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Abstract: Clays in fault zones have low electrical resistivity, making electrical resistivity tomogra-

phy (ERT) effective for fault investigations. However, traditional ERT inversion methods struggle 

to find a unique solution and produce unstable results owing to the ill-posed nature of the problem. 

To address this, a workflow integrating deep-learning (DL) technology with traditional ERT inver-

sion is proposed. First, a deep-learning model named DL-ERT inversion that maps apparent resis-

tivity data to subsurface resistivity models is developed. To create target-oriented training data, we 

use approximately 150 field borehole data acquired from various survey areas in South Korea. The 

DL-ERT inversion algorithm is based on a U-Net structure and includes an additional network 

called the borehole mixer to incorporate borehole information when available. The DL-ERT inver-

sion model is trained in three stages: base model training, borehole mixer training, and fine-tuning. 

Results showed that the fine-tuning model provided the highest prediction accuracy for all test da-

tasets. Next, the prediction of the trained model is used as the initial model for the deterministic 

inversion method to predict the final subsurface model. The efficiency and accuracy of the proposed 

workflow are demonstrated in fault detection using a field data example compared with traditional 

deterministic inversion. 

Keywords: fault detection; borehole data; electrical resistivity inversion; electrical resistivity  

tomography; deep learning; U-Net; initial model 

 

1. Introduction 

Faults are typically characterized by soft ground as rocks become fractured and clays 

and groundwater are introduced due to repeated movements over time. Therefore, faults 

are considered a crucial aspect in investigations of site characteristics for large-scale con-

struction, such as geological surveys, tunnels, and bridges, as well as in ground stability 

assessment, including ground subsidence, tunnel collapse, and slope stability investiga-

tions [1–3]. Geophysical exploration techniques, including seismic, electrical, and electro-

magnetic methods, are actively being used in various fields to detect faults [4–9]. In par-

ticular, fault zones, weathered zones, and aquifers containing clay minerals exhibit low 

electrical resistivity, making electrical resistivity tomography (ERT) surveys an effective 

tool in fault zone investigations [10]. 

Numerous studies have been dedicated to the detection and characterization of fault 

zones using electrical resistivity surveys. Rønning et al. [11] investigated the application 

of resistivity mapping in identifying and characterizing weakness zones in crystalline 

bedrock, providing a valuable tool for assessing rock stability and geological engineering. 

Ganerød et al. [12] conducted a comparative analysis of different geophysical methods 

and determined resistivity measurement to be the most effective technique for mapping 
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faults and fracture zones. Moreover, extensive research has been conducted on fault de-

tection by utilizing electrical resistivity surveys in both terrestrial and marine environ-

ments [13–17]. These studies collectively demonstrate the wide-ranging applicability and 

effectiveness of electrical resistivity surveys in detecting and mapping fault structures. 

To analyze fault zones in electrical resistivity surveys, deterministic inversion meth-

ods are typically used. However, the traditional inversion process is challenging due to 

its ill-posed nature, which can result in non-unique and unstable solutions. In particular, 

if the initial model is far from the true subsurface properties, it can lead to convergence 

problems or inaccurate estimates. Additionally, the complexity of the numerical calcula-

tions involved makes the inversion process both time-consuming and computationally 

expensive [18,19]. 

Recently, studies have actively incorporated deep-learning technology into ERT in-

version to overcome its limitations. Liu et al. [20] introduced ERSInvNet, which is based 

on the U-Net architecture, for mapping apparent resistivity data to resistivity models. 

They used a tier feature map as an additional input feature to mitigate the ambiguity that 

arises when using a convolutional neural network (CNN) due to the vertical variation in 

patterns between the input and output. Liu et al. [21] also designed an adaptive CNN for 

electrical resistivity inversion, taking into account the vertically varying characteristics 

between apparent resistivity data and resistivity models. Similarly, Vu and Jardani [22] 

proposed a deep-learning algorithm for the three-dimensional (3D) reconstruction of ERT, 

using SegNet architecture for the inversion network and training it with subsurface resis-

tivity models generated by a geostatistical anisotropic Gaussian generator and corre-

sponding apparent resistivity. Wilson et al. [23] also developed a ERT inversion using 

deep learning, proposing a variational encoder–decoder network for the inversion net-

work and constructing realistic resistivity synthetic models with complex layers. Further-

more, various studies have applied similar approaches to electromagnetic (EM) inversion, 

with Oh et al. [24] developing a CNN model to delineate salt dome structure from marine 

controlled-source EM (CSEM) data and other studies utilizing deep-learning technology 

for the inversion of airborne EM data [25–27]. 

Although these methods have shown promising results, their training datasets were 

not target-oriented; rather, they aimed to achieve a general solution by creating subsurface 

models with randomly selected box-shaped anomalies or multiple layers. However, be-

cause the inverse problem is ill-posed in nature, a deep-learning approach still requires 

constraints, such as regularization terms in traditional inversion, to ensure the stability 

and reliability of the solution. In the deep-learning approach, these constraints can be in-

corporated when generating training data by adding prior knowledge, such as infor-

mation about background layers obtained from borehole data in the application area. Ad-

ditionally, these methods do not incorporate borehole data, which can be utilized to im-

prove the inversion results when available. Furthermore, although the deep-learning 

model is well-trained using a training dataset that closely resembles realistic settings, the 

trained model is not guaranteed to obtain the optimal solution because the distribution of 

the target field data may differ from that of the training data. 

To address the abovementioned limitations, we propose a new workflow that com-

bines deep-learning technology with traditional deterministic inversion to enhance fault 

detection in electrical resistivity surveys. First, we create a target-oriented training dataset 

for fault detection using field borehole data. Then, we develop a deep-learning model 

based on the U-Net architecture using the training dataset for ERT inversion. In addition, 

we include an additional network called borehole mixer at the end of the U-Net, which 

incorporates borehole information to enhance the inversion results if borehole data are 

available. Finally, we use the prediction of the trained model as the initial subsurface 

model for deterministic inversion to predict the final subsurface model. Through numer-

ical examples of synthetic and field data, we have obtained encouraging experimental re-

sults, which indicate that the proposed workflow has better performance than the tradi-

tional inversion in fault detection. 
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2. Methodology 

In this section, we first explain to the procedure for creating geological models based 

on field borehole data and corresponding apparent resistivity data using the open-source 

libraries GemPy and SimPEG, respectively. Then, we illustrate the network structure and 

training process of the deep learning-based ERT inversion, called DL-ERT inversion. Fi-

nally, we propose an approach to integrate DL-ERT inversion with deterministic inversion 

using the prediction of DL-ERT inversion as the initial model for the deterministic inver-

sion. Figure 1 shows the flowchart of the proposed workflow. 

 

Figure 1. Proposed workflow for deep learning-based ERT inversion (DL-ERT) and integration with 

deterministic inversion. 

2.1. Creating Target-Oriented Resistivity Models Based on Field Borehole Data Using GemPy 

To create a deep-learning model optimized for fault zone detection, we employed a 

method that involved generating subsurface resistivity models based on field borehole 

data using GemPy, an open-source Python library for 3D geological modeling [28]. The 

potential-field method developed by Lajaunie [29] was used to create a 3D geological 

model in GemPy. To create a stratigraphic model, it is important to interpolate lithological 

interfaces that show changes in physical properties using a scalar field value [30]. The 

input values for the scalar field include layer interface points that represent interfaces be-

tween two layers and gradients of the scalar field that indicate poles of the layer. The layer 

interface points are also known as surface contact points, and the gradients of the scalar 

field are referred to as orientations. The scalar values are subsequently calculated for all 

interfaces in the scalar field to identify the lithology of every point in the mesh. By discre-

tizing 3D space, we generated a layered model, as shown in Figure 2a, which is a vertical 

section of the 3D model. 

To create a fault structure, we added surface contact points and orientations for a 

fault to the layered model, as depicted in Figure 2b. To simulate the assumption that the 
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fault zone is saturated with groundwater, we increased the thickness of the existing fault 

line, which resulted in the saturated fault structure shown in Figure 2c. 

 

Figure 2. Geological structures created using GemPy: (a) layered structure, (b) fault structure, and 

(c) saturated fault structure. 

In this work, field borehole data and resistivity properties were used to create 3D 

resistivity models in GemPy. We assigned the same coordinates as the field borehole data 

and set the depths of each stratum as surface contact points with upward-facing surface 

orientations. This approach allowed us to generate realistic 3D layered models reflecting 

field conditions, as shown in Figure 3. Additionally, to create a fault structure, the surface 

points and displacements for the faults were assigned randomly, and the surface orienta-

tions were set close to perpendicular to the fault plane. Assuming the fault zone to be 

saturated with groundwater, a fault structure with a random thickness and low resistivity 

was created. From the 3D models, we randomly selected two-dimensional (2D) sections 

along survey lines to generate 2D resistivity models. 
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Figure 3. Three-dimensional lithological model generated using field borehole data. 

2.2. Generating Synthetic Apparent Resistivity Data Using SimPEG 

Two-dimensional electrical resistivity forward modeling was performed to generate 

the apparent resistivity data using SimPEG, which is an open-source Python library for 

simulation and inversion of geophysical data [31]. In SimPEG, the DC resistivity forward 

modeling involves solving the governing equations given by: 

∇ ∙ (−σ∇ϕ)  =  ���(�⃗ − �⃗�) − �(�⃗ − �⃗�)�, (1)

where σ represents the electrical conductivity, ϕ represents the electrical potential, and � 

is the input current at the positive and negative dipole locations, �⃗� and �⃗�, respectively. 

To simulate the partial differential Equation (1), the subsurface model was first dis-

cretized on a computational mesh. The conductivity values and potentials were then de-

fined at the cell centers and nodes of the staggered grid, respectively. SimPEG provides 

several mesh options; in this study, a tensor mesh was used. The 2D resistivity sections 

generated from GemPy were interpolated onto the tensor mesh in SimPEG, and additional 

cells were added horizontally and vertically to ensure adequate satisfaction of the bound-

ary conditions, as shown in Figure 4. The interpolated domain of the resistivity model, 

indicated by the red box in Figure 4b, served as a label (ground truth) for our deep-learn-

ing network in the inverse problem. 

 

Figure 4. Two-dimensional lithological model and resistivity model generated in (a) GemPy and (b) 

SimPEG, respectively. 

After Equation (1) was numerically solved, the potential fields were projected onto 

the receiver electrode locations through interpolation. The apparent resistivity (ρ�, ohm-

m) could then be calculated using the following formula: 

ρ�  =  
ΔV��

�
⋅ K, (2)

where ΔV�� (Volt) is the potential difference between two electrodes M and N; I is the 

electric current; K (m) is a geometric factor that depends on the geometry of the electrode 

array. K can be calculated as 
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K =  2π ��
1

AM
−

1

MB
−

1

AN
+

1

NB
�

��

�, (3)

where A and B indicate the locations of the current electrodes; M and N indicate the loca-

tions of the potential electrodes in Figure 5a. In this study, a dipole–dipole array was used, 

and Figure 5b shows a pseudosection of the apparent resistivity, which was used as input 

for our deep-learning network for the inverse problem. 

 
(a) (b) 

Figure 5. (a) Pseudosection’s setting and observation points in pseudo-elevation for dipole–dipole 

array, and (b) corresponding pseudosection of apparent resistivity data. 

2.3. DL-ERT Inversion 

The deep-learning network for electrical resistivity tomography (DL-ERT) inversion 

comprised a base model and a borehole mixer. The base model was designed to perform 

pure ERT inversion using apparent resistivity data, �, for the direct estimation of the re-

sistivity model, m, as follows: 

��  =  ����(�; �), (4) 

where � denotes the model parameters of the base network, Base(), and ��  is the pre-

dicted resistivity model of the base network. Note that the base model does not require 

borehole information. As illustrated in Figure 6, the base model employs a modified U-

Net structure, which is a simplified version of the existing U-Net [32]. The inputs � and 

labels m of this network are pseudosections of apparent resistivity and the corresponding 

2D resistivity models, respectively, each having a size of 64 × 128. In the encoding path of 

the base model, the first convolution block is composed of two 3 × 3 convolutional layers 

and one 2 × 2 max-pooling layer. Other convolution blocks comprise three 3 × 3 kernel-

size convolutional layers and one 2 × 2 kernel-size max-pooling layer. Batch normalization 

is applied after each convolutional layer to increase the learning speed and stabilize 

the learning process [33]. The rectified linear unit (ReLU) activation functions [34] are 

added for the convolutional layers. The decoder is symmetrical to the encoder, and the 

transposed convolutional layers are used to perform up-sampling in the decoding path 

[35]. Skip connections are used to prevent the loss of data information by directly connect-

ing the encoder layer to the decoder layer. The detailed structure of the base model is 

presented in Table 1. 
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Figure 6. DL-ERT inversion network comprising a base model and a borehole mixer. 

Table 1. Base model structure. 

Layer Output Shape 

Input_1 (64,128,1) 

Conv2d (64,128,64) 

Conv2d_1 (64,128,64) 

Max_pooling2d (32,64,64) 

Conv2d_2 (32,64,128) 

Conv2d_3 (32,64,128) 

Conv2d_4 (32,64,128) 

Max_pooling2d_1 (16,32,128) 

Conv2d_5 (16,32,256) 

Conv2d_6 (16,32,256) 

Conv2d_7 (16,32,256) 

Max_pooling2d_2 (8,16,256) 

Conv2d_8 (8,16,512) 

Con2d_9 (8,16,512) 

Conv2d_10 (8,16,512) 

Conv2d_transpose (16,32,256) 

Concatenate (16,32,512) 

Conv2d_11 (16,32,256) 

Conv2d_12 (16,32,256) 

Conv2d_13 (16,32,256) 

Conv2d_transpose_1 (32,64,128) 

Concatenate_1 (32,64,256) 

Conv2d_14 (32,64,128) 

Conv2d_15 (32,64,128) 

Conv2d_16 (32,64,128) 
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Conv2d_transpose_2 (64,128,64) 

Concatenate_2 (64,128,128) 

Conv2d_17 (64,128,64) 

Conv2d_18 (64,128,64) 

Conv2d_19 (64,128,1) 

The borehole mixer is designed to incorporate borehole information into the network 

to improve the inversion results. A borehole feature map, b, is created by adding the true 

resistivity values at the borehole locations to a map of the same size as the output of the 

base model, �� , setting all other parts except the borehole locations to zero, as shown in 

Figure 7. Then, the resistivity values of the output of the base model, �� , are replaced with 

the true resistivity values of the borehole, and the replaced output and the borehole fea-

ture map, b, are concatenated and fed into the borehole mixer network. The following 

relationship can be employed for the final estimation of m: 

�� ∗  =  Mixer(�� , �; �∗), (5) 

where �∗  denotes the model parameters of the borehole mixer network, Mixer(). The 

borehole mixer network is added to the output layer of the base model as shown in Figure 

6, and the network is simply composed of four convolutional layers: three 13 × 13 convo-

lutional layers and one 1 × 1 convolutional layer. The detailed structure of the borehole 

mixer network is presented in Table 2. 

Table 2. Borehole mixer network structure. 

Layer Output Shape 

Concatenate (64,128,2) 

Conv2d (64,128,64) 

Conv2d_1 (64,128,64) 

Conv2d_2 (64,128,64) 

Conv2d_3 (64,128,1) 

 

Figure 7. Input of the mixer network incorporating the borehole feature map. 

2.4. Network Training Strategy 

The training process of the DL-ERT inversion network involves three stages: base 

model training, borehole mixer training, and fine-tuning. The base model is designed for 

mapping apparent resistivity to a resistivity model without using borehole information. 

Thus, the optimization problem of the base model training can be defined as follows: 
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��  =  arg min
�

1

�
���� − Base(�; �)�

�
�

� � �

, (6) 

where N is the number of data. 

In the borehole mixer training, the pre-trained model parameters of the base model, 

��, are transferred and frozen, and only the borehole mixer network is trained as follows: 

��∗  =  arg min
�∗

1

�
���� − Mixer(�� , �; �∗)�

�
�

� � �

. (7) 

Finally, in the fine-tuning stage, the pre-trained base model and borehole mixer are 

unfrozen and re-trained to slightly adjust the inversion result: 

�������  =  arg min
��,��∗

1

�
� ��� − Base��; ����

�
�

� � �

+ 
1

�
� ��� − Mixer��� , �; ��∗��

�
�

� � �

 (8) 

We solved Equations (6)–(8) using the Adam optimizer and set the learning rate to 

decrease at each stage for stable training with transfer learning and fine-tuning. 

2.5. Deterministic Inversion Using Initial Model from DL-ERT Inversion 

To improve our DL-ERT inversion, we leveraged field borehole data to generate 

more realistic and target-oriented training data. However, generating training data that 

accurately represents the complex subsurface structure and uncertainties found in real 

field data is challenging, which can limit the applicability of deep-learning models trained 

on synthetic data to actual field data. 

Although deep-learning models aim to minimize the difference between the predic-

tion and ground truth in the resistivity model, they may not fit the data as well as deter-

ministic inversion methods, which are optimized to fit the data. However, deterministic 

inversion methods suffer from the ill-posed nature of the inverse problem, often leading 

to unstable results and convergence problems, particularly if the initial model is far from 

the actual subsurface properties. To address these issues, we implemented deterministic 

inversion using the results of DL-ERT inversion as the initial model. This approach pro-

vides a better solution with a more reliable starting point, improving the accuracy and 

reliability of our inversion results. 

In this work, we used the SimPEG library for deterministic inversion, which solves 

the minimization problem with an objective function, �(�), that comprises a data misfit 

term, ��(�), and a regularization term, ��(�), as follows: 

�(�)  =  ��(�) + ���(�)  =  ‖��(�(�) − ����)‖�
� + ������ − ������

�

�
, (9)

where �  is the regularization parameter; ��  and ��  are data weights and model 

weights, respectively; � is forward modeling; ���� denotes observed data. The prior in-

formation in the model is incorporated through the a priori model ����. Further details 

on the method can be found in [31]. 

Then, we used the Gauss–Newton method to solve the minimization of Equation (9). 

The flowchart of the deterministic inversion is presented in Figure 8. Typically, the initial 

model is assumed to be a homogeneous background model, which could be far from the 

true resistivity model and make it difficult to achieve convergence in the misfit. By con-

trast, we used the output of the DL-ERT inversion as the initial model and then ran the 

deterministic inversion. This approach allowed us to obtain better data fitting than the 

traditional deterministic inversion. In the next section, we demonstrate the effectiveness 

of our approach using synthetic test data and field data. 
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Figure 8. Flowchart of the deterministic inversion with the initial model from the DL-ERT inversion. 

3. Experiment 

3.1. Data Generation Using Borehole Information 

To generate target-oriented subsurface resistivity models, we used borehole data ac-

quired from 13 drilling sites in South Korea, including Jangheung, Jangseong, Gwang-

yang, and Suncheon in South Jeolla Province; Changwon, Yangsan, and Hadong in South 

Gyeongsang Province; Gwangju and Icheon in Gyeonggi Province; Jecheon in North 

Chungcheong Province; and Gijang-gun in Busan. Figure 9 shows a map indicating the 

locations of the drilling sites. Each site is composed of various rock types, including gneiss, 

schist, phyllite, acidic dike, granite, andesite, granite, phyllite, tuff, limestone, and meta-

morphic sedimentary rocks originating from a wide range of geological eras from the Pre-

cambrian to the Mesozoic. Each site includes 5–19 borehole data, for a total of 150 borehole 

data used in this study. Each borehole data provides information on the Transverse Mer-

cator (TM) coordinates, depth (m), Unified Soil Classification System (USCS), and stratum 

composition. On the basis of the electrical resistivity values of the strata, we categorized 

them into four layers: soil layer, weather ground layer, basement rock layer, and fault 

layer, as determined by USCS. The range of electrical resistivity values for each stratum 

was set as follows: 500–1000 ohm-m for the soil layer, 500–2000 ohm-m for the weather 

ground layer, 1000–3000 ohm-m for the basement rock layer, and 200–500 ohm-m for the 

faults [36,37]. It is important to note that there may be some overlap in the resistivity val-

ues between different strata. This is primarily due to the presence of mixed rock types 

within the field borehole data, which cannot be easily categorized into a single specific 

stratum. Then, the borehole information, including the coordinates, depth, and resistivity 

values, was used to generate resistivity models, with resistivity values randomly selected 

from within the specified range. 

Employing the borehole information described above, we generated 3D resistivity 

models using GemPy. The 3D model was set to 200 × 10 × 200 m in the x, y, and z direc-

tions, respectively, and composed of three layers, namely, the soil layer, weathered 

ground layer, and basement layer, according to the field borehole data. We then added 

the fault layer to the layered model with a randomly selected dip angle ranging from 45° 

to 90° and thickness ranging from 20 to 100 m. 

For the forward modeling using SimPEG, we set the survey as a dipole–dipole array 

with a range of −320–320 m. The spacing between the electrodes was set to 20 m, and the 

maximum number of repetitions of the receiver for each transmitter was limited to 10. 
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Figure 9. A map indicating the locations of the drilling area and electrical resistivity survey area in 

South Korea. 

In this way, we generated 5000 sets of synthetic data, including layered models with 

and without a fault structure, and split them into training, validation, and test data sets 

with a 7 : 2 : 1 ratio. It is important to note that only one fault layer was added for the fault 

model at this stage; however, we also set additional test data with two fault layers to eval-

uate the generalization capability of the inversion model. 

3.2. Data Preprocessing 

The MinMax scaler was used for the apparent resistivity data and resistivity models, 

which were inputs and labels of the deep-learning model. In the case of the apparent re-

sistivity data, NaN values outside the inverted trapezoid were converted to zero after 

scaling. The inputs and labels were resized to 64 × 128. To avoid overfitting and improve 

generalization performance, data augmentation was performed by applying horizontal 

flipping to the training data only. 

3.3. Training DL Inversion Networks 

The training of the model was divided into three stages: base model training, bore-

hole mixer training, and fine tuning. We used the Adam optimizer with a batch size of 256 

and a maximum of 300 epochs. The learning rates were set to be different in each stage, 

decreasing by a factor of 10 each time, from 10−3 to 10-−5 in the three stages. Figure 10 shows 

the loss curve for base model training, borehole mixer training, and fine tuning. All ex-

periments were carried out on TensorFlow 2, and two GPUs (NVIDIA GeForce RTX 2090 

Ti) were used to accelerate computation. 
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Figure 10. Loss curves for base model training, borehole mixer training, and fine-tuning of the DL-

ERT inversion. 

3.4. Evaluating the Performance of DL Inversion Models Using Synthetic Test Dataset 

After training the models in the three stages, the performance of each model was 

evaluated by comparing the results on the test datasets, which consisted of the layered, 

one-fault, and two-fault structures. The normalized root-mean-squared error (NRMSE), 

which is calculated by normalizing the root-mean-squared error (RMSE) by the difference 

between the maximum and minimum values, was used to quantify the performance of 

the trained inversion models. In Figure 11, the base model without a borehole mixer and  

borehole information shows promising results; however, the fine-tuning model shows the 

clearest and most similar results to the ground truth with the lowest NRMSE. Similarly, 

as shown in Figure 12, for a one-fault structure, all three models predicted the fault zone 

very clearly, but artifact noise is observed in the base model. The artifacts disappeared in 

borehole mixer training and fine-tuning, confirming results that incorporating the bore-

hole information in the borehole mixer network helps predict the weather ground layer, 

which the base model cannot predict. To verify the generalization performance of the 

deep-learning model, prediction results were also compared for the two-fault structure, 

and the fine-tuning model exhibited the best performance, as shown in Figure 13. It is 

important to note that a two-fault structure was not included in the training dataset, which 

only consisted of a one-fault model. By evaluating the model’s performance on an unseen 

fault configuration, we were able to gauge its ability to generalize beyond the specific 

training data. Moreover, a comparsion of the prediction results of the three types of test 

datarevealed that the fine-tuning model provided the highest prediction accuracy. 

 

Figure 11. Prediction results of DL-ERT inversion for the layered structure: (a) boreholes injected 

during training, (b) ground truth, (c) base model result: NRMSE = 0.0355, (d) borehole mixer train-

ing result: NRMSE = 0.0245, and (e) fine-tuning result: NRMSE = 0.0235. 



Appl. Sci. 2023, 13, 6250 13 of 20 
 

 

Figure 12. Prediction results of DL-ERT inversion for the one-fault structure: (a) boreholes injected 

during training, (b) ground truth, (c) base model result: NRMSE = 0.0343, (d) borehole mixer train-

ing result: NRMSE = 0.0272, and (e) fine-tuning result: NRMSE = 0.0217. 

 

Figure 13. Prediction results of DL-ERT inversion for the two-fault structure: (a) boreholes injected 

during training, (b) ground truth, (c) base model result: NRMSE = 0.0115, (d) borehole mixer train-

ing result: NRMSE = 0.0076, (e) fine-tuning result: NRMSE = 0.0049. 

Additionally, to evaluate the effectiveness of the mixer network incorporating bore-

hole information, we compared the results of the fine-tuning model with data from an 

increasing number of borehole data. As shown in Figure 14, as the number of boreholes 

increases, the NRMSE value gradually decreases with less artifact noise and clearer lay-

ered structures. Notably, when examining the red circles in Figure 14i–m, it is evident that 

an increase in the number of boreholes from zero to one, one to two, and two to four 

progressively enhanced the distinction of the three layers. Additionally, when there was 

no change in the borehole configuration within the red circles, the NRMSE showed a slight 

decrease. However, with changes in the borehole configuration, the NRMSE exhibited a 

significant decrease. These findings emphasize that both the number and distribution of 

boreholes play a crucial role in the inversion’s performance. 

Finally, we compared our results with those from conventional deterministic inver-

sion methods. In this work, we used the conventional smoothing least-squares inversion 
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method with SimPEG. As shown in Figure 15, the deep learning-based model shows su-

perior prediction accuracy compared with the conventional inversion method, as it more 

accurately predicts the layers and the direction and position of the fault zone. 

 

Figure 14. Prediction results of DL-ERT inversion according to the number of boreholes. The 

NRMSE values obtained with an increase in the number of boreholes are 0.0707, 0.0706, 0.0689, 

0.0680, 0.0679, and 0.0669. (a) Ground truth. Number of boreholes = (b,h) 0; (c,i) 1; (d,j) 3; (e,k) 5; 

(f,l) 7; and (g,m) 10. 
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Figure 15. Comparison of deterministic inversion and DL-ERT inversion: (a) ground truth, (b) de-

terministic inversion results, and (c) DL-ERT inversion results. 

3.5. Field Data Application 

To demonstrate the efficacy and accuracy of the proposed approaches, we utilized 

field data from a railway tunnel construction site in Namyangju and Yangpyeong, 

Gyeonggi Province, South Korea. This area belongs to the central part of the Gyeonggi 

Massif, which is generally referred to as the basement rock of the Korean Peninsula, and 

the third-grade deep fault called the Gyeonggang Fault, which is known as a large-scale 

tectonic formation, passes through this area [36]. This area is mainly composed of Cam-

brian strata of the banded biotite gneiss, and small-scale rock bodies of mica schist and 

quartzite are isolated as structural enclaves [38]. The surveyed area has developed faults 

parallel to the foliation and is characterized by a fault zone with a width of approximately 

10 m, identified through surface geological surveys. The geologic plan map of the sur-

veyed area is shown in Figure 9. The electrical resistivity equipment used is the SuperSting 

R8/IP by AGI (Austin, TX, USA), with a maximum voltage of 800 Vp-p and a maximum 

current of 2.0 A. During field surveys, the contact resistance typically ranges from 1 to 2 

kΩ, and the output current is around 200 to 300 mA. We conducted DC resistivity surveys 

using a dipole–dipole electrode configuration with a survey line length of 400 m, a dipole 

spacing of 20 m, and a maximum number of iterations per transmitter of 8. Unfortunately, 

borehole data were not available in the survey area, therefore, we performed DL-ERT in-

version without incorporating borehole data. 

We compared the results of three methods, namely, DL-ERT inversion, deterministic 

inversion, and deterministic inversion with a DL-ERT initial model. Figure 15 presents the 

recovered models, the computed apparent resistivity data from the recovered models, and 

the differences between calculated and observed data for the three different approaches. 

All three models exhibited similar outcomes, with a conductive fault zone located at the 

center and resistive basement rock located on the sides of the survey area. However, the 

deterministic inversion approach displayed a steeper dip angle of the fault and less sharp 

boundaries of the fault and basement structures compared with the other methods. Be-

cause no ground truth or borehole data were available for validation, we computed the 

apparent resistivity data using electrical resistivity forward modeling and determined the 

RMSE (RMSE�) between the measured data from the recovered model and the observed 

data. The RMSE� value was obtained from the data misfit defined in Equation (9) as fol-

lows: 

RMSE�  =  �Φ�/� , (10)
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where N is the number of data points. 

The RMSE� of the DL-ERT inversion was calculated as 4.3832, while the deterministic 

inversion after 20 iterations was 3.3959, as shown in Figure 16. The deterministic inversion 

exhibits a better fit to the data in terms of data misfit, indicating a limitation in the ap-

plicability of deep-learning models when synthetic training data differ from the target 

field data. However, it is worth noting that the data misfit of the traditional deterministic 

inversion shown in Figure 17 does not decrease significantly beyond four iterations, indi-

cating that it may become trapped in a local minimum. However, when the recovered model 

from the DL-ERT inversion was used as the initial model for the deterministic inversion, the 

RMSE� value decreased continuously and reached 1.6595 after 20 iterations. This significant 

improvement demonstrates the effectiveness of using the DL-ERT inversion as a starting 

point to enhance the accuracy and data fitting in the deterministic process. 

Therefore, the proposed approach, which integrates deterministic inversion with the 

DL-ERT initial model, can provide a better solution than DL-ERT or deterministic inver-

sion alone, leading to improved accuracy and data fitting. This finding suggests that the 

combination of deep learning and deterministic inversion methods could be a promising 

approach for solving inversion problems. 

 

Figure 16. Recovered models (top), corresponding apparent resistivities (middle), and differences 

between calculated and observed data (bottom) for (a) DL-ERT inversion, (b) deterministic inver-

sion, and (c) deterministic inversion using the initial model from DL-ERT inversion. 
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Figure 17. Convergence curves of deterministic inversion and integrating DL-ERT with determinis-

tic inversion. 

4. Discussion 

In this study, we propose a methodology that utilizes field borehole data to create 

target-oriented resistivity models. However, it is important to acknowledge that the resis-

tivity models generated in this study are relatively simple, typically comprising of two or 

three layers with linear faults. This simplicity arises from the nature of the acquired field 

borehole data, which exhibit a relatively simple lithology characterized by a few distinct 

layers. Nonetheless, we believe that our proposed workflow can be extended to create 

more complex resistivity models by incorporating field borehole data from lithologically 

diverse and complex regions. 

Despite the promising results obtained from our methodology, several limitations 

warrant further attention. Firstly, our current deep-learning model is designed for 2D re-

sistivity models and 2D survey data, lacking the inclusion of 3D effects that are crucial for 

accurately inverting field data. Incorporating three-dimensional considerations into our 

model will enhance its ability to capture the true complexity of subsurface resistivity dis-

tributions. 

Secondly, topographical information plays a vital role in the modeling and inversion 

processes. However, our current deep-learning model does not account for topographical 

effects. Future improvements to our methodology should focus on integrating topograph-

ical data to enhance the accuracy and reliability of the inversion results. 

Thirdly, when generating resistivity models with faults, we only considered a single-

fault structure with a linear shape. Although this approach provides valuable insights, it 

may not fully capture the diverse range of fault structures encountered in real-world sce-

narios. Expanding the fault modeling capability of our methodology to incorporate vari-

ous fault geometries will be an important area of future investigation. 

Additionally, it is worth noting that the training data used in this study were gener-

ated without considering noise. Including noise in the training data would enable the 

deep-learning model to better handle real-world data characterized by various noise 

sources and levels. 

Furthermore, for the training data, we intentionally used a wide electrode spacing of 

20 m. This choice was made because a smaller electrode spacing would require more data 

points in the apparent resistivity map to cover the same survey area, resulting in a larger 

input and output size for the deep-learning model and increased computational memory 

requirements. The electrode spacing plays a crucial role in the sensitivity of detecting faults. 

In our study, we considered a fault thickness ranging from 20 to 100 m, taking into account 

the electrode spacing of 20 m. Therefore, to detect thin faults, a shorter electrode spacing 

and larger input and output data sizes for DL-ERT inversion need to be considered. 
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Lastly, our current DL-ERT inversion model has been specifically trained for the di-

pole–dipole array configuration. Consequently, applying the model to other electrode 

configurations may yield suboptimal results due to inherent differences in data character-

istics. We conducted an experiment comparing the performance of our model with Wen-

ner, Schlumberger, and dipole–dipole arrays (Figure 18), confirming that our current DL-

ERT model is not well-suited for non-dipole–dipole arrays. Addressing this limitation and 

developing a more versatile model capable of accommodating different electrode config-

urations will be the focal point of our future research. 

In our field data example, even though the comparison of the convergence curves 

between deterministic inversion with and without the DL-ERT initial model implies the 

effectiveness of our proposed workflow, it is worth mentioning that to fully demonstrate 

the efficacy of our approach, it would be beneficial to have borehole data for a direct com-

parison of the results. 

In summary, while our proposed methodology has demonstrated promising results, 

it is important to acknowledge and address the limitations outlined above. Future re-

search efforts will focus on extending our model to incorporate 3D effects, integrating 

topographical information, enhancing fault modeling capabilities, considering noise in 

the training data, and developing a more versatile approach capable of handling different 

electrode configurations. By addressing these limitations, we aim to advance the field of 

DL-ERT inversion and improve its applicability to real-world scenarios. 

 

Figure 18. Results of the proposed method applied to different electrode configurations: (a) ground 

truth, (b) apparent resistivities, (c) DL-ERT inversion results. 

5. Conclusions 

In this paper, we present a novel approach for integrating deep learning and deter-

ministic inversion for electrical resistivity surveys. The proposed workflow involves gen-

erating a target-oriented training dataset based on field borehole data and training the 

deep-learning model in three stages: base model training, borehole mixer training, and 

fine-tuning. The base model performs pure resistivity inversion without borehole infor-

mation, while the mixer network incorporates borehole data into the inversion result. In 

the fine-tuning stage, we slightly adjust the model parameters for better performance. In 

addition, to overcome the limitation of deep-learning models when synthetic training data 

differs from target field data, we use the recovered model from DL-ERT inversion as an 

initial model for the deterministic inversion. We tested our approach using both synthetic 

test data and field data from a railway tunnel construction site in South Korea, and our 

proposed method, which combines deterministic inversion with a DL-ERT initial model, 

was designed to outperform DL-ERT or deterministic inversion alone in terms of accuracy 

and data fitting. Our findings suggest that the combination of deep learning and deter-
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ministic inversion methods holds great promise for solving inversion problems. The pro-

posed approach can potentially be extended to other geophysical methods and geological 

scenarios to improve the accuracy and efficiency of inversion solutions. 
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