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Abstract: Recommender systems are challenged with providing accurate recommendations that meet
the diverse preferences of users. The main information sources for these systems are the utility matrix
and textual sources, such as item descriptions, users’ reviews, and users’ profiles. Incorporating
diverse sources of information is a reasonable approach to improving recommendation accuracy.
However, most studies primarily use the utility matrix, and when they use textual sources they do
not integrate them with the utility matrix. This is due to the risk of combined information causing
noise and reducing the effectiveness of good sources. To overcome this challenge, in this study we
propose a novel method that utilizes the Transformer Model, a deep learning model that efficiently
integrates textual and utility matrix information. The study suggests feature extraction techniques
suitable for each information source and an effective integration method in the Transformer model.
The experimental results indicate that the proposed model significantly improves recommendation
accuracy compared to the baseline model (MLP) for the Mean Absolute Error (MAE) metric, with a
reduction range of 10.79% to 31.03% for the Amazon sub-datasets. Furthermore, when compared to
SVD, which is known as one of the most efficient models for recommender systems, the proposed
model shows a decrease in the MAE metric by a range of 34.82% to 56.17% for the Amazon sub-
datasets. Our proposed model also outperforms the graph-based model with an increase of up to
108% in Precision, a decrease of up to 65.37% in MAE, and a decrease of up to 59.24% in RMSE.
Additionally, experimental results on the Movielens and Amazon datasets also demonstrate that our
proposed model, which combines information from the utility matrix and textual sources, yields
better results compared to using only information from the utility matrix.

Keywords: recommender system; deep neural network recommender system; multiview; trans-
former model

1. Introduction

Recommender systems (RS) have become an essential tool for businesses to person-
alize their services by providing recommendations to their users. Accurately predicting
user preferences has significant implications for businesses, as it allows them to increase
customer satisfaction and loyalty. Despite the popularity of RS, it remains a challenging
research problem, with researchers striving to enhance recommendation performance
through innovative approaches.

RS are primarily developed using either collaborative filtering (CF) or content-based
filtering techniques. The CF method utilizes ratings from similar users to predict ratings for
an item, while the content-based approach predicts ratings for similar items based on the
user’s past ratings. Two well-known methods used in the CF approach are Neighborhood-
based collaborative Filtering [1,2] and Matrix Factorization [3–7], which can be constructed

Appl. Sci. 2023, 13, 6324. https://doi.org/10.3390/app13106324 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106324
https://doi.org/10.3390/app13106324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8513-3942
https://doi.org/10.3390/app13106324
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106324?type=check_update&version=1


Appl. Sci. 2023, 13, 6324 2 of 21

using only the information contained in the utility matrix. On the other hand, the content-
based approach in such studies [2,8–11] is based on the simple observation that if a person
enjoys item i, they are likely to enjoy similar products. The similarity between items can be
calculated by referencing the utility matrix or item profiles found in other sources. However,
content-based is limited in its ability to predict ratings for new items. To overcome this lim-
itation, recent studies have combined both approaches using ensemble learning [2,12–17].

Traditionally, recommender systems rely on a single source of information, such as a
user’s historical purchase or viewing data, to generate recommendations. However, there
is growing interest in using multiple sources of information to improve the accuracy and
relevance of recommendations. A proposed strategy involves employing a multimodal
approach, which pertains to combining data from different sources such as Refs. [18–22].
Additionally, there have been some recent studies [23–25] that employ neural networks to
integrate information from multiple sources for ratings prediction. Hypergraphs provide a
more flexible and powerful way to model complex interactions and dependencies between
users and items in recommender systems, as demonstrated by previous research [26–28].

Despite the potential benefits of using a multimodal approach for recommender
systems, there has been relatively little research to date on how to effectively combine all of
these different sources of information into a unified model, especially on how to combine
the utility matrix with other sources. We investigated the related studies and found that
studies utilizing the utility matrix [29,30] tend to exclude other sources of information,
possibly due to the effectiveness of the collaborative matrix factorization model for this
particular information source. Therefore, when attempting to integrate other information
sources, such as user reviews or item descriptions, it can cause interference and potentially
reduce the accuracy of the system. Other multimodal methods that combine multiple
sources often only utilize textual sources, while disregarding the utility matrix information,
such as Refs. [25,31,32].

We believe that combining data from multiple sources, such as utility matrix, user
profiles, and item descriptions, can lead to more personalized recommendations that
reflect a user’s unique interests and preferences. However, while the benefits of using a
multimodal approach for recommender systems are clear, there are significant challenges
that must be addressed. One major challenge is how to integrate the diverse sources of
information effectively, without being affected by noise or conflicting signals that could
lower the accuracy of the recommendations. This is particularly important because the
information from different sources may complement each other or contain redundant
information, and integrating them in a way that preserves their usefulness requires a
careful balancing act.

Multimodal and multiview approaches provide numerous benefits that make them
attractive for recommender systems. One significant advantage is their capability to
capture multiple facets of user preferences and item characteristics, resulting in more
precise and diverse recommendations. This is achievable because different information
sources can provide complementary insights that may not be captured by a single modality
or view [33–35].

Overall, our study makes several important contributions compared to other related
studies, specifically as follows:

• Developing a novel model that combines views from both the utility matrix and
textual sources, which utilizes feature extraction techniques from various information
sources and a conversion algorithm to segment the feature vectors of each pair (user,
item) into a sequence of token vectors, which serve as input for a classification model;

• Incorporating Transformer models into our approach for multimodal recommender
systems, that serves as a strong tool for handling the challenge of integrating diverse
sources of information in RSs, that can self-select features that avoid or minimize noise
or conflicting signals, and it has the potential to significantly enhance the performance
of RSs in practical settings;
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• Conducting experiments on the MovieLens and Amazon datasets to verify the effec-
tiveness of our proposed model.

The rest of the paper is organized as follows: Section 2 provides a summary of recent
studies related to our work. Section 3 presents the conceptual and technical background for
user-based and item-based recommender systems, the Transformer encoder architecture,
matrix factorization, and feature extraction. In Section 4, we introduce our proposed
model, which uses the transformer model on multiple views from diverse information
sources. Section 5 presents the experimental results, comparisons, and discussions. Finally,
in Section 6, we conclude our contribution.

2. Related Works

Recent research on collaborative filtering recommendation models primarily utilizes
user rating scores and textual review data to compute and evaluate similarities between
users or items. A model was introduced by Ghasemi, N. and Momtazi, S. [36] that identifies
similar users by considering their reviews and ratings. Terzi, M. et al. [37] introduced a
modification to the user kNN algorithm, measuring user similarity based on the similarity
of their text reviews instead of ratings. Some studies have utilized rating scores to calculate
user similarity and applied KNN algorithms to the results. For instance, Wang, Hua-Ming,
Yu, and Ge used rating scores to compute users’ similarity in Ref. [38], which was then input
to KNN algorithms. Similarly, in Ref. [39], Cui and Bei-Bei calculated user similarity using
rating scores, specifically cosine similarity and Pearson correlation similarity. The resulting
similarity values were then used as input for the KNN algorithm. Kamali, P et al. utilized
ratings to calculate Euclidean distance in Ref. [40]. In this study, we calculate the Cosine
similarity between user–user or item–item using latent feature vectors generated from the
utility matrix through matrix factorization.

Studies on collaborative filtering recommender systems that use user-based and item-
based methods aim to enhance the accuracy of recommendations and address the sparsity
challenge. Choudhury, S. S. [22] et al. introduced a cutting-edge trust matrix measure that
incorporates user similarity and weighted trust propagation. Non-cold users underwent
various models with a trust filter, while cold users derived an optimal score from personal-
ized recommendations tailored to their preferences. Several research studies have proposed
hybrid techniques that merge both user-based and item-based methods to enhance the
performance of recommender systems. Zhang et al. [41] proposed a hybrid approach
that combines user-based CF with item-based CF and content-based filtering to provide
more accurate recommendations for new users. Liu et al. [42] suggest incorporating user
embeddings as a novel method to improve the performance of SVD++-based collaborative
filtering. The study’s findings demonstrate that the proposed approach yields higher accu-
racy in rating prediction compared to traditional SVD++ and other advanced collaborative
filtering techniques. Hasan, M., and Roy, F. [43] present an approach that incorporates
trust and genre information into item–item collaborative filtering to address the cold-start
problem. The results of the study demonstrate that the proposed method achieves higher
accuracy in recommendations and better performance in addressing the cold-start problem
compared to traditional collaborative filtering techniques. Duan, R. et al. [44] proposed
a Review-Based Matrix Factorization method that combines review-based collaborative
filtering and rating imputation to address the issue of sparsity in rating data for recom-
mender systems. The method utilizes feature-level opinion mining of online review text to
construct an item-topic rating matrix and populate the vacant values in the utility matrix,
followed by matrix factorization to generate recommendations.

Recent studies have introduced neural network models to integrate information
sources for recommender systems. He, X. et al. [23] proposed NCF, a collaborative fil-
tering framework that employs neural networks and has the ability to generalize matrix
factorization. To model non-linearities, they proposed a multi-layer perceptron that learns
the user-item interaction function. Empirical evidence from extensive experiments sup-
ports the use of deeper layers of neural networks, which leads to better recommendation
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performance. Nikzad–Khasmakhia, N. et al. [24] proposed BERTERS, a multimodal classifi-
cation approach for expert recommender systems that combines text and graph modalities.
BERT is used to convert text into vectors, while ExEm extracts features from the co-author
network, which are concatenated with other features to generate a final representation of
the candidate for the classifier. Yang, B. et al. [25] introduced an online video recommender
system that utilizes multimodal fusion and relevance feedback. The system formulates
video recommendation as finding the most relevant videos based on multimodal relevance,
incorporating textual, visual, and aural features. It also incorporates relevance feedback to
adjust weights within and among modalities based on the users’ click-through data, and uti-
lizes an attention fusion function to fuse multimodal relevance. Sun, F. et al. [31] introduced
BERT4Rec, a sequential recommendation model that addresses limitations of left-to-right
unidirectional models by employing bidirectional self-attention to model user behavior
sequences. BERT4Rec uses the Cloze objective for training, predicting masked items in
the sequence with joint conditioning on left and right context, leading to a bidirectional
representation model that outperforms state-of-the-art sequential models in experiments.
Qiu, G. et al. [32] proposed a text-aware recommendation model based on a multi-attention
neural network model, which addresses the problem of finding reasons behind emotional
expressions in texts. The model uses modified LDA and paragraph vector learning for text
vector representation, captures context information through Bi-LSTM layer, and employs
CNN layer for emotional factor classification and prediction.

Recent studies have mentioned hypergraphs as a flexible and powerful method for
modeling complex user–item interactions and dependencies in multimodal recommender
systems. K. Pliakos and C. Kotropoulos [26] developed a novel approach for simultane-
ous image tagging and geo-location prediction using hypergraph learning. The method
is enhanced by incorporating group sparsity constraints and utilizing diverse forms of
information, including social data, image metadata, and visual similarities. Xia, X. et al. [27]
introduced DHCN, a dual channel hypergraph convolutional network, to enhance session-
based recommendation. They incorporated self-supervised learning into the network’s
training to improve hypergraph modeling and maximize mutual information between the
session representations learned through both channels in DHCN. GraphRec, a new graph
neural network framework, was introduced by Fan, W. et al. [28] for social recommenda-
tions, incorporating an approach that integrates interactions and opinions in the user-item
graph and coherently models two graphs with varying strengths.

Although using multiple sources of information in recommender systems has potential
benefits, research on effectively combining them is limited, particularly when it comes to
integrating the utility matrix with other sources. Our investigation revealed that studies
utilizing the utility matrix tend to exclude other sources of information, potentially leading
to interference and reduced accuracy when integrating other sources such as user reviews
or item descriptions. We propose a multiview transformer recommendation model that
integrates data from various sources, including the utility matrix, to provide personalized
recommendations that reflect a user’s preferences. However, effective integration of diverse
sources presents significant challenges, such as avoiding noise or conflicting signals. Our
study demonstrates the potential of using a multimodal approach for RS and proposes a
transformer model to enhance the performance of recommender systems.

3. Background
3.1. User-Based Recommender Systems

The fundamental concept is to identify users who share similar preferences with the
target user u, and utilize this information to predict ratings for the unrated items by u.

The cosine distance is a measure of similarity between two vectors, often used in
recommender systems to calculate the similarity between items or between users. In the
context of recommender systems, the cosine distance is often used with the cosine simi-
larity measure to compute the similarity between items or between users based on their
rating patterns.
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The cosine similarity between two vectors u and v is calculated as the cosine of the
angle between them, which can be expressed as the dot product of the two vectors divided
by the product of their magnitudes. The cosine distance is simply the complement of
the cosine similarity, i.e., 1 minus the cosine similarity. The cosine distance between two
vectors u and v is therefore calculated as 1 minus the cosine of the angle between them.
The cosine distance ranges from 0 (indicating perfect similarity) to 2 (indicating maximum
dissimilarity). In recommender systems, the cosine distance is often used as a dissimilarity
measure, so items or users with a smaller cosine distance are considered more similar.

The cosine similarity between two vectors u and v is defined as the cosine of the angle
between the two vectors. It is a measure of similarity between two non-zero vectors in an
inner product space and can be calculated using Equation (1).

sim(u, v) =
u.v

||u||||v|| (1)

where:

• u.v is the dot product of vectors u and v;
• ||u|| and ||v|| are the Euclidean norms of vectors u and v, respectively.

By computing the dot product of two vectors and dividing it by the product of their
magnitudes, we can determine the cosine similarity between them. This similarity score
falls between −1 and 1, where 1 signifies complete similarity, 0 indicates orthogonality,
and −1 represents complete dissimilarity. Equation (2) is utilized to predict the rating that
a user u is likely to assign to an item j [45].

Řu,j = R̄u +
∑v∈KNN(Rv,j − R̄v).sim(u, v)

∑v∈KNN |sim(u, v)| (2)

where KNN is a set of k nearest neighbors of user u, Rv,j is the rating of user v on item j,
R̄u and R̄v are the average ratings of users u and v respectively, and sim(u, v) denotes the
similarity between users u and v.

3.2. Item-Based Recommender Systems

The first step in predicting the ratings that user u would give to target item j is to
find a set S of items that have the most similarity to j. This requires calculating similarity
functions between the columns of a matrix containing user-item ratings, to locate items with
comparable attributes. Additionally, inverse item frequency, which refers to the frequency
of ratings that users give to those items, is taken into account when producing similarities
between items. In the cosine similarity method, Equation (3) can be used to compute the
similarity between items i and j with inverse item frequency, according to Ref. [46].

sim(i, j) =
∑u∈(Ui

⋂
Uj)

(Ru,i × log(n/ fu))× (Ru,j × log(n/ fu))√
∑u∈Ui

(Ru,i × log(n/ fu))
2
√

∑u∈Uj
(Ru,j × log(n/ fu))

2
(3)

The users who have rated items i and j are referred to by the sets Ui and Uj respectively.
Ru,i and Ru,j denote the ratings given to item i and j, respectively, by user u. The inverse
item frequency of a user is represented by the function log(n/ fu), where n represents the
total number of items in the system and fu indicates the number of items rated by user
u. If user u has rated all items, the inverse item frequency value is 0. Equation (4) can be
employed formally to estimate the rating that the target user u would assign to the target
item j. The equation utilizes the set of k’ most similar items to item j, represented by MSI.

Řu,j =
∑i∈MSI sim(i, j)× Ru,i

∑i∈MSI |sim(i, j)| (4)
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3.3. The Transformer Encoder Architecture

The Transformer encoder architecture (illustrated in Figure 1), introduced in Ref. [47],
is widely used in natural language processing (NLP) for sequence-to-sequence tasks such
as machine translation and language modeling. It is known for its ability to effectively
capture long-range dependencies and its parallelizability.

The key components of the Transformer encoder architecture include input embed-
dings, positional encoding, multi-head self-attention, layer normalization, position-wise
feed-forward networks, residual connections, and layer stacking.

Input embeddings represent the meaning of input tokens and are learned during
training. Positional encoding is added to address the lack of inherent positional information
in the Transformer architecture, allowing the model to capture the sequential order of tokens
in the input sequence.

The multi-head self-attention mechanism is at the heart of the Transformer encoder,
enabling the model to weigh the importance of different tokens and capture long-range
dependencies efficiently. Layer normalization is applied after self-attention to normalize the
outputs, aiding in training stability. Position-wise feed-forward networks capture complex
interactions between tokens, and residual connections help with gradient flow and alleviate
the vanishing gradient problem.

The Transformer encoder architecture typically consists of multiple identical layers
stacked on top of each other, with the outputs of each layer fed as inputs to the subsequent
layer, allowing the model to capture hierarchical representations of the input sequence.

In summary, the Transformer encoder architecture is characterized by its self-attention
mechanism, layer normalization, and residual connections, which work together to make it
a powerful architecture for sequence-to-sequence tasks in NLP.

Figure 1. The Transformer encoder architecture.

3.4. Matrix Factorization

The Matrix Factorization method, as stated in Ref. [48], utilizes the utility matrix to
identify latent features that represent users and items. If we are given a rating matrix
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of shape (n × m), which presents the ratings of n users on m items, the aim of Matrix
Factorization is to decompose this matrix into two thin matrices, P and Q, both with a
shape of n× f and m× f , respectively (shown in Equation (5)). The value of f indicates
the number of important latent factors contained in the matrices. Figure 2 depicts the
decomposition process of matrix R into matrices P and Q.

Figure 2. The process of breaking down the utility matrix into matrices of latent factors.

R ≈ P ·QT (5)

The representation of the formula used to predict the rating r for a pair consisting of
user u and item i is expressed as Equation (6), where the preference of users for items is
denoted by the product of the user vector pu and the transpose of the item vector qi, both
of which have f dimensions.

r̂u,i = pu · qT
i (6)

3.5. Feature Extraction
3.5.1. Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF tackles a specific issue that may not occur frequently in our corpus but is
immensely significant. The TF-IDF value escalates in proportion to the frequency of a
word’s occurrence in a document, but it reduces in relation to the number of documents in
the corpus containing the word [49]. TF-IDF consists of two sub-parts, which are:

• Term Frequency (TF), which is calculated by Equation (7), represents the frequency
of occurrence of a term within the entire document, which can be interpreted as the
likelihood of discovering a particular word in the document. It is computed as the
number of occurrences of a word wi in a review rj, relative to the total number of
words in the review rj;

• Inverse Document Frequency (IDF) is a metric that evaluates the frequency of a term
across the documents in a corpus, as described by Equations (8) and (9). It emphasizes
rare words that appear in only a few documents throughout the corpus and results in
a high IDF score. The value of IDF is obtained by log-normalizing the ratio of the total
number of documents D in the corpus to the number of documents that contain the
term t .

tf-idf(t,d) = t f (t, d)× id f (t) (7)

If smooth_id f = False, the formula for calculating id f (t) is the following:

id f (t) = log
n

d f (t)
+ 1 (8)
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If smooth_id f = True (this prevents zero division), the formula for calculating idf(t) is
the following:

id f (t) = log
n + 1

d f (t) + 1
+ 1 (9)

where n is the total number of documents in the corpus and d f (t) is the document frequency
of t; the document frequency is the number of documents in the corpus that contain the
term t.

3.5.2. Bidirectional Encoder Representations from Transformers (BERT)

BERT [50] is a language model that is pre-trained and is extensively used for various
natural language processing tasks. Due to its foundation on the Transformer architecture,
which utilizes a multi-head attention mechanism, BERT is highly proficient in representing
and encoding textual information. Initially, text is represented by a sequence of tokens and
is initialized as one-hot vectors. Subsequently, processing the layers of the Transformer
involves computing the attention of words with words adjacent to them to generate the
word representation in the subsequent layers. In the BERT model, additional positional
information is utilized. BERT is then trained by masking certain words (using MASK)
during the input and predicting them in the output layer.

Incorporating BERT as a preprocessing tool has enabled numerous NLP tasks to
achieve state-of-the-art performance. Therefore, in our research, we also leverage BERT to
represent textual information such as reviews and descriptions. Specifically, we employ
two variations of BERT: BERTBASE (L = 12, H = 768, A = 12, total parameters = 110 M) and
BERTLARGE (L = 24, H = 1024, A = 16, total parameters = 340 M). For generating word
vectors in our study, we opt to use BERTBASE.

4. The Proposed Model
4.1. Our Multiview Transformer Model for Recommendation

Multiview fusion is the integration of information from multiple sources or views,
such as images, text, audio, video, and other types of data, to create a comprehensive and
accurate representation of a given situation or event. Multiview fusion techniques are
widely utilized in the fields of machine learning and artificial intelligence to enhance the
performance of models that deal with complex and diverse data. By combining information
from different views, these models can gain a deeper understanding of underlying patterns
and relationships in the data, leading to improved predictions and decision-making.

Early fusion and late fusion are two approaches for multiview fusion. Early fusion
combines features or representations of different views at the input level, transforming
them into a common feature space before feeding them into the fusion model. It is suitable
for highly correlated views that provide complementary information. In contrast, late
fusion involves fusing outputs of individual models trained on each modality separately.
Each view is processed using a specific model, and the outputs are then combined using a
fusion mechanism. Late fusion is used for views that are not highly correlated and provide
unique, independent information.

Our Multiview Transformer recommendation model, described in Algorithm 1, utilizes
an early fusion approach. The architecture of our proposed model for the recommendation
problem is depicted in an overview in Figure 3. It comprises three main components: the
first includes modules for extracting and representing features from various information
sources of users and items, the second involves converting the concatenated vector into n
segments (described in Algorithm 2), and the third consists of a transformer module for
the prediction task.
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Algorithm 1 Multiview Transformer Model For Recommendation

1: Training Stage:
2: Input: The data set contains multiview of a set of users and items.
3: Output: A model for the rating
4: Feature Extraction: involves performing feature extraction for each modality, resulting

in a vector of features for each modality. For a given user, a set of k feature vectors
denoted by Vu = vu1, · · ·, vuk is obtained, and for a given item, a set of j feature vectors
denoted by Vi = vi1, · · ·, vij is obtained.

5: Feature Conversion: involves combining feature vectors from Step 1 and segment it
into a sequence of token vectors as input to the classification model.

6: Classification: building the Transformer Model for the Prediction task (named as TMP)
• Feeding n tokens from Step 2 into a transformer encoder model is used for the

task of rating generation (i.e., prediction),
• Training prediction model.

7: Inference stage:
8: A given user-item pair (u, i).
9: Performing the feature extraction task to obtain feature vectors for user u and item i.

These feature vectors include Vu = vu1, · · ·, vuk and Vi = vi1, · · ·, vij.
10: Combining Vu and Vi, then using the Feature Conversion algorithm to generate n

segments.
11: Feeding n tokens at Step 2 as input features for the TMP for generating the output (i.e.,

the rating).

Figure 3. Multiview fusion with transformer model for recommender systems. (The symbol * indi-
cates the amount of item attribute information used in the model may vary depending on the dataset
and the intended use of the organization.)
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4.2. The Feature Extraction Algorithm

In our proposed model, the component responsible for extracting and representing
features is crucial. We generate a variety of features to represent users and items by utilizing
information from four distinct sources: the utility matrix, user reviews, item descriptions,
and item categories. The details of our approach are outlined below:

We use the matrix factorization technique to extract latent features of users and items
from the given utility matrix, which we refer to as Rating-Feature. This technique involves
decomposing the utility matrix of size (m× n) containing ratings for m users and n items
into two lower rank matrices. Here, f refers to the number of latent factors or features
that represent the users and items in the decomposed matrices. To perform factorization,
we select the number of latent factors and use the Alternating Least Square algorithm.
The user and item matrices are initialized with random values and iteratively optimized
to minimize the difference between predicted and actual ratings. This process alternates
between fixing the user matrix and updating the item matrix until convergence, resulting
in two lower-dimension matrices of m× f and n× f dimensions for the user and item
matrices, respectively.

1. The user features are represented by a matrix of size (m× f ), where each row corre-
sponds to a specific user and contains a vector of f features. This matrix is considered
as a view of the user, meaning that it represents the user’s characteristics;

2. The item features are represented by a matrix of size (n × f ), where each item is
represented by a vector of f features. Each row in this matrix corresponds to a specific
item and is considered a view of that item.

For the Review-Feature, we employ a pre-trained BERT model to generate a vector
representation of text reviews written by users for items in the (user u, item i) pair. This
vector representation is considered a view of user u.

For the Description-Feature, we utilize a pre-trained BERT model to generate a vector
representation of the text description provided for item i. This vector representation is
considered a view for item i.

The Category-Feature involves using the list of categories to which item i belongs to
generate a vector representation. TF-IDF measures the significance of words in a document
(which in our study is a list of item categories) by considering their frequency in the
document and the frequency of the word in the corpus. Since BERT is better suited for
extracting features from complete sentences, we use TF-IDF instead of BERT to convert
these category features into a vector representation. This vector representation is also
considered a view for item i.

Some of the feature types that will be extracted are denoted as the following:

• Rating-Feature, which pertains to the user u and item i, and is represented as Rat(u)
and Rat(i) respectively;

• Review-Feature, which pertains to the user u and is represented as Rev(u);
• Description-Feature, which pertains to the item i and is represented as Des(i);
• Category-Feature, which pertains to the item i and is represented as Cat(i).

4.3. The Feature Conversion Algorithm

Note that after obtaining the feature presentation as a sequence of token vectors in the
steps above, we design a Transformer model for the ratings classification.
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Algorithm 2 The Feature Conversion Algorithm

1: For each pair (user u, item i), we use the Feature Extraction module to generate various
types of features represented as corresponding feature vectors:
• Feature vectors for user u: f u1, f u2
• Feature vectors for item i: f i1, f i2, f i3

2: Transform features:
- We firstly combine these feature vectors and obtain the united vector:

F1 = Concat( f u1, f u2, f i1, f i2, f i3)

- This obtained vector F1 is then fed into feedforward layers (denoted by FFLayers):

F2 = FFLayers(F1)

- The vector F2 is then segmented to create a sequence of token vectors that will be
fed into the Transformer model for the task of ratings prediction.

(token1, ..., tokenk) = segment(F2)

5. Experimental Results
5.1. The Dataset Summary

In order to assess the efficacy of our proposed model, we employed the MovieLens
dataset and various Amazon sub-datasets. To enhance the quality of our analysis, we
preprocessed these datasets to exclude users who infrequently rated items and items that
rarely received the ratings from the community.

We utilized the Amazon dataset for our experiments, which can be accessed at the
website https://jmcauley.ucsd.edu/data/amazon/ (accessed on 30 October 2022). Specifi-
cally, we employed sub-datasets including Electronic, Video Games, and Toys and Games.
To enhance the scope of our analysis, we incorporated various types of information, such
as rating scores, user reviews, item categories, and item descriptions.

For our experiments, we utilized the MovieLens dataset, which can be accessed through
the website https://grouplens.org/datasets/movielens (accessed on 30 October 2022).
The dataset provided us with various information such as user and movie identification,
rating scores, and movie genres, which we leveraged in our analysis.

Table 1 contains a description of the MovieLens and Amazon datasets:

• The MovieLens dataset includes 77,763 ratings of 27,041 users and 8203 movies;
• The Electronic dataset includes 80,472 ratings of 1042 users and 21,200 items;
• The Video Games dataset includes 98,769 ratings of 2291 users and 24,708 items;
• The Toys and Games dataset includes 68,102 ratings of 5462 users and 3028 items.

Table 1. A summary of the datasets.

Dataset Ratings Users Items

MovieLens 77,763 27,041 8203

Amazon: Toys and Games subcategory 68,102 5462 3028

Amazon: Video and Games subcategory 98,769 2291 24,708

Amazon: Electronic subcategory 80,472 1042 21,200

5.2. Evaluation Metrics
5.2.1. Mean Absolute Error (MAE)

The MAE is a popular metric because it ensures consistency in units between error
and predicted target values, and treats all errors equally. The MAE score can be calculated

https://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/movielens
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using Equation (10), which involves summing up the absolute errors and dividing the
result by the total number of observations [51].

MAE =
1
n

n

∑
i=1
|y1 − ŷi|2 (10)

5.2.2. Root Mean Square Error (RMSE)

The RMSE is a measure that quantifies the discrepancy between the actual and pre-
dicted ratings. It is calculated by taking the mean value of the squared differences between
the actual and predicted ratings, and finding the square root of that result, making it useful
when significantly large errors are undesirable [52]. Equation (11) displays the RMSE
calculation formula, in which di and d̂i, respectively, indicate the actual and predicted
ratings, while n denotes the total number of ratings.

RMSE =

√
1
n

n

∑
i=1

(di − d̂1)2 (11)

5.2.3. Precision

To evaluate the numerical precision of the predicted ratings, we employ a metric
called Precision, which is computed using the Equation (12). In this equation, TP refers to
the number of predicted ratings that agree with the corresponding test ratings, while FP
corresponds to the number of predicted ratings that differ from the test ratings [53].

Precision =
TP

TP + FP
(12)

5.3. Experimental Setups for Data

To conduct the experiments, we divided the dataset into smaller sets for training,
validation, and testing, and the details are presented in Table 2. Specifically, the number of
ratings for the training set, validation set, and testing set of each dataset are as follows:

• For the MovieLens dataset, there are 62,211 ratings for training, 3110 ratings for
validation, and 12,442 ratings for testing;

• For the Toys and Games dataset, there are 54,482 ratings for training, 2724 ratings for
validation, and 10,896 ratings for testing;

• For the Electronic dataset, there are 64,378 ratings for training, 3218 ratings for valida-
tion, and 12,876 ratings for testing;

• For the Video and Games dataset, there are 79,016 ratings for training, 3950 ratings for
validation, and 15,803 ratings for testing.

Table 2. Setting up the data for the experiments.

The Dataset Trained Ratings Validated Ratings Tested Ratings

MovieLens 62,211 3110 12,442

Amazon-Toys and Games 54,482 2724 10,896

Amazon-Electronic 64,378 3218 12,876

Amazon-Video and Games 79,016 3950 15,803

5.4. Experimental Setups for Models

The goal of our research is to demonstrate that combining different views using the
Transformer model is more efficient than using only one view, such as the Utility Matrix,
and is better than using the SVD model for the Utility Matrix. It is important to empirically
prove this hypothesis using the same established configuration. Therefore, we choose the
test configuration without paying full attention to choosing the configuration that gives



Appl. Sci. 2023, 13, 6324 13 of 21

the best results. The parameter values were chosen based on previous studies and were
experimented with several different values to choose the best configuration within that set.
For the magnitude of the attribute vectors, we have set the following:

• Because we use BERT for representing user reviews in our dataset, the magnitude of
the resulting attribute vector is 768 dimensions, which is equal to the magnitude of
the output vector of the BERT-base model;

• To represent the latent attributes of users and items using the factorization matrix
method, we tested different magnitudes of the latent feature vector, including 20,
50, and 100. After evaluating the performance on the validation set, we selected the
magnitude of 50 as the best choice;

• When using the TF-IDF measure for attribute representation, we utilized the set of all
tokens in our data. Therefore, the corresponding magnitude of these representation
vectors will be equal to the number of keywords.

Given that f u1, f i1, f i2, f u2, and f i3 represent user latent features, item latent fea-
tures, item genre/category features, user review features, and item description features,
respectively. Our proposed Multiview Transformer recommendation model is set up with
dimensional parameters for each input feature vector, as shown in Table 3.

• For the Movielens dataset, the dimensions of f u1, f i1, and f i2 are 50, 50, and
20, respectively;

• For the Amazon-Toys and Games dataset, the dimensions of f u1, f i1, f i2, f u2, and f i3
are 50, 50, 321, 768, and 768, respectively;

• For the Amazon-Electronics dataset, the dimensions of f u1, f i1, f i2, f u2, and f i3 are
50, 50, 944, 768, and 768, respectively;

• For the Amazon-Video and Games dataset, the dimensions of f u1, f i1, f i2, f u2, and f i3
are 50, 50, 16,978, 768, and 768, respectively.

Table 3. Setting up the parameters for the multiview transformer RS.

The Dataset
The Dimensions of

User Latent
Features

The Dimensions of
Item Latent

Features

The Dimensions
of Item

Genre/Category
Features

The Dimensions of
User Review

Features

The Dimensions of
Item Description

Features

MovieLens 50 50 20

Amazon-Toys and Games 50 50 321 768 768

Amazon-Electronic 50 50 944 768 768

Amazon-Video and Games 50 50 16,978 768 768

For the Multiview selection, we designed different experiments to investigate the
effect of using different views of the data, namely:

• Experiment with data represented by 2 views, representing users and items, generated
from the utility matrix;

• Experiment with data represented by all views. For MovieLens data, there are 3 views
in all, of which 2 are from the utility matrix and 1 view is Genre; For Amazon data,
there are 5 views in all, of which 2 are from the utility matrix and 3 are from user
review, item description, and item category.

For the ratings prediction model, we have designed the following models:

• We have conducted experiments with different configurations of the Transformer
model in our proposed approach, including varying numbers of layers (2, 4, or 6) and
hidden state values (20 and 50). After evaluating their performance on the validation
set, we selected the optimal configuration of (Layers = 4, Hidden state = 20, Heads = 4);

• We have also designed two baseline models, namely the MLP (Feedforward Neural
Network) and the Gated Recurrent Units (GRU), to demonstrate that the Transformer
model performs better;
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• In addition, we have tested a strong baseline model, the Singular Value Decomposition
(SVD) on the utility matrix, which is known to be one of the most effective models for
the recommender system (RS) problem.

We trained our model for 50 epochs and conducted the experiment 3 times for each
model. As there was only a negligible difference between the experimental runs, we chose
to include the best result from the experiment in Table 4.

Within the graph-based recommendation model, we have constructed a graph that
encompasses two distinct node types: user and item.

• For the Amazon dataset, we incorporated category and description as attributes for
the item nodes, while the user nodes were enriched with the review attribute;

• For the MovieLens dataset, the item nodes were augmented with the genre attribute;
• We established connections between the user and item nodes in the graph to model

the interactions between them. To represent the strength of these interactions, we
assigned ratings as the weight property of the edges. This allowed us to reflect the
degree of preference that each user showed for each item, which is an important factor
in our recommendation system.

Table 4. The experimental results on the MovieLens and Amazon datasets

Models MAE RMSE Precision

MovieLens:

MLP RS [three views] 1.261 1.677 51.03%

GRU RS [three views] 0.852 1.062 65.39%

Transformer-based RS [two views] 0.973 1.230 67.11%

Transformer-based RS [three views] 0.964 1.216 67.16%

SVD RS 1.562 2.293 47.75%

Amazon: Toys and Games:

MLP RS [five views] 0.527 0.776 86.65%

GRU RS [five views] 0.729 0.889 86.31%

Transformer-based RS [two views] 0.570 1.09 86.85%

Transformer-based RS [five views] 0.445 0.743 92.07%

SVD RS 0.844 1.120 68.06%

Amazon: Video and Games:

MLP RS [five views] 0.729 0.999 73.74%

GRU RS [five views] 0.941 1.174 76.89%

Transformer-based RS [two views] 0.842 2.062 77.09%

Transformer-based RS [five views] 0.689 1.471 83.31%

SVD RS 1.572 1.254 63.99%

Amazon: Electronic:

MLP RS [five views] 0.628 0.914 83.22%

GRU RS [five views] 0.78 1.007 85.80%

Transformer-based RS [two views] 0.606 1.362 85.94%

Transformer-based RS [five views] 0.554 1.195 87.83%

SVD RS 0.85 1.159 69.59%

5.5. Results

We evaluated the performance of our proposed Multiview transformer recommenda-
tion model by comparing it with the SVD, MLP, and GRU recommendation model on the
MovieLens and Amazon datasets. Our experimental findings validate two hypotheses:
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• Combining information from the utility matrix and other textual features using the
Transformer model results in better outcomes compared to relying solely on features
generated from the utility matrix;

• The Transformer model outperforms other models (specifically, we compared it with
GRU and MLP) in terms of yielding better results.

Table 4 presents the experimental findings for four datasets, which include The Movie-
Lens dataset and three Amazon sub-datasets (Toys and Games, Video and Games, and Elec-
tronic). Regarding the first hypothesis, our proposed model outperforms SVD (SVD RS),
using only the information derived from the utility matrix, in all three metrics (MAE,
RMSE, and Precision) on all four datasets. Regarding the second hypothesis, the Trans-
former model achieves the best Precision results, compared to the GRU (GRU RS) and MLP
(MLP RS) models. The Transformer model also outperforms the other models in the MAE
and RMSE metrics for most datasets, except for the MovieLens dataset, where the GRU
model produces the best results in both the MAE and RMSE metrics. Similarly, for the
Amazon-Electronic dataset, the MLP model yields the best RMSE.

Specifically, during the experiments conducted on the Movielens dataset, our proposed
transformer recommendation model integrated three views, which were user latent features,
item latent features, and item genre features. The experimental results obtained were MAE,
RMSE, and Precision metrics of 0.964, 1.216, and 67.16%, respectively. Compared to the
MLP, GRU, and SVD recommendation models, the proposed transformer recommendation
model exhibited the best Precision (Shown in Figure 4). Furthermore, our transformer
recommendation model provided slightly better results when integrating three views than
when integrating only two views.

Figure 4. The experimental results for the Precision metric with the Movielens dataset.

When conducting experiments on the Amazon-Toys and Games dataset, our proposed
transformer recommendation model integrated five views, which were the user latent
features, item latent features, item category features, item description features, and features
extracted from user reviews. The model provided better results in terms of MAE, RMSE,
and Precision metrics of 0.445, 0.743, and 92.07%, respectively, compared to recommen-
dation models based on MLP, GRU, and SVD (Shown in Figure 5). Furthermore, our
proposed transformer recommendation model provided better results when integrating
five views than when integrating only two views containing user latent features and item
latent features.
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Figure 5. The experimental results for the MAE, RMSE, and Precision with the Amazon-Toys and
Games dataset.

When conducting experiments on the Amazon-Video and Games dataset, our pro-
posed transformer recommendation model, which integrated five views, also gave the
MAE, RMSE, and Precision metrics of 0.689, 1.471, and 83.31%, respectively. Compared
to recommendation models based on MLP, GRU, and SVD, our proposed transformer
recommendation model exhibited the best results in terms of MAE and Precision (shown in
Figure 6). Moreover, our proposed transformer recommendation model provided better
results when integrating five views than when integrating only two views containing user
latent features and item latent features.

Figure 6. The experimental results for the MAE, Precision with the Amazon-Video and Games dataset.

We also conducted experiments on the Amazon-Electronics dataset, which resulted in
MAE, RMSE, and Precision metrics of 0.554, 1.195, and 87.83%, respectively, demonstrating
the effectiveness of our proposed transformer recommendation model that integrates
five views. Compared to recommended models based on MLP, GRU, and SVD, our
proposed transformer recommendation model exhibited the best results in terms of MAE
and Precision (shown in Figure 7). Additionally, the proposed transformer recommendation
model performed better when integrating five views rather than only two views containing
user latent features and item latent features.
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Figure 7. The experimental results for the MAE, Precision with the Amazon-Electronic dataset.

In addition to comparing our proposed model with SVD-based and DNN-based (MLP
and GRU) recommendation models, we have conducted experiments using the graph-
based recommendation model on the same train and test sets derived from the MovieLens
and Amazon sub-datasets. Our experiments provide evidence that our proposed recom-
mendation model surpasses the performance of the graph-based recommendation model.
Specifically, the results from Table 5 illustrate that our proposed model achieves higher
recommendation accuracy, with a Precision metric increase ranging from 11.14% to 108%,
a MAE metric decrease ranging from 31.19% to 65.37%, and a RMSE metric decrease
ranging from 15.56% to 59.24%.

Table 5. The comparison between our proposed model and a graph-based RS.

Dataset Methods Number of Views MAE RMSE Precision

MovieLens
Graph Three views 1.401 1.908 60.43%

Our proposed
model: Transformer Three views 0.964 1.216 67.16%

Amazon:
Toys
and Games

Graph Five views 1.285 1.823 60.30%

Our proposed
model: Transformer Five views 0.445 0.743 92.07%

Amazon:
Video
and Games

Graph Five views 1.305 1.742 56.01%

Our proposed
model: Transformer Five views 0.689 1.471 83.31%

Amazon:
Electronic

Graph Five views 1.542 1.863 42.25%

Our proposed
model: Transformer Five views 0.554 1.195 87.83%

6. Conclusions

In this study, we propose a new multimodal approach (i.e., multiview fusion) for
the recommender systems problem. Our method integrates various information sources,
including the utility matrix and textual sources, which previous studies have not been able
to solve. Our model is based on the Transformer Model and feature extraction methods for
each information source.

Our experimental results show that the proposed model performs better than both the
SVD method and the baseline model (MLP), which only use user and item representation
based on the utility matrix. In summary, the experimental results show that our proposed
model achieved higher recommendation accuracy compared to the baseline model (MLP)
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in terms of Precision, with increases ranging from 6.03% to 35.48% for the Amazon and
MovieLens datasets. The proposed model also demonstrated improved accuracy in terms
of MAE, with reductions ranging from 10.79% to 31.03% for the Amazon datasets. Further-
more, compared to SVD, known as one of the most effective models for RSs, the proposed
model showed an increase in Precision ranging from 26.21% to 40.65%, and in MAE ranging
from 34.82% to 56.17% for the Amazon datasets.

Moreover, the experimental results obtained from the MovieLens and Amazon datasets
provide evidence that our proposed model, which integrates information from both the
utility matrix and textual sources, outperforms using only the information from the utility
matrix in terms of recommendation accuracy. Moreover, we emphasize that performance
may vary based on data characteristics, and we cannot assert that using multiple views will
always enhance performance. The quality of additional data may also impact the model’s
overall performance. We have performed an analysis that illustrates the superiority of
our proposed model over the SVD approach in all four datasets, with better performance
observed in three out of the four datasets.

Furthermore, we conducted an analysis that demonstrates the superiority of our
proposed model over the SVD approach in all four datasets, with better performance
observed in three out of the four datasets. Additionally, our recommendation model
significantly improves the accuracy of recommendations compared to the graph-based
recommendation model. It achieves an increase of up to 108% in the Precision metric,
a decrease of up to 65.37% in the MAE metric, and a decrease of up to 59.24% in the
RMSE metric.

In future work, we will continue to expand by incorporating new sources of informa-
tion and further improve the Transformer-based model to make the integration of multiple
views more efficient.

Author Contributions: Conceptualization, T.-L.H.; Data curation, T.-L.H.; Formal analysis, T.-L.H.
and A.-C.L.; Investigation, T.-L.H. and A.-C.L.; Methodology, T.-L.H., A.-C.L. and D.-H.V.; Supervi-
sion, A.-C.L.; Writing—original draft, T.-L.H.; Writing—review and editing, T.-L.H. and A.-C.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed during the current study are available in the web
of Grouplens repository (https://grouplens.org/datasets/movielens/ (accessed on 30 October 2022))
and the web of Amazon repository (https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
(accessed on 30 October 2022)) [54].

Acknowledgments: We would like to express our gratitude to Soundararajan Ezekiel from the
Department of Mathematics and Computer Science at Indiana University of Pennsylvania, USA,
for his valuable discussions, which greatly improved the quality of this paper. He also provided us
with significant help in correcting the English writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
Bi-LSTM Bidirectional Long Short-Term Memory
CF Collaborative Filtering
DNN Deep Neural Network
GRU Gated Recurrent Units
KNN K Nearest Neighbors
LDA Latent Dirichlet Allocation

https://grouplens.org/datasets/movielens/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/


Appl. Sci. 2023, 13, 6324 19 of 21

MLP Multi-layer Perceptron
RS Recommender System
SVD Singular Value Decomposition
TF-IDF Term Frequency-Inverse Document Frequency

References
1. Feng, C.; Liang, J.; Song, P.; Wang, Z. A fusion collaborative filtering method for sparse data in recommender systems. Inf. Sci.

2020, 521, 365–379. [CrossRef]
2. Geetha, G.; Safa, M.; Fancy, C.; Saranya, D. A hybrid approach using collaborative filtering and content based filtering for

recommender system. J. Phys. Conf. Ser. 2018, 1000, 012101. [CrossRef]
3. Hoyer, P.O. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469.
4. Wang, Z.; Chen, H.; Li, Z.; Lin, K.; Jiang, N.; Xia, F. VRConvMF: Visual recurrent convolutional matrix factorization for movie

recommendation. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 519–529. [CrossRef]
5. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep matrix factorization models for recommender systems. In Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017;
Volume 17, pp. 3203–3209.

6. Yang, E.; Huang, Y.; Liang, F.; Pan, W.; Ming, Z. FCMF: Federated collective matrix factorization for heterogeneous collaborative
filtering. Knowl.-Based Syst. 2021, 220, 106946. [CrossRef]

7. Zhang, H.; Ganchev, I.; Nikolov, N.S.; Ji, Z.; O’Droma, M. FeatureMF: An item feature enriched matrix factorization model for
item recommendation. IEEE Access 2021, 9, 65266–65276. [CrossRef]

8. Reddy, S.; Nalluri, S.; Kunisetti, S.; Ashok, S.; Venkatesh, B. Content-based movie recommendation system using genre correlation.
In Proceedings of the Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018;
Springer: Singapore , 2019; Volume 2, pp. 391–397.

9. Wahyudi, K.; Latupapua, J.; Chandra, R.; Girsang, A.S. Hotel content-based recommendation system. J. Phys. Conf. Ser. 2020,
1485, 012017. [CrossRef]

10. Singla, R.; Gupta, S.; Gupta, A.; Vishwakarma, D.K. FLEX: A content based movie recommender. In Proceedings of the 2020
International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020 ; IEEE: Piscataway, NJ, USA, 2020;
pp. 1–4.

11. Ghauth, K.I.; Abdullah, N.A. Learning materials recommendation using good learners’ ratings and content-based filtering. Educ.
Technol. Res. Dev. 2010, 58, 711–727. [CrossRef]

12. Ghazanfar, M.; Prugel-Bennett, A. An improved switching hybrid recommender system using naive bayes classifier and
collaborative filtering. In Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2010),
Hong Kong, China, 17–19 March 2010; Volume 1.

13. Mulay, A.; Sutar, S.; Patel, J.; Chhabria, A.; Mumbaikar, S. Job Recommendation System Using Hybrid Filtering. ITM Web Conf.
2022, 44, 02002. [CrossRef]

14. Nayak, R.; Mirajkar, A.; Rokade, J.; Wadhwa, G. Hybrid recommendation system for movies. Int. Res. J. Eng. Technol. 2018, 5,
1217–1220.

15. Okaka, R.A.; Mwangi, W.; Okeyo, G. A Hybrid Approach for Personalized Recommender System Using Weighted Term
Frequency Inverse Document Frequency. Int. J. Comp. Appl. Technol. Res. 2016, 5, 764–774.

16. Otegbade, O. A Hybridized Recommendation System on Movie Data Using Content-Based and Collaborative Filtering. Available
online: http://repository.aust.edu.ng:8080/xmlui/handle/123456789/622 (accessed on 15 May 2016).

17. Walek, B.; Fajmon, P. A hybrid recommender system for an online store using a fuzzy expert system. Expert Syst. Appl. 2023,
212, 118565. [CrossRef]

18. Liu, K.; Li, Y.; Xu, N.; Natarajan, P. Learn to combine modalities in multimodal deep learning. arXiv 2018, arXiv:1805.11730.
19. Conceiç ao, F.L.; Pádua, F.L.; Lacerda, A.; Machado, A.C.; Dalip, D.H. Multimodal data fusion framework based on autoencoders

for top-N recommender systems. Appl. Intell. 2019, 49, 3267–3282. [CrossRef]
20. Ren, X.; Yang, W.; Jiang, X.; Jin, G.; Yu, Y. A deep learning framework for multimodal course recommendation based on LSTM+

attention. Sustainability 2022, 14, 2907. [CrossRef]
21. Wang, J.; Mao, H.; Li, H. FMFN: Fine-grained multimodal fusion networks for fake news detection. Appl. Sci. 2022, 12, 1093.

[CrossRef]
22. Choudhury, S.S.; Mohanty, S.N.; Jagadev, A.K. Multimodal trust based recommender system with machine learning approaches

for movie recommendation. Int. J. Inf. Technol. 2021, 13, 475–482. [CrossRef]
23. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International

Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.
24. Nikzad-Khasmakhia, N.; Balafara, M.; Feizi-Derakhshia, M.R.; Motamedb, C. BERTERS: Multimodal Representation Learning for

Expert Recommendation System with Transformer. arXiv 2020, arXiv:2007.07229.
25. Yang, B.; Mei, T.; Hua, X.S.; Yang, L.; Yang, S.Q.; Li, M. Online video recommendation based on multimodal fusion and relevance

feedback. In Proceedings of the 6th ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands,
9–11 July 2007; pp. 73–80.

http://doi.org/10.1016/j.ins.2020.02.052
http://dx.doi.org/10.1088/1742-6596/1000/1/012101
http://dx.doi.org/10.1109/TETCI.2021.3102619
http://dx.doi.org/10.1016/j.knosys.2021.106946
http://dx.doi.org/10.1109/ACCESS.2021.3074365
http://dx.doi.org/10.1088/1742-6596/1485/1/012017
http://dx.doi.org/10.1007/s11423-010-9155-4
http://dx.doi.org/10.1051/itmconf/20224402002
http://repository.aust.edu.ng:8080/xmlui/handle/123456789/622
http://dx.doi.org/10.1016/j.eswa.2022.118565
http://dx.doi.org/10.1007/s10489-019-01430-7
http://dx.doi.org/10.3390/su14052907
http://dx.doi.org/10.3390/app12031093
http://dx.doi.org/10.1007/s41870-020-00553-2


Appl. Sci. 2023, 13, 6324 20 of 21

26. Pliakos, K.; Kotropoulos, C. Simultaneous image tagging and geo-location prediction within hypergraph ranking framework. In
Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy,
4–9 May 2014; pp. 6894–6898. [CrossRef]

27. Xia, X.; Yin, H.; Yu, J.; Wang, Q.; Cui, L.; Zhang, X. Self-supervised hypergraph convolutional networks for session-based
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35,
pp. 4503–4511.

28. Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; Yin, D. Graph neural networks for social recommendation. In Proceedings of the
World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 417–426.

29. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized markov chains for next-basket recommendation. In
Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 811–820.

30. Rendle, S.; Krichene, W.; Zhang, L.; Anderson, J. Neural collaborative filtering vs. matrix factorization revisited. In Proceedings
of the 14th ACM Conference on Recommender Systems, Virtual Event Brazil, 22–26 September 2020; pp. 240–248.

31. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential recommendation with bidirectional encoder
representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019; pp. 1441–1450.

32. Qiu, G.; Yu, X.; Jiang, L.; Ma, B. Text-aware recommendation model based on multi-attention neural networks. In Proceedings
of the Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan, 14–16 August 2021,
Proceedings, Part I 14; Springer: Cham, Switzerland, 2021; pp. 590–603.

33. Chen, J.; Zhang, H.; He, X.; Nie, L.; Liu, W.; Chua, T.S. Attentive Collaborative Filtering: Multimedia Recommendation with Item-
and Component-Level Attention. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’17, Tokyo, Japan, 7–11 August 2017; Association for Computing Machinery: New York, NY, USA,
2017; pp. 335–344. [CrossRef]

34. Chen, L.; Cao, J.; Wang, Y.; Liang, W.; Zhu, G. Multi-view Graph Attention Network for Travel Recommendation. Expert Syst.
Appl. 2022, 191, 116234. [CrossRef]

35. Tai, C.Y.; Wu, M.R.; Chu, Y.W.; Chu, S.Y.; Ku, L.W. Mvin: Learning multiview items for recommendation. In Proceedings of
the 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 25–30 July 2020;
pp. 99–108.

36. Ghasemi, N.; Momtazi, S. Neural text similarity of user reviews for improving collaborative filtering recommender systems.
Electron. Commer. Res. Appl. 2021, 45, 101019. [CrossRef]

37. Terzi, M.; Rowe, M.; Ferrario, M.A.; Whittle, J. Text-based user-knn: Measuring user similarity based on text reviews. In
Proceedings of the International Conference on User Modeling, Adaptation, and Personalization; Springer: Cham, Switzerland, 2014;
pp. 195–206.

38. Wang, H.M.; Yu, G. Personalized recommendation system K-neighbor algorithm optimization. In Proceedings of the International
Conference on Information Technologies in Education and Learning (ICITEL 2015), Hangzhou, China, 19–20 December 2015.

39. Cui, B.B. Design and implementation of movie recommendation system based on Knn collaborative filtering algorithm. ITM Web
Conf. 2017, 12, 04008. [CrossRef]

40. Kamali, P.; Sudha, P.; Akshaya, S. Outfit Recommender System using KNN Algorithm. Int. J. Eng. Res. Technol. 2018, 6. Available
online: https://www.ijert.org/research/outfit-recommender-system-using-knn-algorithm-IJERTCONV6IS07133.pdf (accessed
on 30 January 2023)

41. Li, L.; Zhang, Z.; Zhang, S. Hybrid algorithm based on content and collaborative filtering in recommendation system optimization
and simulation. Sci. Program. Towards Smart World 2021, 4. [CrossRef]

42. Shi, W.; Wang, L.; Qin, J. User embedding for rating prediction in SVD++-based collaborative filtering. Symmetry 2020, 12, 121.
[CrossRef]

43. Hasan, M.; Roy, F. An item–item collaborative filtering recommender system using trust and genre to address the cold-start
problem. Big Data Cogn. Comput. 2019, 3, 39. [CrossRef]

44. Duan, R.; Jiang, C.; Jain, H.K. Combining review-based collaborative filtering and matrix factorization: A solution to rating’s
sparsity problem. Decis. Support Syst. 2022, 156, 113748. [CrossRef]

45. Ho, T.L.; Le, A.C. Multi-view Transformation in Recommender Systems. In Proceedings of the 2021 International Conference
on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 26–28 August 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 88–91.

46. Kim, H.N.; El-Saddik, A.; Jo, G.S. Collaborative error-reflected models for cold-start recommender systems. Decis. Support Syst.
2011, 51, 519–531. [CrossRef]

47. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. [CrossRef]

48. Kotu, V.; Deshpande, B. Data Science: Concepts and Practice; Morgan Kaufmann: Burlington, MA, USA, 2018.
49. Eklund, M. Comparing Feature Extraction Methods and Effects of Pre-Processing Methods for Multi-Label Classification of

Textual Data. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231438 (accessed on 10 February 2023).
50. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.

http://dx.doi.org/10.1109/ICASSP.2014.6854936
http://dx.doi.org/10.1145/3077136.3080797
http://dx.doi.org/10.1016/j.eswa.2021.116234
http://dx.doi.org/10.1016/j.elerap.2020.101019
http://dx.doi.org/10.1051/itmconf/20171204008
https://www.ijert.org/research/outfit-recommender-system-using-knn-algorithm-IJERTCONV6IS07133.pdf
http://dx.doi.org/10.1155/2021/7427409
http://dx.doi.org/10.3390/sym12010121
http://dx.doi.org/10.3390/bdcc3030039
http://dx.doi.org/10.1016/j.dss.2022.113748
http://dx.doi.org/10.1016/j.dss.2011.02.015
http://dx.doi.org/10.48550/arXiv.1706.03762
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231438


Appl. Sci. 2023, 13, 6324 21 of 21

51. Schneider, P.; Xhafa, F. Anomaly Detection and Complex Event Processing Over IoT Data Streams: With Application to EHealth and
Patient Data Monitoring; Academic Press: Cambridge, MA, USA, 2022.

52. Salam Patrous, Z.; Najafi, S. Evaluating Prediction Accuracy for Collaborative Filtering Algorithms in Recommender Systems.
Ph.D. Thesis, KTH Royal Inst. of Technol., Stockholm, Sweden, 2016. Available online: https://urn.kb.se/resolve?urn=urn%
3Anbn%3Ase%3Akth%3Adiva-186456 (accessed on 20 January 2023).

53. Ho, T.L.; Le, A.C.; Vu, D.H. A Hybrid Model for Recommendation Systems. In Proceedings of the Advances in Intelligent Information
Hiding and Multimedia Signal Processing: Proceeding of the 16th International Conference on IIHMSP in Conjunction with the 13th
International Conference on FITAT, Ho Chi Minh City, Vietnam, 5–7 November 2020; Springer: Singapore, 2021; Volume 2, pp. 316–323.

54. Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 188–197.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-186456
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-186456

	Introduction
	Related Works
	Background
	User-Based Recommender Systems
	Item-Based Recommender Systems
	The Transformer Encoder Architecture
	Matrix Factorization
	Feature Extraction 
	Term Frequency-Inverse Document Frequency (TF-IDF)
	Bidirectional Encoder Representations from Transformers (BERT)


	The Proposed Model
	Our Multiview Transformer Model for Recommendation
	The Feature Extraction Algorithm
	The Feature Conversion Algorithm

	Experimental Results
	The Dataset Summary
	Evaluation Metrics
	Mean Absolute Error (MAE)
	Root Mean Square Error (RMSE)
	Precision

	Experimental Setups for Data
	Experimental Setups for Models 
	Results

	Conclusions
	References

