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Abstract: The buckling enhancement of the negative Poisson’s ratio (NPR) effect on a laminated
plate under uniaxial compression with an in-plane translational restraint is investigated in this paper.
According to the buckling equation of an orthotropic plate under biaxial compression, the critical
buckling load of an NPR-laminated composite under uniaxial compression can be increased due to the
induced tension force on the unloaded direction. Instead of layer angles and stacking sequence, the
NPR envelope and buckling load enhancement are studied using lamination parameters in this paper.
The Poisson’s ratio contours are given in the feasible region of membrane lamination parameters.
The results show that the negative Poisson’s ratios are more sensitive to VA

3 , which represents the
unbalance degree of the laminate. Furthermore, the buckling loads for various Poisson’s ratio layups
are investigated, and it is concluded that the buckling load increases with a decrease in Poisson’s ratio
for the laminated rectangular plate considering in-plane translational restraint. Finally, the inverse
problem of deciding the laminate configuration to target the lamination parameters is solved using
the particle swarm optimization (PSO) algorithm.

Keywords: buckling; laminated structure; negative Poisson’s ratio (NPR); lamination parameters; PSO

1. Introduction

Auxetics which possess negative Poisson’s ratios show a transverse expansion or
contraction effect under uniaxial tension or compression load, respectively. The counter-
intuitive properties of tension–expansion deformation lead to enhanced mechanical and
other physical performances, such as large plane strain fracture toughness, high shear
modulus, low fatigue crack propagation rate, superior specific strength, excellent shock
and sound absorption, etc. [1–5] Since Lakes [6] manufactured a novel foam structure
with a negative Poisson’s ratio (NPR) of −0.7, a variety of cellular structures with auxetic
features have been proposed from nano-scale to macro-scale levels [7]. However, the low
mechanical performance of auxetic cellular structures largely restricts their applications,
especially in load-bearing fields [8].

By changing the orientation or stacking sequence of laminate layers, laminated struc-
tures with auxetic properties can be obtained with excellent mechanical performance. The
Poisson’s ratio cannot take a negative value according to experimental investigations, how-
ever, for laminated composites, the inter-laminar stresses cause overall auxetic behavior
which can be controlled by special layup [9]. Herakovich [10] reported an early work on
composite laminates with out-of-plane negative Poisson’s ratios and concluded that the
Poisson’s ratios can be positive or negative, mainly depending on fiber orientation. The
out-of-plane NPR can affect the vibration [11], dynamic responses [12] and low velocity
impact [13] responses of laminated structures. For in-plane NPR, Miki [14] studied the
unique behavior of the Poisson’s ratio of laminated composites and observed a minimum
value of Poisson’s ratio of−0.369 for unbalanced bi-directional laminates. Shokrieh [9] used
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GA to obtain the minimum negative Poisson’s ratio of −0.3536 for a laminated composite
plate with the configuration of (15/60/15).

Buckling is a common failure mode for an aerospace structure under compression.
Many researchers have studied the buckling of rectangular composite plates [15,16], and the
buckling behavior of auxetic materials has also received significant attention. Zhang [17]
indicates that the buckling performance of a rectangular plate under uniaxial compression
can be significantly improved by replacing the traditional material, that has a positive
Poisson’s ratio, with an auxetic material. Shen [18,19] reported that the post-buckling
behaviors of pressure-loaded graphene-reinforced metal-matrix-composite laminated cylin-
drical shells are affected substantially by the in-plane NPR. Kennedy studied the analysis
and design of composite structural components such as fuselage and wings, and proposed
optimization methods [20].

The aim of this study is to investigate the buckling enhancement of a laminated
rectangular plate under uniaxial compression through an auxetic composite layup design.
As a brief representation of laminate stiffness, lamination parameters are employed to
obtain the NPR envelope and buckling load with negative Poisson’s ratio. The structure
of this paper is as follows: firstly, the Poisson’s ratio of laminated structures and feasible
region of lamination parameters are described briefly. Next, a mechanism analysis of the
enhanced buckling for the laminated orthotropic auxetic plate is provided in Section 3.
Section 4 introduces the results and discussion for various lamination parameters and
Poisson’s ratios. Finally, Section 5 gives the conclusion.

2. Classical Laminate Theory and Lamination Parameters
2.1. Lamination Parameters and Feasible Region

The laminate constitutive equation of strain–load intensity relationships according to
classical laminate theory [21] is as follows:{

N
M

}
=

[
AijBij
BijDij

]{
ε
k

}
(1)

in which N and M denote the force and moment resultants, respectively. ε and k denote
normal and shear strains. Aij, Bij, and Dij are the elements of the membrane stiffness
matrix, the membrane-bending coupling matrix, and the bending matrix of the laminate,
respectively. Aij, Bij, and Dij can be expressed in terms of 12 lamination parameters and
material stiffness invariants U.

A11
A22
A12
A66
A16
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
= h


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2
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2
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
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(2)


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B26
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=

h2

4
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3
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4
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

D11
D22
D12
D66
D16
D26


=

h3

12



U1 VD
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2
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2
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2
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2
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4
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3
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4
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1
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The material stiffness invariants U are calculated as follows:
U1
U2
U3
U4
U5

 =
1
8


3 2 3 4
4 0 −4 0
1 −2 1 −4
1 6 1 −4
1 −2 1 4




Q11
Q12
Q22
Q66

 (5)

where Q11 = E11
1−ν12ν21

, Q22 = E22
1−ν12ν21

, Q21 = Q12 = ν12E2
1−ν12ν21

, Q66 = G12, and ν21 = ν12
E22
E11

.
The membrane, coupling, and bending lamination parameters are given, respectively,

by the following integrals:

VA
[1 2 3 4] =

1
h

∫ h/2

−h/2
[cos 2θ cos 4θ sin 2θ sin 4θ]dz (6)

VB
[1 2 3 4] =

4
h2

∫ h/2

−h/2
[cos 2θ cos 4θ sin 2θ sin 4θ]zdz (7)

VD
[1 2 3 4] =

12
h3

∫ h/2

−h/2
[cos 2θ cos 4θ sin 2θ sin 4θ]z2dz (8)

Lamination parameters cannot be arbitrarily prescribed since the trigonometric func-
tions entering their definition are related. For a symmetric laminate, the number of inde-
pendent lamination parameters can be reduced to eight. The feasible domain for membrane
and bending lamination parameters for symmetric laminate is known to be convex and
defined by [21–23].

2(VX
1 )2 −VX

2 − 1 ≤ 0, X = A, D (9a)

2(VX
1 )2 −VX

3 − 1 ≤ 0, X = A, D (9b)

2(1+VX
2 )2VX

3 − 4VX
1 VX

3 VX
4 +(VX

4 )
2− (VX

2 − 2(VX
1 )

2
+ 1)(1−VX

2 ) ≤ 0, X = A, D (9c)

4(VD
i − 1)(VA

i − 1) ≤ (VA
i − 1)

4
, i = 1, 2, 3 (9d)

4(VD
i + 1)(VA

i + 1) ≤ (VA
i + 1)

4
, i = 1, 2, 3 (9e)

2.2. Poisson’s Ratio of the Laminate [24]

According to Equation (1):
Nx
Ny
Nxy

 = [A]


εx
εy

γxy

 (10)

in which Nx, Ny, and Nxy denote the inner forces in the longitudinal (x) direction, trans-
verse (y) direction, and in-plane shear force resultants per unit length (load intensities),
respectively. We can express the strains as functions of the applied load intensities by:

εx
εy

γxy

 =
[

A−1
]

Nx
Ny
Nxy

 (11)
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where [A−1] is the inverse of the matrix [A]. For a symmetric laminate, it may be shown
that the in-plane load intensities do not produce out-of-plane curvature deformations. The
average direct stresses across the thickness of the laminate as:

σx =
Nx

t
, σy =

Ny

t
, τxy =

Nxy

t
(12)

Equation (10) then becomes:
εx
εy

γxy

 = t
[

A−1
]

σx
σy
τxy

 (13)

Let the terms in [A−1] be as follows:[
A−1

]
=

 a11 a12 a16
a12 a22 a26
a16 a26 a66

 (14)

Suppose, now, that a symmetric laminate is subjected to a single load intensity,
Nx. Then:

σx =
Nx

t
, σy = 0, τxy = 0 (15)

From Equations (13) and (14), Young’s modulus for the laminate in the x direction:

Ex = σx/εx =
1

ta11
(16)

εy = ta12σx = ta12εx/ta11 = (a12/a11)εx (17)

Equation (17) gives the strain in the y direction due to a load in the x direction, that is
the Poisson’s effect. Then, Poisson’s ratio in the xy plane of the laminate is given by:

vxy =
−εy

εx
=
−a12

a11
=

A16 A26 − A12 A66

A22 A66 − A26 A26
(18)

The above arguments may be applied to a symmetric laminate subjected to a single
load intensity, Ny. Then, Young’s modulus for the laminate in the y direction and Poisson’s
ratio in the xy plane are:

Ey = σy/εy =
1

ta22
(19)

vyx =
−a12

a22
=

A16 A26 − A12 A66

A11 A66 − A16 A16
(20)

According to Equations (2), (18) and (20), Poisson’s ratios of vxy and vyx are not depen-
dent on the stacking sequences of laminated composites and just functions of membrane
stiffness matrix elements or membrane lamination parameters. Poisson’s ratio envelope
can be studied by using membrane lamination parameters as design variables.

3. Buckling of Laminated Plate with In-Plane Translational Restraint

The derivation of the buckling equation of a rectangular orthotropic plate under a
biaxial load follows the approach described by Whitney [25]. The Rectangular composite
panel under biaxial loading is shown in Figure 1. It is convenient to let k = Ny/Nx and to
let the buckling load Nx be denoted by −Ncr (minus sign to indicate compression):

Ncr(m, n) =
D11(mπ/a)4 + 2(D12 + 2D66)(mπ/a)2(nπ/b)2 + D22(nπ/b)4

(mπ/a)2 + k(nπ/b)2 (21)
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Figure 1. Rectangular composite panel under biaxial loading.

From Equation (21), the buckling load Ncr is a function of the number of half-waves m
in the x direction and n in the y direction. k > 0 implies biaxial compression, then, negative
values of k correspond to tensile Ny values. Furthermore, a tensile Ny (k < 0) tends to
stabilize the plate and increase its buckling load [24]. In other words, the tensile load along
the y direction is beneficial for improving the critical buckling load for a rectangular plate
when the compressive load is applied in the x direction.

Usually, a simply supported boundary condition of uniaxial compression applied in
the x direction does not include the in-plane translational restraint along the y direction for
buckling analysis in the available literature. However, the ideal free boundary conditions
for a simply supported plate never occur in practice, and therefore in-plane translational
restraint exists. If the unloaded edges were to be subjected to elastic restraint against in-
plane translation, then the induced equivalent load along the unloaded y direction would
be compressive for the material with a positive Poisson’s ratio, and would be tensile for the
plate with a negative Poisson’s ratio [17]. From Equation (21), it can be seen that if the plate
has a negative in-plane Poisson’s ratio and in-plane translational constraint is considered,
the axial compression buckling load can be increased due to the induced tension force on
the unloaded y direction.

According to Ref. [17], an elastic coefficient of support k was also employed to simulate
constraint stiffness along the unloaded sides shown in Figure 2. α is defined as the in-plane
translational restraint coefficient shown in Equation (22). Hence, the restraint coefficient α
varies from 0 (free expansion condition) to 1 (full restrained condition).

α =
b/Ey

t/k + b/Ey
(22)

Ny = αvyx Nx (23)
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The critical buckling load of an orthotropic plate, with the induced equivalent load
along the unloaded edges caused by the in-plane translational restraint, should be deter-
mined by:

Nx(m, n) =
D11(mπ/a)4 + 2(D12 + 2D66)(mπ/a)2(nπ/b)2 + D22(nπ/b)4

(mπ/a)2 + ανyx(nπ/b)2 (24)

4. Results and Discussion
4.1. Auxetic Design of Laminated Rectangular Plate with Membrane Lamination Parameters

In this section, feasible Poisson’s ratios are discussed in the design space of the four
membrane lamination parameters. All the layers are made from T300/5208 carbon–epoxy
composites [9]; the material properties of the lamina are given in Table 1.

Table 1. Material properties of the lamina.

E11 (GPa) E22 (GPa) v12 G12 (GPa) ρ (kg/m3) tply (mm)

181 10.3 0.28 4.47 1580 0.1

The Poisson’s ratio contours are plotted in Figure 3 on the following four planes in
the design space of the four membrane lamination parameters (the Poisson’s ratios are
determined with an interval of 0.5 for lamination parameters):
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1 , VA

2 plane for VA
3 = VA

4 = 0. (b) VA
2 , VA

3 plane for
VA

1 = VA
4 = 0. (c) VA

3 , VA
4 plane for VA

1 = VA
2 = 0. (d) VA

4 , VA
1 plane for VA

2 = VA
3 = 0.

(a) VA
1 , VA

2 plane for VA
3 = VA

4 = 0.
(b) VA

2 , VA
3 plane for VA

1 = VA
4 = 0.

(c) VA
3 , VA

4 plane for VA
1 = VA

2 = 0.
(d) VA

4 , VA
1 plane for VA

2 = VA
3 = 0.

In each plane, the contours are shown in the feasible region of the membrane lami-
nation parameters given by Equation (9). According to Figure 3a, the Poisson’s ratios of
the orthotropic laminate (VA

3 = VA
4 = 0) vary from 0.015 to 1.450, that is, the orthotropic

laminate with VA
3 = VA

4 = 0 do not have the opportunity to obtain NPR no matter the ply
angle or orientation change. According to Equation (6), for a laminate composed of 0◦,
90◦, 45◦, and −45◦ fiber angles, the membrane lamination parameters can be formulated
as follows:

VA
1 =

n0 − n90

n
(25)

VA
2 =

n0 + n90 − n45 − n−45

n
(26)

VA
3 =

n45 − n−45

n
(27)

where n denotes the number of total plies, and n0, n90, n45, and n−45 denote the number
of plies for 0◦, 90◦, 45◦, and −45◦, respectively. For the symmetric and balanced laminate
composed of 0◦, 90◦, 45◦, and −45◦ fiber angles, VA

3 = VA
4 = 0, the Poisson’s ratio
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of the laminate can be determined according to Figure 3a and Equations (25) and (26).
Furthermore, the boundary of the feasible region for the orthtropic laminate composed of
0◦, 90◦, 45◦ and −45◦ fiber angles in the design space of VA

1 , VA
2 is also shown in Figure 3a

by a red dashed line.
Comparing the Poisson’s ratio contours on the four planes, it can be seen that the

negative Poisson’s ratio are more sensitive to VA
3 . VA

3 represents the unbalanced degree
of a laminate. The NPR regions for the two-lamination parameter plane are also given
in Figure 2. The minimum NPR is −0.360 for [VA

1 , VA
2 , VA

3 , VA
4 ] = [−0.35, 0.25,−0.6, 0.25]

or [−0.35, 0.25, 0.6,−0.25]. The maximum NPR is 1.450 for [VA
1 , VA

2 , VA
3 , VA

4 ] =
[−0.65, 0.15, 0,−0.05] or [−0.65, 0.15, 0, 0.05]. Compared with the other three NPR regions,
the NPR points for VA

2 , VA
3 occupy the smallest proportion of whole VA

2 , VA
3 region, which

reveals that the VA
2 −VA

3 relationship takes the lead for NPR combinations of lamination
parameters. NPR points for two-lamination parameter plane is shown in Figure 4.
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4.2. Buckling Load Intensity for Various Poisson’s Ratio Layup

The buckling load intensity with bending lamination parameters for various Poisson’s
ratio layups were investigated. The geometry of the chosen plate is 100 mm × 100 mm and
the thickness is 2 mm.

Firstly, the minimum NPR of −0.360 with [VA
1 , VA

2 , VA
3 , VA

4 ] = [−0.35, 0.25,−0.6, 0.25]
was selected for the buckling load investigation. According to the feasible region of
Equation (9), different combinations of bending lamination parameters can be obtained
with [VA

1 , VA
2 , VA

3 , VA
4 ] = [−0.35, 0.25,−0.6, 0.25]. Note that the buckling load Equation (24)

assumes that the bending–twisting coupling terms D16 and D26 are negligible compared
with the remaining terms D11, D12, D22, and D66. Therefore, it is better to calculate the
buckling load for the laminate configuration with VD

3 = VD
4 = 0. However, the lamina-

tion parameter combination of [VA
1 , VA

2 , VA
3 , VA

4 , VD
3 , VD

4 ] = [−0.35, 0.25,−0.6, 0.25, 0, 0]
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does not satisfy the feasible region of lamination parameters. Thus, a combination of
VD

3 = 0.05, VD
4 = 0 to ensure the orthotropic condition to the highest extent is used to illus-

trate the VD
1 , VD

2 plane for the buckling load contours.
From the buckling load contours of Figure 5, two different buckling models may exist

in the whole region of VD
1 , VD

2 . Four sets as follows are chosen to examine the effect of
lamination parameters on the buckling modes:
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Figure 5. Plane for [VA
1 , VA

2 , VA
3 , VA

4 , VD
3 , VD

4 ] = [−0.35, 0.25,−0.6, 0.25, 0, 0].

Point A:
[
VA

1 , VA
2 , VA

3 , VA
4 , VD

1 , VD
2 , VD

3 , VD
4
]
= [−0.35 0.25 − 0.6 0.25 − 0.5 0.4 − 0.05 0].

Point B:
[
VA

1 , VA
2 , VA

3 , VA
4 , VD

1 , VD
2 , VD

3 , VD
4
]
= [−0.35 0.25 − 0.6 0.25 0.2 0.2 − 0.05 0].

Point C:
[
VA

1 , VA
2 , VA

3 , VA
4 , VD

1 , VD
2 , VD

3 , VD
4
]
= [−0.35 0.25 − 0.6 0.25 − 0.2 0 − 0.05 0].

Point D: [VA
1 , VA

2 , VA
3 , VA

4 , VD
1 , VD

2 , VD
3 , VD

4 ] = [−0.35 0.25 − 0.6 0.25 − 0.2 0.2 − 0.05 0].
The buckling modes of point A and point C are consistent; there are two half wave-

lengths in the x direction (m = 2) and one in the y direction (n = 1), while there is one
half wavelength in x direction (m = 1) and one in y direction (n = 1) for point B. Point D
is the dividing point of the two buckling modes. When m = 2, n = 1 or m = 1, n = 1, the
buckling load is the same. The buckling mode is not only related to the stiffness, but also to
the aspect ratio of the plate. The buckling load contour lines for 200 mm × 100 mm and
300 mm × 100 mm plates are given in Figures 6 and 7, respectively.
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Secondly, the lamination parameters of [VA
1 , VA

2 , VA
3 , VA

4 ] = [0.4,−0.05,−0.6,−0.1]
with a PR of 0, and [VA

1 , VA
2 , VA

3 , VA
4 ] = [0, 0, 0, 0] with a PR of 0.296, are both studied for

buckling load with various bending lamination parameters combinations. It can be seen
from the contours that the buckling load is almost only related to VD

2 . The buckling load
decreases with an increase in VD

2 . From Figures 5 and 8, the possible maximum buckling
load decreases with an increase in Poisson’s ratio.
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The influence of Poisson’s ratio and the in-plane translational restraint coefficient
on the buckling load of quasi isotropic laminates ([VA

1 , VA
2 , VA

3 , VA
4 ] = [0, 0, 0, 0]) was

studied. α is the in-plane translational restraint coefficient, which represents the degree
of translational limitation. Figure 9 reveals the variation of the buckling loads of the
rectangular plate with the Poisson’s ratio for different in-plane translational restraint
coefficients. The buckling load remains unchanged when the restraint coefficient α equals
zero and, when the Poisson’s ratio is zero, the buckling load is the same for various restraint
coefficients. If the in-plane translational restraint exists (α > 0), the buckling load gradually
decreases as the Poisson’s ratio increases. These results imply that the buckling load is a
decreasing function of the laminate’s Poisson’s ratio, and hence the buckling performance of
a rectangular plate under uniaxial compression can be enhanced by replacing the traditional
layup that has a positive Poisson’s ratio with an auxetic design.
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4.3. Inverse Problem of Laminate Configuration

The inverse problem of deciding the laminate configuration to target the lamination
parameters for three sets was investigated:

(a) [VA
1 , VA

2 , VA
3 , VA

4 ] = [−0.45, 0.35,−0.55, 0.3] with PR of −0.356.
(b) [VA

1 , VA
2 , VA

3 , VA
4 ] = [0, 0, 0, 0] with PR of 0.296.

(c) [VA
1 , VA

2 , VA
3 , VA

4 ] = [−0.55,−0.35, 0.05,−0.3] with PR of 1.389.

The relationship between the lamination parameters and the stacking sequence is
not always unique; there is no closed-form solution to convert a point in the lamination
parameters’ space into a stacking sequence. Further still, when prescribing the number
of layers in the laminate, certain points in the lamination parameters’ space do not have
a corresponding layup, and the closest alternative must be found. In previous work, the
conversion process was formulated as an optimization problem. The objective function
that was used for this optimization was the least rectangular distance of the lamination
parameters to the desired optimum point:

min f (θ) =
4
∑

i=1

[(
VA

i −VA
iopt

)2
+
(

VD
i −VD

iopt

)2
]

s.t. θ ∈ {from− 90o to 90o with an interval of 5 degrees}
(28)

where opt denotes the given optimum lamination parameters.
Due to its ability to deal with the continuous global optimization problem with a

non-linear objective function, particle swarm optimization (PSO) is an evolutionary global
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algorithm that has become more and more popular. PSO was first proposed by Kennedy
and Eberhart [26,27]. It is observed that a swarm of birds or insects searches for food in a
very typical manner. If one member of the swarm finds a desirable path to go, the rest of the
particles will follow quickly. Each particle searches for the best in its locality with learning
from its own experience. Additionally, each member learns from the others, typically from
the best performer among them. PSO has been successfully applied to some engineering
and structural problems.

The basic steps in the PSO algorithm are as follows:
Step 1 Initialize the swarm with random position values and random initial velocities.
Step 2 Determine the velocity vector for each particle in the swarm using the knowl-

edge of the best position obtained by each particle and the swarm as a whole, and also the
previous position of each particle in the swarm.

Step 3 Modify the current position of each particle using the velocity vector and the
previous position of each particle.

Step 4 Repeat from step 2 until the stop criterion is achieved.
The velocity vector of each particle is calculated as follows:

vi
k = wvi

k−1 + c1r1(pi − xi
k−1) + c2r2(pg

k−1 − xi
k−1) (29)

where the superscript i denotes the particle and the subscript k denotes the iteration number;
v denotes the velocity and x denotes the position; r1 and r2 are uniformly distributed
random numbers in the interval [0, 1]; c1 and c2 are the acceleration constants; w is the
inertia weight; pi is the best position attained by the particle i in the swarm so far; and pg

k−1
is the global best position attained by the swarm at iteration k − 1.

The position of each particle at iteration k is calculated using the formula:

xi
k = xi

k−1 + vi
k (30)

The laminate configurations for various lamination parameters were obtained, as
shown in Table 2. For example, with a thickness of 2 mm and lamination parameters of
[VA

1 , VA
2 , VA

3 , VA
4 , VD

1 , VD
2 , VD

3 , VD
4 ] = [−0.45, 0.35,−0.55, 0.3, 0, 0, 0, 0], the corresponding

stacking sequence of laminate can be obtained, [−15/40/−85/−75/60/0/75/−50/−15/35]s;
the objective of the least rectangular distance of the lamination parameters to the desired
optimum point is 0.058 in Equation (28).

Table 2. Laminate configurations for lamination parameters.

Target Lamination Parameters Real Lamination Parameters Laminate Configuration Objective

[−0.45, 0.35, −0.55, 0.3, 0, 0, 0, 0] [−0.43, 0.29, −0.35, 0.36, −0.01, −0.03,
−0.09, 0.003] [−15/40/−85/−75/60/0/−75/−50/−15/35]s 0.058

[0, 0, 0, 0, 0, 0, 0, 0] [0.0019, −0.0075, 0.0086, −0.017, −0.020,
−0.0006, −0.0084, 0.0028] [65/65/30/5/−85/−85/−20/−85/−85/80]s 0.0009

[−0.55, −0.35, 0.05, −0.3, 0, 0, 0, 0] [−0.34, −0.26, 0.062, −0.27, −0.048, −0.043,
−0.012, −0.031] [−85/75/−35/50/30/−10/−70/−10/−30/0]s 0.06

5. Conclusions

Laminated structures can obtain an NPR effect by the proper orientation or a stacking
sequence of laminate layers. The aim of this paper was to study the buckling load en-
hancement of an auxetic laminated plate under uniaxial compression considering in-plane
translational restraint. Four membrane lamination parameters were employed to study
the feasible regions for the Poisson’s ratios. The results show that it is impossible for an
orthotropic plate to have a negative Poisson’s ratio, and negative Poisson’s ratios are more
sensitive to VA

3 , which denotes the unbalanced degree. Furthermore, the influence of the
Poisson’s ratio and in-plane translational restraint coefficient on the buckling load has been
studied, which reveals that the buckling performance of a rectangular plate under uniaxial
compression can be enhanced with an auxetic design. Finally, PSO is efficient for the inverse
problem of deciding the laminate configuration to target the lamination parameters.
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