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Abstract: Gross primary productivity (GPP) is an important indicator in research on carbon cycling
in terrestrial ecosystems. High-accuracy GPP prediction is crucial for ecosystem health and climate
change assessments. We developed a site-level GPP prediction method based on the GeoMAN model,
which was able to extract spatiotemporal features and fuse external environmental factors to predict
GPP on the Tibetan Plateau. We evaluated four models’ behavior—Random Forest (RF), Support
Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN—in predicting GPP at nine flux
observation sites on the Tibetan Plateau. The GeoMAN model achieved the best results (R2 = 0.870,
RMSE = 0.788 g Cm−2 d−1, MAE = 0.440 g Cm−2 d−1). Distance and vegetation type of the flux sites
influenced GPP prediction, with the latter being more significant. The different grassland vegetation
types exhibited different sensitivity to environmental factors (Ta, PAR, EVI, NDVI, and LSWI) for GPP
prediction. Among them, the site located in the alpine swamp meadow was insensitive to changes
in environmental factors; the GPP prediction accuracy of the site located in the alpine meadow
steppe decreased significantly with the changes in environmental factors; and the GPP prediction
accuracy of the site located in the alpine Kobresia meadow also varied with environmental factor
changes, but to a lesser extent than the former. This study provides a good reference that deep
learning model is able to achieve good accuracy in GPP simulation when considers spatial, temporal,
and environmental factors, and the judgement made by deep learning model conforms to basic
knowledge in the relevant field.

Keywords: deep learning; GeoMAN model; gross primary productivity; attention mechanism;
interdisciplinary

1. Introduction

Gross primary productivity (GPP) is the cumulative sum of organisms produced
by plants absorbing CO2 during photosynthesis [1,2]. It drives the seasonal and annual
variations in atmospheric CO2 concentration, which reflect the production capacity of
terrestrial ecosystems under natural conditions [2,3], and is an important indicator for
assessing ecosystem health and climate change [4]. Therefore, accurate prediction of GPP is
crucial for ecosystem function evaluation and carbon balance research [2].

The common methods for quantifying and predicting GPP are based on processing
observational data and process-based model simulation [2,5]. Observational data include
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data obtained using the eddy covariance (EC) technique, in which GPP values are obtained
by calculating net ecosystem exchange (NEE) from vertical turbulent transport in the
atmosphere under meteorological conditions [5,6], and satellite data, which are commonly
used for GPP estimation due to their stability and sustainability, such as the MODIS GPP
standard product, the VPM model, and the EC-LUE model [2,7–9]. However, satellite
GPP products cannot fully guarantee the reliability of data [10], which affects the accuracy
of the prediction data and introduces uncertainties to related research. Process-based
models mainly investigate and simulate ecological processes occurring in plants and have
extensive theoretical foundations in related fields. However, process-based models have
complex structures and often simulate ideal ecological processes that deviate from actual
conditions [2,11], which affects model accuracy. In addition, plant organisms involve
complex and nonlinear biological and chemical mechanisms [2,12,13], which pose a great
challenge for process-based models to simulate these mechanisms.

Currently, artificial intelligence (AI) algorithms have been widely applied in various
fields because they can fit complex nonlinear mapping relationships between predictive
and driving factors without requiring as many complicated prior assumptions as traditional
models do [14]. Commonly applied machine learning models include Random Forest (RF),
Support Vector Machine (SVM), and neural networks such as Long-Short Term Memory
(LSTM). Tramontana et al. [15], Ichii et al. [16], Wang et al. [17], and other researchers used
AI methods for tree species classification and carbon flux prediction, demonstrating the
potential of AI in ecology. In recent years, Zhang et al. [18], Yuan et al. [19], Yu et al. [20],
Sarkar et al. [4], and others used RF, Convolutional Neural Network (CNN), and Deep
Belief Network (DBN) to predict GPP and achieved good results.

In this work, we constructed a model with spatial–temporal correlation while consider-
ing environmental factor fusion based on the GeoMAN model, a network with a multi-level
attention mechanism developed by Liang et al. [21]. We trained and parameterized the
algorithm with observational data on GPP from various sites and environmental driving
data to extract nonlinear mapping relationships between GPP and multiple environmental
factors. We designed a series of case studies to assess the performance of this deep learning
model, which was based on the attention mechanism, by examining the impacts of distance,
vegetation, and environmental factors on the prediction results across various flux sites.
Compared with the previous applications of AI models in cross-disciplinary fields, our
method not only fully utilizes the high precision of AI in prediction but also considers the
prior knowledge within the relevant field to ensure that the results are both more accurate
and consistent with domain knowledge.

2. Materials and Methods
2.1. Study Area

The flux sites used in this study were distributed in the Tibetan Plateau region, which
is located in the alpine climate zone and has the climatic characteristics of long sunshine
hours, intense sunlight, low temperatures, and scant rainfall. The regional average elevation
exceeds 4000 m, the annual average temperature ranges from −5.75 to 2.57 ◦C, and the
annual average amount of precipitation is 200–600 mm. Alpine grassland covers more than
60% of the surface area of this region [14,22], and it is a distinctive grassland ecosystem
within all alpine areas in the world [23,24].

According to the Atlas of Grassland Resources in China (1:1,000,000) [25], alpine grass-
lands are subdivided into four sub-categories: alpine Kobresia meadow (KO), alpine shrub
meadow (SH), alpine swamp meadow (SW), and alpine meadow steppe (AS) (Figure 1).
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Figure 1. Geographical spread of alpine grasslands across China [14,23]. Black triangles represent the
nine flux sites.

2.2. Data
2.2.1. Flux and Meteorological Data

The flux and meteorological data used in this study were collected from the China
Terrestrial Ecosystem Flux Observation and Research Network (ChinaFLUX) [14,23,26],
the Coordinated Observations and Integrated Research over Arid and Semi-arid China
(COIRAS) [27], and the Heihe Watershed Allied Telemetry Experimental Research (HiWA-
TER) [28], which were observed by nine flux stations distributed in the Tibetan Plateau
region. The data spans from 2003 to 2014. These flux sites exemplify the broadest grassland
ecosystem types, encompassing an extensive range of spatial, ecological, and weather-
related circumstances [23].

Carbon flux data were processed using various methods, including triple coordinate
rotation, Webb–Pearman–Leuning (WPL) correction, and outlier removal. The temporal
resolution of the MODIS data was eight days, while that of temperature and photosyn-
thetically active radiation was half an hour. The eddy covariance system was used to
concurrently record these meteorological data, and any missing values were supplemented
using the technique proposed by Schwalm et al. [29]. The data were then averaged and
summed over eight days [14,23]. Finally, a total of 1421 site observation data points with a
temporal resolution of eight days were obtained. The primary attributes of the nine flux
sites in northern China’s grasslands were shown in Table 1.

Table 1. Primary attributes of the nine flux sites in northern China’s grasslands [14,23].

Site Grassland Type Latitude Longitude Elevation (m) Operation Period

AR
Alpine Kobresia Meadows

38.04◦ N 100.46◦ E 3033 2014
GL 34.35◦ N 100.56◦ E 3980 2007, 2010–2011, and 2013

HBKO 37.61◦ N 101.31◦ E 3148 2003–2004

HBSH Alpine Shrub Meadows 37.67◦ N 101.33◦ E 3293 2003–2012

DXSW Alpine Swamp Meadows 30.47◦ N 91.06◦ E 4286 2009–2010
HBSW 37.61◦ N 101.33◦ E 3160 2004–2008 and 2010–2012

DXST
Alpine Meadow Steppes

30.5◦ N 91.06◦ E 4333 2004–2005, 2007, and
2009–2010

NMC 30.77◦ N 90.96◦ E 4730 2009
ZF 28.36◦ N 86.95◦ E 4293 2009
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2.2.2. Remote Sensing Data

In this research, the remote sensing data utilized comprised the following MODIS
products: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI)
(MOD13A2) [14,30], and surface reflectance (MOD09A1) [14,31]. The spatial resolution of
the NDVI and EVI products was 1000 m and the temporal resolution was 16 days, while
the spatial resolution of the surface reflectance was 500 m and the temporal resolution was
8 days. In order to acquire data with consistent spatial and temporal resolution, the quality
control and data completion approaches proposed by Ma et al. [32] and Xiao et al. [33] were
applied. The surface reflectance data were used to calculate the land surface water index
(LSWI) [34].

2.3. Model
2.3.1. Deep Learning Model

In this study, we constructed our model based on the GeoMAN algorithm developed
by Liang et al. in 2018, which was originally applied to predict air quality [21]. The
GeoMAN algorithm can extract the spatial correlation of input variables and consider the
influence of neighboring sites on the target site’s GPP, which can help estimate the GPP of
grasslands more accurately. The GeoMAN algorithm consists of an encoder and a decoder.
The encoder contains a mechanism to consider the features within a site, a mechanism
to consider the spatial features between sites, and an LSTM model to extract the local
features of the site to be predicted and the spatial features of relevant surrounding sites.
The decoder includes a temporal attention mechanism and an LSTM model, which decode
the feature vector output by the encoder to predict grassland GPP.

There are complex correlations between environmental variables and GPP at each flux
site. The inter-site feature attention mechanism of the GeoMAN algorithm dynamically
captures the association between environmental variables and GPP within the site targeted
for prediction. The inter-site feature attention mechanism for the target flux site is estimated
as follows:

ek,t= vT
0 tan h (W0 [ht−1; st−1 ] + U0[I0

k .] + b0 (1)

In Equation (1), [ht−1; st−1] denotes the concatenation operation in Tensorflow between
ht−1 and st−1, as they are the hidden state and the cell state of the LSTM network at time
t − 1, respectively, which contain the information of the previous t − 1 time steps, thereby
forming the long-term and short-term memory of the LSTM network. I0

k means the k-th
time series at the flux site to be predicted. v0, W0, U0, and b0 are the learnable parameters:
during the learning and training process of the model, they are continuously updated
according to the loss function via backpropagation. The environmental factors selected for
predicting GPP in this study include temperature (Ta), photosynthetically active radiation
(PAR), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI),
and land surface water index (LSWI). The formula for calculating the weighting values
of each factor based on the Geoman model’s inter-site feature attention mechanism is
as follows:

αk,t=
exp(ek,t)

∑T
j=1 exp

(
ej,t
) (2)

In Equation (2), αk,t is the weighting value of the k-th feature (one each for Ta, PAR,
EVI, NDVI, and LSWI) at time t. The sum of the weighting values of all features is 1.
The calculated weighting values are multiplied by the corresponding feature values to
distinguish the importance of different features according to the GeoMAN model.

As shown in Figure 2, the LSTM unit is an important computational unit in the
GeoMAN model. Figure 3 shows the schematic diagram of the LSTM unit. The input at
time t is xt, and ct−1 and ht−1 are the cell state and the hidden state at time t− 1, respectively.
They go through three main stages inside the LSTM unit: first, the forgetting stage, which
selectively forgets the input from the previous time step; second, the selective memory
stage, which selectively remembers the input from the current time step, emphasizing
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important parts while remembering less important parts; and third, the output stage, which
outputs the new hidden state ht and the cell state ct and inputs them to the next time step.
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After the input data are assigned different weights by the inter-station feature attention
mechanism and updated by the LSTM unit, it is essential to select pertinent time periods for
GPP forecasting. It further enhances the precision of the prediction outcomes. Therefore, the
GeoMAN model introduces a temporal attention mechanism. The formula for calculating
the attention weight of each hidden state at a historical time step is as follows [35]:

ut,τ= vT
d tan h (Wd

[
h′τ−1; s′τ−1 ] + W′dht+bd (3)

γt,τ=
exp(ut,τ)

∑T
j=1 exp

(
uj,τ
) (4)

In Equation (3), h′τ−1 and s′τ−1 are the hidden state and the cell state of the LSTM at
time step τ − 1. τ is the output prediction time step. vd, Wd, Ud, and bd are the learnable
parameters. The output vector of the time attention mechanism at this time step is as
follows [35]:

cτ=
T

∑
t=1

γt,τht (5)

2.3.2. Model Training and Evaluation

The values of each element of the flux site data used in this study have large differences.
To ensure that model learning and training are not affected by this issue, each element of
the data is standardized and normalized using the following formula:

x′=
x− µ

σ
(6)

In Equation (6), µ and σ are the mean and standard deviation of the corresponding
element, respectively. The processed element data have a mean of 0 and a variance of 1,
which prevents the model from being biased toward elements with large value ranges and
ensures the accuracy of the model. After data pre-processing, the learning and training
steps start. Since the observation data from the nine flux sites are not large in scale (a total
of 1421 records), ten-fold cross-validation was applied to make full use of the data and to
ensure the model’s prediction performance on the whole data set. That is, for each fold,
10% of the data were taken as the test set, and the remaining 90% were used for learning
and training. Then, the data used for learning and training were divided into training
and validation sets at a ratio of 9:1, and the data order was randomly shuffled to avoid
over-fitting. The model uses Mean Squared Error (MSE) as the loss function and the Adam
optimizer to update model parameters. This process was repeated ten times to complete
the predictions on all the data and evaluate the results.

This study used three common statistical indicators to evaluate model prediction
accuracy: mean squared error, mean absolute error, and R-squared. The relevant formulas
are as follows:

R2= (
∑n

i=1 (yi − y)
(
y′i − y′

)√
∑n

i=1(yi − y)2
√

∑n
i=1
(
y′i − y′

)2
)2 (7)

RMSE=

√
1
n∑n

i=1

(
y′i − yi

)2 (8)

MAE=
1
n∑n

i=1

∣∣y′i − yi
∣∣ (9)

where y′i and yi are the predicted and observed values of GPP, respectively; y′ and y are the
mean values of y′i and yi, respectively; and n is the number of observation samples.
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3. Case Analysis

In this section, we introduced the basic idea of our experimental design. We tested
the performance of different models on the aggregate data to prove that deep learning
models have highly accurate prediction capabilities. Moreover, considering that the model
predictions must conform to basic ecological knowledge, we were required to conduct
multiple experiments by controlling the spatial distance of flux sites, vegetation types, and
environmental factors.

3.1. Prediction Accuracy with All Factors
3.1.1. Comparison of Model Performance with the Use of All Data

In this analysis, we used the data from all flux sites to train the Random Forest (RF),
Support Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN models. Ac-
cording to the ten-fold cross-validation results of all the models, the relationship between
predicted GPP and observed GPP is shown in Figure 4 and Table 2. It is obvious that
there are different training effects between the four models. The Random Forest model
has the lowest prediction accuracy, with a prediction RMSE of 0.954 g Cm−2 d−1, MAE
of 0.553 g Cm−2 d−1, and R2 of 0.810; the Deep Belief Network model achieves a certain
improvement in prediction accuracy compared to the Random Forest model, with a predic-
tion RMSE of 0.912 g Cm−2 d−1, MAE of 0.559 g Cm−2 d−1, and R2 of 0.827; the Support
Vector Machine model has similar prediction accuracy to the Deep Belief Network model,
with a prediction RMSE of 0.910 g Cm−2 d−1, MAE of 0.571 g Cm−2 d−1, and R2 of 0.827;
and the GeoMAN model has the highest prediction accuracy with a prediction RMSE of
0.788 g Cm−2 d−1, MAE of 0.440 g Cm−2 d−1, and R2 of 0.870, which indicates that the
GeoMAN model could fit the GPP values of the nine flux sites in the Tibetan Plateau better
than the other three models.
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Table 2. Results of the four models with the use of all data.

Model RF SVR DBN GeoMAN

RMSE 0.954 0.910 0.912 0.788
MAE 0.553 0.571 0.559 0.440

R2 0.810 0.827 0.827 0.870

3.1.2. Performance of Single Flux Site

As shown in Figure 1, the distribution map of the nine flux sites indicates that different
sites have different vegetation and climate conditions. Therefore, it is necessary to test the
GPP prediction accuracy of the GeoMAN model at different flux sites.

1. Test site GPP against remaining sites

We took the target flux site as the test data and the remaining sites as the training data,
for a total of nine sites being tested. As shown in Figure 5, there is a large difference in
performance among the different flux sites. The possible reasons for this difference are
(1) some sites have different vegetation types from the target site, and (2) some sites have
different climate conditions from the target site due to their long distance.
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The distances between each flux site were calculated using the Haversine formula
based on their latitude and longitude. The calculation results are shown in Table 3.

Table 3. Distances between the flux sites (km).

AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

AR / 1202.5 1204.9 410.4 88.7 86.8 90.1 1187.5 1651.6

DXST 1202.5 / 3.3 988.5 1230.1 1235.6 1231.6 31.5 463.7

DXSW 1204.9 3.3 / 990.1 1232.4 1237.8 1233.8 34.7 462.0

GL 410.4 988.5 990.1 / 368.7 375.6 369.1 983.3 1452.1

HBKO 88.7 1230.1 1232.4 368.7 / 6.9 1.8 1217.1 1685.3

HBSH 86.8 1235.6 1237.8 375.6 6.9 / 6.7 1222.44 1690.5

HBSW 90.1 1231.6 1233.8 369.1 1.8 6.7 / 1218.6 1686.8

NMC 1187.5 31.5 34.7 983.3 1217.1 1222.4 1218.6 / 471.4

ZF 1651.6 463.7 462.0 1452.1 1685.3 1690.5 1686.8 471.4 /

Based on the results in Table 3, each target flux site was predicted using the flux sites
within 500 km and 100 km as the training data. There are no flux sites within 100 km of the
GL and ZF sites, so they were not included in the prediction results for sites within 100 km.
The prediction results are shown in Figures 6 and 7. According to the results, the accuracy
of the AR site increases as the range of selected sites decreases, while the DXST, NMC, and
ZF sites show a decreasing trend in accuracy as the range of selected sites decreases. The
overall accuracy of the DXSW site is lower than when using all sites for prediction, but it
shows a rebound trend as the range decreases. According to Table 1, the AR site with an
increasing trend has alpine Kobresia meadow as its vegetation type, while the DXST, NMC,
and ZF sites with a decreasing trend have alpine meadow steppe as their vegetation type.
It can be speculated that the prediction effect of each site is related to the vegetation type of
the other selected sites.

3. Selecting training data according to vegetation type

As shown in Table 1, the training data for each site to be predicted comes from
the other flux sites with the same vegetation type. The final predictions are shown in
Figure 8. It is obvious that selecting the training data based on vegetation type has higher
overall prediction accuracy compared to selecting the training data based on distance (no
corresponding prediction results are available for the HBSH site because it has a different
vegetation type compared to the other flux sites). Next, we combined the results of the
previous three experiments to examine the effect of selecting training data under different
conditions on prediction accuracy, and the combined results are shown in Table 4.

As shown in Table 4, using vegetation type as the training data in the screening mech-
anism is better than using site distance as the training data from an overall perspective.
However, from a single-site perspective, the GL and HBKO sites show a decreasing trend
in accuracy. This is because for the AR and HBKO sites, which have significantly less data
than other sites and share the same vegetation type as the GL site, the training data are
insufficient, leading to a decrease in the prediction accuracy at the GL site. The HBKO site,
which has always maintained an R-squared value above 0.9 from an overall perspective,
does not have much room for accuracy improvement. At the same time, we compared the
prediction results of the training data without screening and with screening for vegetation
type. Although some sites have lower accuracy, the AR site shows a significant improve-
ment in accuracy; as a result, the overall prediction accuracy of the latter method is not
lower than that of the former method. This result shows that increasing the amount of
training data with the same vegetation type can achieve equally good results as increasing
the overall amount of training data.
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Table 4. Results comparing all previous experiments.

Site AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

R2 0.663 0.853 0.843 0.879 0.935 0.868 0.856 0.879 0.758
R2 (500 km) 0.827 0.778 0.678 0.889 0.933 0.928 0.898 0.706 0.601
R2 (100 km) 0.877 0.780 0.717 / 0.951 0.883 0.816 0.683 /

R2 (vt) 0.945 0.833 0.751 0.801 0.902 / 0.849 0.902 0.767

Numbers in red indicate that the prediction results for the corresponding site have increased in accuracy compared
to the previous results without setting a distance range; numbers in blue indicate that the results have decreased
in accuracy; and numbers in black indicate that the results have no significant changes.

3.2. Prediction Accuracy with Factor Ablation

In Section 3.1, the effects of vegetation type and distance between the flux sites on GPP
prediction accuracy were then investigated. The training data included temperature (Ta),
photosynthetically active radiation (PAR), enhanced vegetation index (EVI), normalized
difference vegetation index (NDVI), and land surface water index (LSWI). In this analysis,
a feature ablation experiment was conducted to explore the influence of each factor on GPP
prediction accuracy.

3.2.1. Test Site GPP without Ta

In this experiment, all Ta data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 9. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is significantly improved, while that of the DXST, DXSW, NMC, and
ZF sites is greatly reduced. The prediction accuracy of the GL, HBKO, HBSH, and HBSW
sites does not change noticeably.
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3.2.2. Test Site GPP without PAR

In this experiment, all Par data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 10. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy trends of the sites are similar to those obtained after removing Ta. The prediction
accuracy of the AR site has significantly improved, but not as much as after the removal of
Ta. The prediction accuracy of the DXST, DXSW, NMC, and ZF sites is sharply reduced.
For the DXST site, the decrease is greater than that after removing Ta, whereas the DXSW,
NMC, and ZF sites show some recovery but still perform worse than without any feature
ablation. The prediction accuracy of the GL, HBKO, HBSH, and HBSW sites as a whole is
lower than that after removing Ta, though it does not change appreciably.
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3.2.3. Test Site GPP without EVI

In this experiment, all EVI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 11. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is still significantly improved and higher than that after removing
Par but lower than that after removing Ta. The prediction accuracy of the DXST, DXSW,
NMC, and ZF sites is similar to that after the removal of Ta and Par, with a sharp decrease.
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The decrease is larger for the NMC and ZF sites than for the others. The prediction accuracy
of the GL site shows a continuous decline compared to that after the removal of Ta and Par.
The prediction accuracy of the HBKO, HBSH, and HBSW sites does not change noticeably.
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3.2.4. Test Site GPP without NDVI

In this experiment, all NDVI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 12. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is significantly improved and higher than that after removing Ta,
Par, and EVI. The prediction accuracy of the DXST, DXSW, and ZF sites decreases, which
is consistent with the results of the previous ablation experiments. For the ZF site, the
prediction accuracy is only better than that after removing Ta and EVI. The NMC site has
an abnormal increase in accuracy. The prediction accuracy of the GL site is higher than that
after removing Ta, Par, and EVI. The prediction accuracy of the HBKO, HBSH, and HBSW
sites does not change noticeably.
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3.2.5. Test Site GPP without LSWI

In this experiment, all LSWI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 13. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site improves significantly and is only lower than that after removing
NDVI. The DXST, DXSW, NMC, and ZF sites have similar prediction accuracy as in the
previous ablation experiments, with a large decrease in accuracy, and the prediction accu-
racy of the ZF site is only higher than that after removing EVI. The GL site shows a slight
decrease in accuracy, while the HBKO, HBSH, and HBSW sites show no obvious changes
in prediction accuracy.

3.2.6. Summary of Factor Ablation Experiments

To observe the influence of different features on the prediction accuracy of each site
more intuitively, we summarized all the feature ablation experiment results, as shown
in Table 5.
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Table 5. Results of all factor ablation experiments.

Site AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

R2 0.663 0.853 0.843 0.879 0.935 0.868 0.856 0.879 0.758
R2 (no-Ta) 0.899 0.226 0.196 0.777 0.952 0.901 0.879 0.271 0.505

R2

(no-PAR)
0.736 −0.262 0.556 0.718 0.913 0.880 0.905 0.685 0.568

R2

(no-EVI)
0.847 0.326 0.408 0.648 0.943 0.899 0.895 −0.385 0.080

R2 (no-
NDVI)

0.942 0.204 0.428 0.817 0.872 0.916 0.912 0.732 0.515

R2 (no-
LSWI)

0.874 −0.991 0.377 0.702 0.905 0.918 0.884 0.590 0.203

Numbers in red indicate that the prediction results for the corresponding site have increased in accuracy compared
to the previous results without setting a distance range; numbers in blue indicate that the results have decreased
in accuracy; and numbers in black indicate that the results have no significant changes.

Table 5 indicates that removing any feature from the AR site would result in a sig-
nificant improvement in accuracy, with the largest improvement obtained after removing
NDVI. The removal of any feature for the DXST, DXSW, and ZF sites would lead to a
degradation of accuracy, with the DXST site showing a large accuracy decline and the
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lowest accuracy after removing LSWI. The DXSW site also shows a decline in accuracy,
although it is smaller than that of the DXST site. The ZF site has a noticeable decline in
accuracy after removing EVI. The NMC site has an abnormal increase in accuracy after
removing NDVI and a decline after removing other features except NDVI. The GL site
is insensitive to the removal of Ta or NDVI and shows slight decreases in accuracy after
removing other features in addition to Ta and NDVI. The HBKO, HBSH, and HBSW sites
are insensitive to the removal of any feature and have no obvious changes in accuracy.

4. Conclusions

In this work, we used satellite remote sensing data and flux site observation data to
introduce the GeoMAN model based on an encoder–decoder framework with an attention
mechanism for site features, and we obtained good results. According to the experiments
on training data selection based on distance and vegetation type, we found that both
distance and vegetation type had an impact on GPP prediction results, with vegetation
type having a larger impact. Through the feature ablation experiments, we found that
different sites showed sensitivity to different factors, with the site located in the alpine
swamp meadow being insensitive to changes in environmental factors, while the site
located in the alpine meadow steppe showed a different trend since the GPP prediction
accuracy decreased sharply with the changes in environmental factors. The GPP prediction
accuracy of the site located in the alpine Kobresia meadow also varied with environmental
factor changes but was more stable than the other sites. The results of this work show
that deep learning models have high accuracy when simulating site-scale GPP and, to
some extent, reflect the correlation between a target site’s GPP and other sites’ distances,
vegetation types, and meteorological factors. Our work could be used in the prediction of
other factors, for example, AGB (Above Ground Biomass) and RE (Ecosystem Respiration).
However, this work has some limitations. Firstly, we do not consider some factors that
have an influence on productivity in Tibetan grasslands, such as soil development and
drought regimes. Secondly, the data we used in this work only cover a partial area of
the Tibetan Plateau region, and this introduces constraints to regional GPP assessment.
In our future work, we will add more factors to the training data, for example, soil pH,
soil fertility, and soil organic matter (SOM), since high soil pH and a lack of soil fertility
limit plant productivity [36], and SOM is able to enhance alpine grassland productivity by
improving the soil structure, aggregates, and cation-exchange capacity (CEC) under high
aridity conditions [37]. Moreover, ecological factors, such as growing and non-growing
seasons, will be considered, and larger regional-scale data will be used in future training
and learning processes. These improvements will help us perform more accurate and
larger-scale GPP simulations.
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