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Abstract: The Join task between Spark large tables takes a long time to run and produces a lot of disk
I/O, network I/O and disk occupation in the Shuffle process. This paper proposes a lightweight
distributed data filtering model that combines broadcast variables and accumulators using Roar-
ingBitmap. When the data in the two tables are not exactly matched, the dimension table Key is
collected through the accumulator, compressed by RoaringBitmap and distributed to each node
using broadcast variables. The distributed fact table data can be pre-filtered on the local server,
which effectively reduces the data transmission and disk reading and writing in the Shuffle phase.
Experimental results show that this optimization method can reduce disk usage, shorten the running
time and reduce network I/O and disk I/O for Spark Join tasks in the case of massive data, and the
effect is more obvious when the two tables have a higher incomplete matching degree or a fixed
matching degree but a larger amount of data. This optimization scheme has the advantages of being
easy to use, being easy to maintain and having an obvious effect, and it can be applied to many
development scenarios.
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1. Introduction

With the rapid development of the Internet in recent years, the era of big data has
arrived. After years of development, a large number of new high-performance technologies
have emerged in the field of big data, such as Apache Spark [1–3] and Apache Flink [4],
which are stronger than MapReduce [5,6] in terms of query and computation performance
and which have become powerful tools for big data acquisition, storage, analysis and
presentation. Big data analysis technology plays a key role in various industries. Asad
et al. [7,8] studied the importance of big data analysis technology in enterprises.

Spark is a fast, universal, scalable and highly available big data analysis search engine
developed based on Scala. It has upgraded its performance based on the MapReduce model.
Developers can deploy Spark on a large number of servers to form clusters that efficiently
process data. The core technology of Spark is the use of resilient distributed datasets
(RDD) [9]. The data are distributed in the form of RDD on each server for management,
to achieve data parallelization and distributed processing. During the data repartitioning
process of the Spark task, if data are moved across nodes, Shuffle is generated, as shown
in Figure 1. Shuffle is a bridge between Map and Reduce. It corresponds the Map output
to the Reduce input and involves serialization and deserialization, cross-node network
I/O and disk read/write I/O. If a complex service logic has Shuffle, the next stage can
be executed only after the previous stage produces a result. In the mass data Join task
of distributed architecture, the data interaction between servers will inevitably generate
Shuffle, which means a large number of serialization–deserializations, cross-node network
I/Os and disk read and write I/Os.
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high disk occupancy of Spark Join tasks between large tables, this paper proposes a light-

weight distributed data filtering model using RoaringBitmap [10] to combine broadcast 

variables and accumulators when the data in two tables are not completely matched. This 

optimization is theoretically analyzed and experimentally verified. The implementation 

results show that this method effectively reduces the running time of Spark Join and ef-

fectively reduces the data transfer and disk read and write in the Shuffle phase. The overall 
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Figure 1. The Spark RDD dependency displayed in a Shuffle structure diagram.

Shuffle consists of Shuffle write and Shuffle read phases, as shown in Figure 2. During
Shuffle, a large amount of intermediate data is migrated to disks for a long time, and a large
amount of network I/O is generated, affecting the overall performance of the Spark job.
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When optimizing the Spark performance, we should not only pay attention to the
execution time of tasks but should also pay attention to the network IO and disk read and
write. The proper optimization is not only to reduce the uptime but also to reduce the
network I/O load, disk usage, and so on. In actual development, the number of Spark tasks
ranges from as few as 100 to as many as thousands. In this case, performance optimization
of key tasks is extremely important. Proper performance optimization can ensure running
efficiency and save resources, and helps to avoid negative effects caused by excessive
operation data.

In order to solve the problems of a long running time, excessive network IO load
and high disk occupancy of Spark Join tasks between large tables, this paper proposes a
lightweight distributed data filtering model using RoaringBitmap [10] to combine broadcast
variables and accumulators when the data in two tables are not completely matched. This
optimization is theoretically analyzed and experimentally verified. The implementation
results show that this method effectively reduces the running time of Spark Join and
effectively reduces the data transfer and disk read and write in the Shuffle phase. The
overall performance of Spark Join tasks is improved.

2. Related Work

The performance of most Spark jobs is mainly consumed by the Shuffle process. This
process involves a large number of disk I/O operations, serialization and deserialization op-
erations and network data transmission operations. Therefore, to improve the performance
of Spark jobs, it is necessary to optimize the Shuffle process.

In terms of load balancing, Ren et al. [11] studied the cross-network reading of Shuffle
and the aggregation of partition data among tasks with data dependence. They adopted
heuristic prescheduling through SCache, combined with Shuffle size prediction, and bal-
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anced the load of each node through load balancing to achieve Shuffle optimization. Li
et al. [12] studied the data skew in the Shuffle stage and proposed a Shuffle phase dynamic
balance partitioning method based on reservoir sampling to sample and preprocess the
intermediate data, predict the overall data skew and provide the overall partitioning strat-
egy for application implementation, thus reducing the impact of data skew on the Spark
performance. Kumar et al. [13] studied the search space partitioning strategy of data paral-
lelism. Based on the communication cost-effectiveness pattern mining algorithm, tasks can
be allocated fairly and effectively among cluster nodes to reduce the communication cost
generated during Shuffle. Choi et al. [14] used SSD to make up for the lack of main memory
bandwidth and applied RDD cache strategies with different proportions of Shuffle and
storage space to improve the overall performance of the system. Tang et al. [15] proposed
an initial adaptive task concurrency estimation algorithm combined with known task input
information and actuator memory, realized dynamic memory-aware task scheduling and
used two typical benchmarks, light Shuffle-light and heavy Shuffle-heavy, to evaluate
the performance, which significantly improved the resource utilization. Zeidan et al. [16]
proposed a new spatial divider for the spatial query of large spatial data sets. KNN spatial
join query, based on Spark, is used to reduce the spatial query skew and task running time.
Zhao et al. [17] studied the cache management strategy in the Dag-aware task scheduling
algorithm, and proposed a new cache management strategy called long-run phase set
priority to make full use of task dependency to optimize cache management performance
in the Dag-aware scheduling algorithm. Tang et al. [18] studied partitioning methods in
the Spark framework, considering the partition balance of the intermediate data and the
partition balance after the Shuffle operator. The range-based key segmentation algorithm
realized slant mitigation in Shuffle and effectively reduced task execution time. Based on
the new operators and some new logical and physical rules, they extended the Spark query
to achieve task optimization.

In the rational use of resources, Jiang et al. [19] proposed a data management algorithm
based on the data mixing stage to effectively reduce the resource occupation and computing
response delay based on Spark, which is prone to problems such as insufficient utilization
of Spark cluster resources, high computation delay and high task processing delay in the
Shuffle stage. The partition-weighted adaptive cache replacement algorithm based on
RDD can make full use of memory resources and reduce resource waste effectively. Bazai
et al. [20] proposed a data processing method based on distributed data set RDD-based
data anonymization technology, based on subtree, which provides effective partition RDD-
based method management, improves memory usage, uses cache to frequently reference
intermediate values and enhances iteration support. Modi et al. [21] studied the execution of
big data queries to realize the sorting and hash aggregation of intermediate data in memory,
the exchange of intermediate data to disks and the network transmission of data. Chen
et al. [22] proposed a new method of temporal data processing for large events, based on
the problem that the computing capacity of distributed systems is limited when processing
large-time data and cannot meet the requirements of low delay and high throughput, which
effectively realizes large-time data management, operation and real-time response. Shen
et al. [23] studied the scalability of Shuffle and designed a new Shuffle mechanism through
Magnet, which effectively reduced the data local Shuffle operation and further improved
the efficiency and reliability of Shuffle in Spark.

Nowadays, many optimization schemes lack out-of-the-box methods; that is, when
the performance of a big data cluster reaches a bottleneck, it needs to be simple, convenient,
practical and convenient for later maintenance to break through the performance bottleneck.
Although many optimization methods increase some of the performance, they add a lot of
unstable factors to the big data cluster. They may not be able to achieve a stable equilibrium
state in the actual development process, which may require additional maintenance of
the algorithm model and complicate the development. Many practical problems can be
solved by using appropriate algorithm models. Qalati et al. [24] used a partial least squares
structural equation model to analyze data and obtained the influencing factors of energy
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saving intention and actual behavior. The optimization scheme used in this paper can
achieve the effect out of the box in Spark Join tasks between large tables, and the effect is
obvious, the stability is strong and the maintenance is easy, and it can be applied to many
development scenarios.

3. Related Technologies
3.1. RoaringBitmap Algorithm

RoaringBitmap is composed of binary data structure, using bit as the unit to store data,
so the data compression rate is very high. To store 4 billion data of type int, the data size is
14.9 GB for normal storage and 512 MB for RoaringBitmap storage. RoaringBitmap storage
is about 30 times smaller than normal storage.

RoaringBitmap uses a bucket mechanism to save space. The int data are divided into
216 buckets. The first 16 bits of binary data are used as bucket numbers. Each bucket has
a Container for storing the last 16 bits of binary data. A RoaringBitmap is a collection
of Containers. When storing data, the first 16 bits of data are numbered to find the
corresponding Container. If the corresponding Container is not found, the corresponding
Container is created and the last 16 bits of data are put into the Container. As shown in
Figure 3, the value of 20 is saved into RoaringBitmap, and the value of the first 16 bits is 0
through calculation. Therefore, the corresponding Container number is 0. After obtaining
the corresponding Container, the calculated value of the last 16 bits of 20 is set into the
corresponding Container.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 14 
 

partial least squares structural equation model to analyze data and obtained the influenc-

ing factors of energy saving intention and actual behavior. The optimization scheme used 

in this paper can achieve the effect out of the box in Spark Join tasks between large tables, 

and the effect is obvious, the stability is strong and the maintenance is easy, and it can be 

applied to many development scenarios. 

3. Related Technologies 

3.1. RoaringBitmap Algorithm 

RoaringBitmap is composed of binary data structure, using bit as the unit to store 

data, so the data compression rate is very high. To store 4 billion data of type int, the data 

size is 14.9 GB for normal storage and 512 Mb for RoaringBitmap storage. RoaringBitmap 

storage is about 30 times smaller than normal storage. 

RoaringBitmap uses a bucket mechanism to save space. The int data are divided into 

216 buckets. The first 16 bits of binary data are used as bucket numbers. Each bucket has a 

Container for storing the last 16 bits of binary data. A RoaringBitmap is a collection of 

Containers. When storing data, the first 16 bits of data are numbered to find the corre-

sponding Container. If the corresponding Container is not found, the corresponding Con-

tainer is created and the last 16 bits of data are put into the Container. As shown in Figure 

3, the value of 20 is saved into RoaringBitmap, and the value of the first 16 bits is 0 through 

calculation. Therefore, the corresponding Container number is 0. After obtaining the cor-

responding Container, the calculated value of the last 16 bits of 20 is set into the corre-

sponding Container. 

 

Figure 3. RoaringBitmap storage mode. 

3.2. Spark Accumulator 

The Spark accumulator summarizes data about variables on the Executor side of a 

cluster to the Driver side. As shown in Figure 4, the accumulator of the Driver side is first 

serialized and sent to the Executor. Then, the accumulator is used in the Executor to collect 

data. Finally, the accumulator of each Executor is obtained at the Driver end and the ac-

cumulator is merged by the Merge function to obtain the final result. 

Figure 3. RoaringBitmap storage mode.

3.2. Spark Accumulator

The Spark accumulator summarizes data about variables on the Executor side of a
cluster to the Driver side. As shown in Figure 4, the accumulator of the Driver side is
first serialized and sent to the Executor. Then, the accumulator is used in the Executor to
collect data. Finally, the accumulator of each Executor is obtained at the Driver end and the
accumulator is merged by the Merge function to obtain the final result.
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3.3. Spark Broadcast Variable

The broadcast variable means that one variable is sent to memory on each Executor
node associated with the cluster task, as shown in Figure 5. Data information is broadcast
to each Executor node, serialized as it is fetched, and deserialized as it is used. Spark tasks
can directly read data information from the Executor memory of the local node to prevent
data interaction between different tasks from generating a large cross-node network I/O.
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4. Optimization of Project Analysis
4.1. Cost Optimization Estimation

The execution efficiency of Spark Join tasks is affected by the CPU, memory, disk,
runtime configuration and execution code. In the process of evaluating the cost of executing
tasks, it is difficult for us to calculate the exact cost of tasks. In the case of a fixed configura-
tion, we only need to estimate the cost of Spark Join tasks before and after optimization to
obtain a comparative result, so as to reflect the rationality of the optimization scheme.

The physical execution plan of the Spark Join task based on cost-based optimization
(CBO) is a tree structure, the cost of which is equal to the sum of costs of each execution
node, as shown in Figure 6:
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The cost is equal to the sum of the costs of each execution node, where the highest cost
is the Join procedure. In the cost estimation formula of CBO, as shown in Formula (1):

Cost = Rows × Weight + Size × (1 − Weight) (1)

Rows is the number of rows, Size is the size of the data, and Weight is the weight,
which is determined by the spark.sql.cbo.joinReorder.card.weight configuration. In Spark
Join, when the data in the two tables are not exactly matched, the weight is fixed, and the
fact table is pre-filtered using the optimization scheme before joining, then the rows and
size are reduced. According to the CBO estimation formula, the cost before optimization
is greater than the cost after optimization. The more data you filter, the lower the cost
will be. Lim et al. [25] studied all possible query execution paths in grouping subquery
computation overhead and selected effective query execution paths through efficient query
algorithms to reduce the cost. Path analysis technology is also applied in all walks of life.
Hammami et al. [26] used path analysis technology to test the hypothesis of the dimension
of organizational knowledge ability, reveal the various knowledge abilities of the enterprise,
and establish the relationship between them. The experimental optimization purpose of
this paper is to reduce the Rows and Size before the Shuffle of Join so as to reduce the
cost in the maximum cost link. Since the filtering model used in our experiment is very
lightweight, it has little impact on the overall cost. After a large amount of irrelevant data
have been filtered out in the pre-filtering phase of the experiment, Spark Join tasks may
degrade from complex types to simple ones, as shown in Figure 7, greatly reducing the
overall cost.
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This paper studied the cost of Shuffle write and Shuffle read in Shuffle of Spark Join.
The cost estimate of Shuffle write workflow is shown in Formula (2):

Costshu f f le write = Costcache + Costsort + ∑
(

Costbu f f er + Costspill

)
+Costmerge (2)

Costcache represents the cost of reading data into the cache, Costsort represents the
cost of sorting according to the marked partition, Costbu f f er + Costspill represents the cost
of each save to the cache and spill to disk and Costmerge represents the cost of small file
consolidation on disk.

It should be noted that the operation processes of Shuffle write and Shuffle read are
similar, but Shuffle read needs to establish a network connection and data transfer. When
the running memory is sufficient, there will be no spill operation, so no disk file will be
generated. When the memory is insufficient, it will also generate sort and spill operations to
generate disk files, so the cost calculation of Shuffle read is different in the case of sufficient
memory and insufficient memory.

Shuffle read workflow estimates the cost of sufficient memory, as shown in the follow-
ing equation:

Costshu f f le read = Costnet + Costcache (3)

Shuffle read Workflow memory shortage cost estimation is shown as follows:

Costshu f f le read = Costnet + Costcache + ∑
(

Costbu f f er + Costsort + Costspill

)
+Costmerge (4)

Costnet represents the cost of obtaining data transmitted over the network; Costcache
represents the cost of reading data into the cache; Costbu f f er +Costsort +Costspill represents
the cost of obtaining cache data each time for sorting and then spilling to disk; Costmerge
represents the cost of small file consolidation on disk.

The Shuffle write workflow first fetches the data and caches it in memory, then sorts
the data, and finally writes the data to disk to generate small files and merges the small files.
The size of the data acquired by Shuffle write affects the final size of the data written to disk.
The larger the amount of data acquired by Shuffle write, the more data will be written to
the disk. Cost estimation involves each step of Shuffle write, but the data cache in the first
stage is the key to the cost size. If only a small amount of data are cached, the subsequent
cost consumption will be small; if the amount of cached data is large, the subsequent cost
will also be large.

Shuffle read mainly involves data network transmission and data caching. The Shuffle
read cost is also strongly determined by the size of the data read, but the data read is derived
from the data written to disk by the Shuffle write. When the memory is not sufficient, it is
also necessary to write data to the disk for temporary storage, increasing the cost.

In this optimization scheme, the amount of data read by Shuffle write is reduced by
pre-filtering, so that the overall cost of Shuffle write is reduced, and the amount of data
written to disk by Shuffle write is also reduced. When Shuffle write writes fewer data to
the disk, Shuffle read needs to read fewer data for network transfer and data caching. At
the same time, it also reduces the cache of Shuffle write and Shuffle read data in memory,
reduces the utilization of memory and avoids the shortage of memory in the Shuffle read
workflow to a greater extent, resulting in a high cost.

4.2. Optimization of Work Content

In the Shuffle process of Spark Join, each node of the cluster writes data to the local disk
file through Shuffle write, and Shuffle read obtains the disk file of each node through the
network transmission. There are a lot of data interactions, network transfers and file read
and write operations, which is why the Shuffle phase is very time and resource consuming.

The optimization scheme in this paper is to preprocess the two tables of Join based on
the fact table and dimension table data not completely matching, clean the fact table data
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before Shuffle, deal with unnecessary data and only let the data that need to be joined enter
the Shuffle phase, which saves resources and reduces the running time to a greater extent.

How to clean the data of each node has become the key to the experiment. Firstly, it
should complete the data cleaning task under the condition of limited resources. Secondly,
it should have a good cleaning effect in many data sets and should keep the task stable
during operation and easy to maintain. According to the requirements of the optimization
scheme, the lightweight and highly compressible storage component RoaringBitmap was
selected. The accumulator and broadcast variable are used to ensure that RoaringBitmap
has high stability, maintainability and efficiency in the process of data loading and data
transmission. Therefore, the accumulator, broadcast variable and RoaringBitmap were
selected for the Spark pre-filtering task in the experiment.

The execution flow of Join for the optimization scheme in this paper is shown in
Figure 8. We first create an accumulator and load the RoaringBitmap into it, and then
collect the dimension table data keys into the accumulator of the type RoaringBitmap.
The RoaringBitmap is broadcast to each node as a Spark broadcast variable and stored in
memory. In the filtering phase, each cluster node reads the Key stored in the RoaringBitmap
and matches the Key of the current fact table. If the Key of the fact table does not match the
value, the data will be deleted. Through the above method, a fact table without redundant
data is obtained, and then we Join the data. There are no redundant data in the fact table to
enter the Shuffle phase, so as to avoid unnecessary data interaction, network transmission
and disk reading and writing generated by Shuffle write and Shuffle read. Thus, efficient
and energy-efficient Spark Join tasks can be achieved.
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The storage engine in the experiment running task infrastructure in this paper is based
on Spark on hive, and the query engine is based on Spark on yarn. We first store the
dimension table and fact table data required for the experiment in the Hive [27] database,
and then submit the Spark Join job request from the Spark client, which will submit the job
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to Yarn [28]. Finally, Yarn reads the dimension and fact tables to be joined from Hive and
performs a distributed Spark Join. Figure 9 shows the Spark task execution architecture.
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In this paper, the comparison is mainly based on three aspects: the task running time
before and after optimization, the data size written to disk by Shuffle write and the data
size read by Shuffle read. The larger the Shuffle write and Shuffle read phases, the higher
the disk footprint, the higher the network IO and the higher the disk IO. If the task running
time is shortened after optimization, and the data size of Shuffle write to disk and Shuffle
read to disk is reduced, the optimization scheme is very feasible in Spark Join tasks.

5. Experiment
5.1. System Configuration

This optimization experiment is based on Cloudera’s Distribution Including Apache
Hadoop (CDH) big data platform. The Spark, Hive, Hadoop [29], Zookeeper [30], and
Hue components were installed on the CDH big data platform. Spark was used to execute
parallel Join tasks, Hive was used to build a data warehouse on Hadoop’s HDFS [31]
storage engine, Hadoop’s Yarn was used to manage resources and schedule tasks on Spark,
Zookeeper was used to coordinate components and manage metadata, and Hue was used
to build visual queries on Hive to check whether Spark Join data were lost or incorrect. In
order to achieve the effect of distributed computing, this experiment involved the setting
up of a big data cluster on three Linux servers.

The cluster configuration is shown in Table 1. Altogether, there was a 24-core CPU,
192 GB of memory and 600 GB of hard disk.

Table 1. Cluster configuration.

Server Name CPU Memory Hard Disk

Hadoop201 8-core 64 GB 200 GB
Hadoop202 8-core 64 GB 200 GB
Hadoop203 8-core 64 GB 200 GB

The versions of development tools used by the cluster are shown in Table 2.
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Table 2. Development tool versions.

Tool Versions

Operating System Centos7.5
CDH 6.3.2
JDK 1.8.0_181

Hadoop 3.0.0 + cdh6.3.2
Hive 2.1.1 + cdh6.3.2

Zookeeper 3.4.5 + cdh6.3.2
Spark 2.4.0 + cdh6.3.2
Hue 4.2.0 + cdh6.3.2

5.2. Testing Dataset

In this paper, we used the TPC-H [32] data set, which is a test set of the TPC-H business
intelligence computing test used to simulate decision support applications. At present, this
data set is widely used in academia and industry to evaluate performance related to the
application of decision support technology.

The first round of experimental data we used was the official data set of TPC-H.
The number of data used in the fact table lineitem was 120 million, and the numbers of
data used in the dimension table orders were 100,000, 1 million, 5 million, 10 million and
30 million, respectively. The numbers of data after Join were 400,000, 4 million, 20 million,
40 million and 120 million. The orders table has a one-to-many data association with the
lineitem table.

In the second round of experimental data, we also used the official data set of TPC-H.
In order to realize the complex Join scenario of the many-to-many data association mode,
we tested the optimization scheme through different amounts of data when the matching
degree was determined. We processed the data of the TPC-H dataset, obtained the orders
table with a 1-million-data volume, and copied the data in the table seven times to become
the orders table with a 7-million-data volume. The lineitem table with a 10-million-data
volume was obtained, and the lineitem table with a 10-million-data volume was replicated 5,
10, 50, 100 and 150 times, respectively, to obtain lineitem tables with 50 million, 100 million,
500 million, 1 billion and 1.5 billion-data volumes. The numbers of data in the orders
table Join lineitem table are 140 million, 280 million, 1.4 billion, 2.8 billion and 4.2 billion,
respectively. The orders table is used as the dimension table and the lineitem table is used
as the fact table in the experiment. The orders table is many-to-many with the lineitem
table. The orders table matches 40% of the data in each lineitem table.

5.3. Experimental Results and Analysis

In the experiment, the configuration resources applied for when submitting tasks to
Spark were executor-cores 2, num-executors 3, and executor-memory 1 g.

5.3.1. First Round of Experiments

The data volume of the fact table lineitem used in the experiment was 120 million, and
the data volume of the dimension table orders was 100,000, 1 million, 5 million, 10 million
and 30 million; the data volume of the Join result was 400,000, 4 million, 20 million,
40 million and 120 million, respectively. The orders table has a one-to-many data association
with the lineitem table. The Spark distributed computing query framework is used to read
Hive data and run it on Yarn for Join operation. The data of each group were tested five
times and the average value was obtained. In the data sets of 100,000, 1 million, 5 million
and 10 million, the pre-filtering was carried out under the condition of incomplete matching,
and the Join time was shortened correspondingly, with the proportion of shortening time
being 30.0%, 29.6%, 23.7% and 19.7%, respectively, and the average shortening time was
68.75 s. The average shortening time ratio was 25.75%. The experimental results are shown
in Figure 10.
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5.3.2. Second Round of Experiments

The data volume of the orders table used in the experiment was 7 million, and the
data volume of the lineitem table was 50 million, 100 million, 500 million, 1 billion and
1.5 billion, respectively. The orders table has a many-to-many data association with the
lineitem table. The Spark distributed computing query framework is still used to read Hive
data and run it on Yarn for the Join operation. Five experiments were conducted to obtain
the average value of each group’s data. After pre-filtering, the execution time of the Join
task decreased more with an increasing amount of data. The rate of time reduction was
15.1%, 17.0%, 19.7%, 22.0% and 25.2%, respectively. The experimental results are shown in
Figure 11.
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In addition to the task running speed, we also recorded the Shuffle write data in the
Join process. The data volume before optimization was 133 MB, 232 MB, 1024 MB, 2013 MB
and 3096 MB, and the data volume after optimization was 74 MB, 114 MB, 434 MB, 834 MB,
and 1234 MB, respectively. In the Join process, as the data volume of the optimized Shuffle
write task increased, the data volume written to the disk decreased by 44.3%, 50.8%, 57.6%,
58.5% and 60.1%, respectively. The experimental results are shown in Figure 12.
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During Shuffle write, there is also a corresponding Shuffle read. Shuffle read data were
recorded in the experiment. Before optimization, Shuffle read 133 MB, 232 MB, 1024 MB,
2013 MB and 3096 MB from the disk. After optimization, Shuffle read 74 MB, 114 MB,
434 MB, 834 MB and 1234 MB, respectively. In the Join process, as the data volume of the
optimized task increased, the data volume read by Shuffle read decreased by more. The
data read from the disk decreased by 44.3%, 50.8%, 57.6%, 58.5% and 60.1%, respectively.
The experimental results are shown in Figure 13.
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5.3.3. Summary and Analysis of Experiments

An experimental comparison between the Spark Join task before optimization and
the optimized Spark Join task was carried out. In the first round of experiments, it can
be seen from the experimental results that when the data matching degree of the two
tables continues to decrease, the running time of more tasks can be shortened by our
optimized scheme, and the proportion of shortened time increases. In the second round of
experiments, when the matching degree of the two tables is fixed, when the amount of data
in the lineitem table increases and the amount of data after Join increases, the optimized
tasks can shorten running time more. After optimization, as the amount of data increases,
the amount of data written to disk in Shuffle write phase is reduced more and the reduction
proportion increases. The amount of data read from disk in Shuffle read phase is reduced
more and the reduction proportion increases.
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Experiments show that the optimization scheme reduces the running time and reduces
the resource consumption of Spark tasks when the data of the two big tables are not exactly
matched; it also reduces the amount of operation data in Shuffle write and Shuffle Read
phases to reduce network I/O, disk I/O and disk consumption.

6. Conclusions

The Join process between Spark large tables consumes a lot of resources. This paper
proposes a data filtering model using RoaringBitmap as the main Spark accumulator and
broadcast variables as the auxiliary. Using this filtering model eliminates the irrelevant data
in the process of distributed interaction with a very small storage cost, avoiding unnecessary
data processing in the Shuffle phase leading to resource consumption. Compared with
other optimization schemes, this optimization scheme pays more attention to the simplicity,
maintainability and versatility of the optimization method, considers the running time, disk
I/O, disk occupation and network I/O, and pays more attention to the overall performance
of the Join task. Therefore, a lightweight, maintainable, and extensible combination of
RoaringBitmap, accumulator and broadcast variable is adopted. In the experiments on this
optimization scheme, the Spark Join task completes in less time, with less disk consumption,
lower disk I/O and lower network I/O. The optimization scheme can be applied in many
development scenarios; when the two tables have a higher degree of incomplete matching
or a fixed degree of matching but a larger amount of data, the effect is more obvious.
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