42]. As can be seen, from the
high-grade continuum point of view, the increase in dynamic toughness with propagation
speed can be naturally described within the regularized SGET solutions. However, in the
presented analysis, we used not very high Mach numbers to provide the accuracy of the
approximate solution (21).

5. Conclusions

In this paper, we derived an asymptotic solution for the problem of steady-state
propagation of Mode-I cracks in the quasi-brittle materials governed by SGET. A simplified
variant of SGET and the particular case of the same values of the elastic and microinertia
length scale parameters were considered. The form of asymptotic solution was derived
based on the Lamé potential approach, and its approximate variant for the moderate
values of Mach number were used for the analysis of the deformations and the stress state
around the moving crack tip. It was shown that the typical smooth crack opening profile
with "cohesive zone" effects are predicted by the dynamic solution of SGET. Moreover,
from the given assessments, it follows the possibility for the description of the straight
direction of the Mode-I crack growth without paradoxes of classical theory. The increases
in the dynamic fracture toughness of the quasi-brittle material that were observed in the
experiments can be also described within the regularized analysis and maximum principal
stress criterion of SGET.

The presented results are given for the not very high Mach numbers of crack propa-
gation and particular relations between the length scale parameters of SGET. Specifically,
the main limitation of the presented results is the assumption of the same values of the
length scale parameters for the strain (l) and for the inertia (g) gradient effects and the
limited number of terms used in the definition of the angular distribution of asymptotic
solution (21). Therefore, in future work, the presented analysis should be extended for the
subsonic and intersonic regimes. The more general constitutive equations of SGET should
be also considered and compared to the full-field numerical simulations.
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Abbreviations and Symbols
The following abbreviations and symbols are used in this manuscript:

SGET strain gradient elasticity theory
ei unit vectors of coordinate system
I second-order identity tensor
m double traction vector
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n outward unit normal vector
t traction vector
u displacement vector
ain, bin, cinj, Si constants of general solution
c1, c2, cr speeds of dilatation, shear, and Rayleigh waves
Fi auxiliary functions of radial and angular coordinate
H mean curvature
kθ , kω relative amplitudes of dilatation and rotation at the crack tip
l, g length scale parameters
m1, m2 Mach numbers
mr, mθ components of double traction vector
r, θ polar coordinates related to the moving framework
ri, θi scaled polar coordinates related to the moving framework
r̄ normalized radial distance
t time
ti components of traction vector
ui components of displacement vector
V speed of crack propagation
Xi global Cartesian coordinate system
xi moving Cartesian coordinate system
µµµ double stress tensor
εεε strain tensor
σσσ total stress tensor
τττ stress tensor
φφφi vector Láme potential
αi scaling factors for polar coordinates in moving framework
βij, κij, Qi auxiliary functions of angular coordinate
Γ() Euler gamma function
ε0 amplitude of tensile strain
λ, µ Lamé parameters
µijk components of double-stress tensor
ν Poisson’s ratio
ρ mass density
φi Lamé potentials

φ
(n)
i n-th term in series representation of Lamé potentials

τij components of stress tensor
Ω, ∂Ω domain under consideration and its boundary

Appendix A

Definitions of the quantities introduced in the asymptotic solution for the displacement
field around the crack tip (25) are the following:

β10 = β11 = Q2
1, β21 = α2, β12 = α1, β22 = Q2

2,

κ11 = − 5
12 Q5/2

1 , κ12 = κ13 = 5
2 Q5/2

1 , κ14 = 0

κ21 = − 1
12 α2Q1/2

2 , κ22 = − 3
2 α2Q1/2

2 , κ23 = 15
6 α2Q1/2

2 , κ24 =
√

2
6
√

π
α2Q1/2

2

κ15 = 1
12 α1Q1/2

1 , κ16 = − 3
2 α1Q1/2

1 , κ17 = − 15
6 α1Q1/2

1 , κ18 = −
√

2
6
√

π
α1Q1/2

1

κ25 = 5
12 Q5/2

2 , κ26 = 5
2 Q5/2

2 , κ27 = − 5
2 Q5/2

2 , κ28 = 0

Fr(r̄, θi) = −r̄ 1
2 S2 sin 2θ2 sin 2θ

+ r̄3/2Q2
2

(
5

12 a21 sin θ2
2 −

5
2 c211 sin 3θ2

2 − ( 15
6 a25 +

√
2

6
√

π
b25) sin 5θ2

2

)
sin 2θ

Fθ(r̄, θi) = −r̄ 1
2 (S0 + S1 cos 2θ2) sin 2θ

+ r̄3/2Q2
1

(
5

12 a11 cos θ1
2 −

5
2 c111 cos 3θ1

2 − ( 15
6 a15 +

√
2

6
√

π
b15) cos 5θ1

2

)
sin 2θ

(A1)
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where Qi =
√

cos2 θ + α2
i sin2 θ and αi =

√
1−m2

i .
Note that for the quasi-static limit mi = 0, we have αi = 1, Qi = 1, θi = θ, ri = r

(i = 1, 2), and the displacement solution (25) can be reduced to the following form:

ūr = r̄ S0 + r̄(S1 + S2) cos 2θ + r̄3/2
2

∑
i=1

(
ai1κi1 cos θ

2 + ci11κi2 cos 3θ
2 + (ai5κi3 + bi5κi4) cos 5θ

2

)

ūθ = −r̄(S1 + S2) sin 2θ + r̄3/2
2

∑
i=1

(
ai1κi5 sin θ

2 + ci11κi6 sin 3θ
2 + (ai5κi7 + bi5κi8) sin 5θ

2

) (A2)

where κij become the constants, whose values follow from (A1).
Then, by using the appropriate choice of constants a11, a21, c111, c211, a15, a25, b15, b25

we can reduce (A2) to the known static asymptotic solution of SGET for a Mode-I crack
that contains only two amplitude factors [18,19]. The choice of the constants is not unique.
Moreover, it should be noted that in these derivations, constants c111, c211 can be treated
as independent since they are proportional to b11, b21 (22) which do not arise in the given
representation for the displacement field.
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