
Citation: Skoki, A.; Napravnik, M.;

Polonijo, M.; Štajduhar, I.; Lerga, J.

Revolutionizing Soccer Injury

Management: Predicting Muscle

Injury Recovery Time Using ML.

Appl. Sci. 2023, 13, 6222. https://

doi.org/10.3390/app13106222

Academic Editors: Sung Bum Pan

and EunSang Bak

Received: 14 April 2023

Revised: 12 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Revolutionizing Soccer Injury Management: Predicting Muscle
Injury Recovery Time Using ML
Arian Skoki 1 , Mateja Napravnik 1 , Marin Polonijo 2, Ivan Štajduhar 1,3,* and Jonatan Lerga 1,3

1 Department of Computer Engineering, Faculty of Engineering, University of Rijeka, Vukovarska 58,
51000 Rijeka, Croatia; askoki@riteh.hr (A.S.); mnapravnik@riteh.hr (M.N.); jonatan.lerga@riteh.hr (J.L.)

2 HNK Rijeka Medical Department, Rujevica 10, 51000 Rijeka, Croatia; marin.polonijo@gmail.com
3 Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
* Correspondence: ivan.stajduhar@riteh.hr

Abstract: Predicting the optimal recovery time following a soccer player’s injury is a complex task
with heavy implications on team performance. While most current decision-based models rely on
the physician’s perspective, this study proposes a machine learning (ML)-based approach to predict
recovery duration using three modeling techniques: linear regression, decision tree, and extreme
gradient boosting (XGB). Performance is compared between the models, against the expert, and
together with the expert. The results demonstrate that integrating the expert’s predictions as a
feature improves the performance of all models, with XGB performing best with a mean R2 score of
0.72, outperforming the expert’s predictions with an R2 score of 0.62. This approach has significant
implications for sports medicine, as it could help teams make better decisions on the return-to-play
of their players, leading to improved performance and reduced risk of re-injury.

Keywords: return-to-play; machine learning; recovery estimation; soccer injuries

1. Introduction

Return-to-play (RTP) is the process of determining when an athlete who has suffered
an injury or illness is ready to return to sports participation. This decision is made based on
a careful evaluation of the athlete’s medical condition, physical readiness, and sport-specific
requirements; and is often made by medical professionals and team physicians [1,2].

Making a good RTP decision is crucial to prevent further mental or physical harm
and reduce the risk of re-injury, as it is sometimes the case that the rehabilitation time
from re-injuries is longer than for index injuries [3]. This further highlights the importance
of having enough time to recover, which is why there have been several approaches to
estimating RTP. While recommendations and decision-based models have been established
to help determine the appropriate time to return to play [4–6], most of these still rely solely
on the physician’s perspective [2].

The assessment of RTP time has significant implications for the game and its tactical
features. To compensate for the absence of the player, a coach’s decision-making process
may be affected and he may have to adjust tactics, relocate players and give other instruc-
tions. A study conducted by E. Eliakim et al. found a statistically significant relationship
between the number of days team members were absent due to injury during a season and
the difference between a team’s actual and expected EPL standings [7]. In addition, a UEFA
Champions League injury study conducted over an 11-year period found that injuries have
a significant impact on the performance of male professional footballers in both the league
and the European Cup.

While the views of team physicians hold paramount importance in deciding the
optimal RTP time for athletes, it is possible that their assessments could be supplemented
by machine learning (ML) techniques. ML has had a profound impact in medicine [8],
and its influence has grown throughout the years in sports as well [9]. In the field of
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sports medicine, ML algorithms have been increasingly utilized. Although most of the
available research focuses on assessing the risk of injury [10–13], there have also been
incentives to include ML into the process of determining RTP time [14]. Because deep-
learning-based computer-aided diagnosis (CAD) systems have been proven to increase
radiologists’ diagnosis accuracy [15], we hypothesize that physicians’ RTP predictions
could also be improved using ML. However, given the nature of medical records and their
tabular representation, simpler ML approaches, such as decision trees, may be utilized [16].

Muscle injuries are among the most common in professional soccer [3], with varying
recovery time length [17]. Valle et al. [14] attempted to predict RTP time following a
hamstring muscle injury by applying ML techniques on data derived from magnetic
resonance (MR) images. Their system achieved an R2 score of 0.48, and exhibited a mean
absolute error of 9.8 days. The data which were input to their model consisted of multiple
attributes describing the location and severity of injuries, including injury chronology
(index injury, re-injury). We hypothesize that the accuracy of such models, similar to
CAD systems [15], could be further improved by coupling these types of attributes with
physicians’ predictions. The aim of this study is to assess the recovery time after muscle
injury by integrating ML techniques and expert judgment. To the best of our knowledge,
no similar study has attempted to integrate these approaches for this particular topic.

2. Materials and Methods

This section presents a comprehensive overview of the data collection process and
its distribution, including the classification method used to identify muscle injuries and
the implementation techniques used by physiotherapists. The feature processing phase is
also discussed, outlining the modifications or eliminations made to various features. The
setup for model training and hyperparameter tuning is presented, along with a thorough
evaluation of all methods employed. The objective of this section is to provide a detailed
and impartial understanding of the entire process.

2.1. Study Design

This study was conducted using data collected from a professional soccer club during
both the preseason and competitive periods. The observed team competes at the highest
level of its national championship and regularly participates in European competitions.
The club’s medical staff used an internal online platform to collect injury records and
monitor the rehabilitation process. To ensure accuracy, each injury and recovery progress
was recorded by reaching a consensus among the medical team. Data collection began in
February 2021 and continued until February 2023. Muscle injuries were the only injuries
included in the analysis for this study.

The research included 41 unique male soccer players (mean age 24 ± 4.2 years) who
experienced a total of 84 muscle injuries during the examined period. The players who
have not suffered an injury were excluded from the study. The identities of the players
were anonymized and not available to the researchers. Of the players involved, one player
experienced 7 injuries, two players experienced 5 injuries each, and one, eight, and six
players experienced 4, 3, and 2 injuries, respectively. All other players experienced only
one injury each.

2.2. Procedures and Variables

The injury reporting process in the study involved the entry of injury details by a
physiotherapist into an internal online platform. A report was filled in after an on-site
examination by the clinician. The injury report consisted of three parts: (1) general injury
information, (2) injury-specific details, and (3) recovery-specific details. Injury parameters
and their descriptions can be found in Table 1. While the club staff entered new records
according to the recovery progress of the affected player, only the initial examination
parameters were used as input for the model in this study.
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The focus of this study was to estimate muscle injuries, which were classified using
the British Athletic Muscle Injury Classification (BAMIC) [18]. This system is widely used
in sports medicine and allows for grading muscle injuries based on clinical examination
and imaging findings.

The BAMIC system consists of five grades, ranging from grade 0 to grade 4, with
each grade representing a different level of injury severity. Grade 0 represents a minor
injury, while grade 4 represents a complete muscle rupture. It is an important tool in
sports medicine as it enables the accurate diagnosis and grading of muscle injuries, informs
treatment decisions, and aids in predicting recovery time. Its use provides a common
language for communication among medical professionals, coaches, and athletes regarding
the severity of muscle injuries, ensuring that everyone involved in the care and management
of an injured athlete is on the same page and working toward the same goals. As a result, it
has contributed to improved outcomes and reduced recovery times for injured athletes.

Table 1. Injury report example which is filled out by the club’s physiotherapist. The table contains
only the data that are relevant to muscle injuries in this study. Values separated by a slash “/” denote
that a single value may be selected, whereas those separated by a vertical bar “/” indicate that
multiple values can be selected.

Injury Parameter Description Values

G
en

er
al

P1: Date of a clinical examination Date
P2: Is the injury the result of a tackle? Yes/No
P3: Has the player stopped playing? Yes/No
P4: Where has it occurred? Training/game/national team/other
P5: On which side of the body is it located? Left/right/middle

In
ju

ry
-s

pe
ci

fic

P6: Injury classification according to the BAMIC. Numbers 0–4, suffix A/B/C
P7: What is the position according to muscle? Proximal|distal|abdominal
P8: What is the depth? Middle muscle|deep|superficial fascia
P9: Which body part is affected? Hamstring|quadriceps|

adductors|abductors|calf
P10: What is the swelling level? None/low/moderate/high
P11: What is the tone level? None/low/moderate/high
P12: What is the crepitation level? None/low/moderate/high
P13: What is the elasticity level? None/low/moderate/high
P14: Is palpation painful? Yes/no
P15: Is contraction painful? Yes/no
P16: Is stretching painful? Yes/no

R
ec

ov
er

y P17: What is the current phase of recovery? Numbers 1 to 6
P18: Expected duration in days, weeks and months. Number
P19: Additional comments from the medical staff. Text

As described in Section 2.1, the final dataset comprised 84 muscle injuries. However,
the distribution of recovery time for these injuries, as presented in Figure 1, reveals some
outliers where recovery took considerably longer than other injuries. This poses a challenge
for training ML algorithms on such a sparse distribution. To address this issue, a cut-off
threshold of 35 days (5 weeks) was set, resulting in a final pool of 80 muscle injuries. The
discarded injuries had a recovery duration of 39, 45, 52, and 67 days, respectively, with the
first two being attributed to repetitive injury of the calf and an abdominal wall rupture.
The longest recovery periods of 52 and 67 days were reported for adductor and hamstring
injuries (respectively) of goalkeepers. Expanding the dataset could potentially enable an
extension of the cut-off threshold to 7 weeks, allowing for the inclusion of more injuries
with longer recovery periods. However, to capture injuries with even lengthier recovery
durations, it would be necessary to collect data on the entire league over several years in
order to capture a more extensive range of injury occurrences.
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Figure 1. Distribution of muscle injuries based on the required recovery time. The vertical dashed
line indicates the cut-off threshold of 35 days (5 weeks). Injuries with longer recovery times were
excluded from the analysis.

2.3. Feature Processing

From the general features group shown in Table 1, parameters P4 (place of injury)
and P5 (body side) are discarded, along with recovery feature P17. The features P1 (date
of an examination) and P19 (medical notes) were not provided by the club to save the
players’ identities. However, the injury duration, needed for this study, was calculated by
subtracting the last date of examination (player is considered fit) and the first date (start
of an injury). The injury-specific features P12 and P13 were also discarded because these
parameters are not relevant for muscle injuries. The rest of the injury-specific parameters
are preserved with some additional processing. Initial muscle injury classification (P6)
distribution is shown in Figure 2. To standardize the values, all contusions (C) are mapped
to values 0, while values 1A and 1B are mapped to 1, values 2A and 2B to 2, 3A to 3 and,
finally, 3B to 4. This mapping scheme corresponds to the injury severity grade.

Another important feature was the position of the injury according to the muscle
(P7). To account for the possibility of a single injury affecting multiple muscle groups, the
available choices—proximal, abdominal and distal muscles—were one-hot encoded. In this
context, ‘abdominal’ refers exclusively to injuries affecting the abdominal wall region. To
streamline the analysis, the possible outcomes for the depth feature (P8) were combined
into a single feature. This consolidated feature contained values ranging from 0 to 3, corre-
sponding to no information, superficial fascia, middle muscle and deep fascia, respectively.

Body position features (P9) also played a significant role in our analysis, providing
information about the affected body region. To simplify this, the features were grouped
into five categories: hamstring, quadriceps, adductors and abductors, calf and abdominal
wall. As with parameter P7, it is possible for an injury to affect multiple muscle groups.
Therefore, each category was one-hot encoded to accommodate such cases.

Clinical examination features, such as swelling, tone, crepitation and elasticity
(P10–P13), contained values ranging from 0 to 3, describing the level of each. Pain ratings
of palpation, contraction, and stretching (P14–P16) were described as either painful or not
painful. Finally, recovery features were considered, such as the expected recovery duration
(P18), which was converted into days for easy comparison.
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Figure 2. Distribution of muscle injuries by type, as classified by the BAMIC system. The x-axis
denotes different injury types, including classes 1A, 1B, 2B, 3A, and 3B, as well as contusions denoted
by C. The y-axis displays the occurrence count for each type of injury.

2.4. Model Training and Hyper-Parameter Tuning Process

To accurately estimate injury recovery time in days, a comparative analysis of three
distinct algorithms was employed, namely: linear regression (LR), decision trees (DT),
and extreme gradient boosting (XGB). LR was selected as the baseline due to its proven
effectiveness across a range of tasks [19]. DT was preferred for processing a large number
of features and providing understandable explanations for decision-making [20], which is
beneficial to medical staff. XGB [21] was chosen for its superior flexibility and performance
in comparison to simpler machine learning (ML) algorithms across various datasets [22,23].
The hyperparameters of each algorithm were fine-tuned to optimize their performance.

A five-fold Bayesian search cross-validation (CV) was employed to determine optimal
hyperparameter values for each model. Mean squared error (MSE) was used as the cost
function. Subsequently, the best hyperparameter values were utilized for training and
evaluating the models. Due to a very scarce dataset, and previous research on a similar
topic [14], the performance was assessed using the leave-one-out (LOO) method. The nature
of Bayesian search and data variability in CV folds might influence model performance.
For this reason, the experiment was run 10 times. This provided insight into the model
stability concerning the different distribution of data in CV folds. The metrics of R2,
mean absolute percentage error (MAPE), mean absolute error (MAE), MSE, and root mean
squared error (RMSE) were calculated for each iteration, both for Bayesian search CV
and LOO performance. Ultimately, the model with the lowest average MSE value on the
five-fold Bayesian search CV was selected as the representative model. This approach
ensured the best possible performance for our models and provided a robust and reliable
estimation of injury recovery time. The visualization of the whole process is shown in
Figure 3.

To test our hypothesis of whether incorporating human expertise into ML models
could improve their performance, the process was executed twice. In the first run, the
feature containing expert-estimated recovery (in days) was excluded. In the second run,
this feature was included in our model. By comparing the performance of the two runs, we
aimed to evaluate the added value of incorporating expert knowledge into our approach.
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Figure 3. A flowchart illustrating the data collection process, feature processing (including data
cleaning), hyperparameter tuning and evaluation.

2.5. Comparison with the Expert

From the starting count of 80 muscle injuries, the expert provided input on 69. This
meant that the expert did not estimate recovery time for 11 injuries, leaving us with a
smaller dataset. To ensure a fair comparison between the algorithms and the expert, the
LOO performance evaluation was conducted solely on this pool of 69 injuries. On the other
hand, the process of hyperparameter selection was performed using the entire dataset
to maximize the optimization of each algorithm’s performance. This approach allowed
us to evaluate the effectiveness of the algorithms both with and without the inclusion of
expert knowledge.

3. Results

In this section, the performance results of each algorithm are presented and compared
to the expert’s evaluation. Specifically, Section 3.1 showcases the algorithmic performance
across 10 iterations, allowing for a comprehensive comparison. Building on this, Section 3.2
analyzes how the best algorithm performs against the expert, highlighting areas where it
outperforms or underperforms. Finally, in Section 3.3, the benefits of combining expert
predictions with an ML model are demonstrated, as well as the resulting improvements
in predictions.

3.1. Algorithm Performance

Table 2 presents the performance scores of each algorithm obtained through a five-fold
CV along with LOO scoring after hyperparameter tuning. The selection of the best iteration,
used in Figure 4, was based on the mean MSE score calculated across five CV folds. Notably,
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all models exhibited consistent performance across iterations with minimal variance. It
was observed that both XGB and DT demonstrated superior performance in comparison to
the simpler LR model. Moreover, XGB consistently outperformed DT across all LOO score
metrics, thus emerging as the top-performing model.

Table 2. Performance of LR, DT and XGB models during Bayesian CV search and LOO evaluation.
The best model is determined by the lowest average (µ) MSE score through the five-fold CV, with the
standard deviation of MSE represented in a column labeled “σ MSE”. The repeatability of each model
is presented with the mean and standard deviation values for each column, representing the average
performance of 10 iterations. The best-performing iteration on µ MSE is highlighted in boldface.

Iteration LOO Scores CV Scores

LR

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
2 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
3 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
4 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
5 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
6 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
7 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
8 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
9 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878

10 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878

µ 0.36575 0.56509 4.75074 37.10271 6.0912 39.0987 13.02878
σ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D
T

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.36856 0.56112 4.84436 36.93808 6.07767 33.69378 8.44224
2 0.38041 0.58571 4.88129 36.24516 6.0204 32.6839 8.98252
3 0.41784 0.54969 4.49069 34.05541 5.8357 30.68957 10.92026
4 0.4205 0.54509 4.51262 33.90005 5.82238 31.1122 11.44684
5 0.39972 0.5511 4.69415 35.11582 5.92586 30.7318 9.60456
6 0.37144 0.57182 4.88579 36.76976 6.06381 34.98135 7.70743
7 0.43006 0.54371 4.43694 33.34053 5.77413 30.68957 10.92026
8 0.39793 0.54126 4.65291 35.22026 5.93467 36.84938 9.30861
9 0.42946 0.53794 4.42913 33.37593 5.77719 30.68957 10.92026

10 0.4126 0.55927 4.72277 34.3621 5.86192 35.30978 9.18693

µ 0.40285 0.55467 4.65506 34.93231 5.90937 32.74309 9.74399
σ 0.02305 0.01502 0.18021 1.34805 0.11374 2.32672 1.24685

X
G

B

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.43967 0.50008 4.43158 32.77833 5.72524 32.87888 8.36284
2 0.45005 0.47844 4.34835 32.17158 5.672 32.3166 11.82537
3 0.44055 0.49098 4.41247 32.7271 5.72076 32.75645 12.10305
4 0.41978 0.51323 4.54118 33.94185 5.82596 31.12103 10.89239
5 0.41368 0.47679 4.41468 34.29913 5.85655 32.90218 10.89093
6 0.44002 0.46938 4.37676 32.75795 5.72346 31.99108 9.21831
7 0.42941 0.48437 4.3992 33.37888 5.77745 31.09984 10.66784
8 0.43504 0.50181 4.44338 33.04964 5.74888 33.14041 8.97922
9 0.44142 0.50929 4.47258 32.67641 5.71633 31.7312 12.08996

10 0.48429 0.49104 4.27796 30.16831 5.49257 31.62637 12.81656

µ 0.43939 0.49154 4.41181 32.79492 5.72592 32.1564 10.78465
σ 0.01915 0.01451 0.07083 1.12011 0.09874 0.75348 1.50068

While overall scores can provide some insight into the model’s performance, they may
not be fully indicative. For a more accurate evaluation, it is necessary to conduct a closer
examination. Therefore, Figure 4 is presented, which displays the model’s predictions on
the x-axis and the true recovery duration on the y-axis. Focusing on a 15-day period of
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recovery, it can be observed that the models tend to overestimate the recovery time (as
indicated by the green background), with LR being particularly prone to this issue. In
contrast, DT demonstrates the largest outliers when underestimating the recovery time,
especially within this 15-day period (indicated by the red background). Considering the
entire figure, it is clear that XGB exhibits greater consistency in prediction when compared
to DT, which is more prone to significant deviations when incorrect.

Figure 4. Estimated versus true recovery duration for LR (blue circles), DT (green asterisks) and XGB
(orange triangles) algorithms. The diagonal black dotted line represents ideal estimations, while green
and red backgrounds indicate that the recovery was faster or slower than estimated, respectively.

3.2. Algorithm Estimation vs. Expert

In order to assess the effectiveness of the models, it is necessary to compare their
performance with that of the current practice, which involves an estimation made by the
expert. As shown in Table 3, it can be observed that the expert still outperforms each model
in every metric. Table 4 presents a comparison of the performance of the expert with the
best iterations obtained by each model.

In Figure 5, the predictions of the best-performing model—XGB—are presented in
comparison to the estimations of the expert. The expert’s predictions generally align
well with actual recovery times but tend to overestimate the time needed for the players’
recovery. Additionally, the expert’s predictions do not deviate significantly when predicting
injury recovery longer than 2 weeks. This may be due to the fact that humans tend to
estimate time in different units, such as weeks instead of days, which may affect the expert’s
ability to estimate return dates more precisely.

The next section will demonstrate the impact of incorporating expert predictions as a
feature on the model’s performance and estimations.

Table 3. Comparison of performance of the expert versus LR, DT and XGB models. Values printed in
boldface represent the best performance.

Source R2 MAPE MAE MSE RMSE

Expert 0.62242 0.40259 3.55072 23.31884 4.82896

LR 0.37484 0.55471 4.72464 38.6087 6.21359
DT 0.35607 0.54977 4.84058 39.76812 6.3062
XGB 0.42272 0.4709 4.31884 35.65217 5.97094
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Figure 5. Comparison of the estimations made by the expert (blue circles) with the predictions of
the best performing algorithm, XGB (orange asterisks). The black dotted line shows ideal predic-
tions, while green and red backgrounds indicate cases where the recovery was faster or slower
than expected.

3.3. Joint Performance of Expert and ML

In Table 4, it is evident that incorporating experts’ predictions as a feature has led to a
significant improvement in the performance of all models. LR and XGB have benefitted
the most from this addition, displaying notable enhancements across all metrics and
demonstrating a stable performance over different iterations. While DT also exhibits
improvement, its performance varies considerably across iterations. Upon selecting the
best iteration for each algorithm and comparing mean scores, based on a five-fold CV, it
is apparent that LR and DT have a similar level of performance. Table 5 compares the
performance of the best iteration of each algorithm with that of the expert. Although
DT and LR marginally outperform the expert, it is worth noting that they were heavily
reliant on the expert feature. On the other hand, XGB significantly outperformed the expert,
achieving a very good mean R2 score of 0.72.

Figure 6 presents a comparison of the mean MSE and its standard deviation for the
estimated injury duration between the expert, XGB, and XGB with the expert feature. The
figure clearly shows that the combination of XGB and expert feature has the lowest mean
MSE and standard deviation compared to a regular XGB and the expert using the LOO test.
This indicates that incorporating expert estimations as a feature in the XGB model greatly
improves the accuracy and consistency of the injury duration predictions.

To better demonstrate the benefits of adding the expert feature to the XGB model, a
more detailed inspection is necessary. Figure 7 shows the estimated recovery duration in
days on the x-axis and the true recovery duration in days on the y-axis. It is clear that the
XGB model with the expert feature produces more accurate predictions compared to the
regular XGB and the expert estimations alone. The XGB model’s predictions are better
aligned with the ideal prediction line.



Appl. Sci. 2023, 13, 6222 10 of 14

Table 4. Performance of LR, DT and XGB models during Bayesian CV search and LOO evaluation,
however, this time with the inclusion of the expert’s estimation as a feature. The best model is
determined by the lowest average (µ) MSE score through the five-fold CV, with the standard deviation
of MSE represented in a column labeled “σ MSE”. The repeatability of each model is presented with
the mean and standard deviation values for each column, representing the average performance of
10 iterations. The best-performing iteration on µ MSE is highlighted in boldface.

Iteration LOO Scores CV Scores
LR

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
2 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
3 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
4 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
5 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
6 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
7 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
8 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
9 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257

10 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257

µ 0.6355 0.40236 3.47055 22.51088 4.74456 24.18168 11.73257
σ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D
T

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.56135 0.43025 4.06224 27.09026 5.20483 24.23774 8.00767
2 0.56588 0.40654 4.07746 26.8105 5.17789 24.58617 9.96156
3 0.65213 0.38963 3.55799 21.4841 4.63509 23.13874 12.39801
4 0.48511 0.41564 4.13162 31.79884 5.63905 24.88708 10.97593
5 0.56682 0.40528 4.06732 26.75267 5.1723 24.58617 9.96156
6 0.63713 0.41954 3.74522 22.41051 4.73397 29.02981 12.13646
7 0.55367 0.4334 3.98921 27.56484 5.25022 27.33906 12.30718
8 0.55991 0.43168 4.07508 27.17943 5.21339 25.46586 8.81431
9 0.65213 0.38963 3.55799 21.4841 4.63509 23.13874 12.39801

10 0.53225 0.40429 4.1087 28.88768 5.37473 24.83022 5.37688

µ 0.57664 0.41259 3.93728 26.14629 5.10366 25.12396 10.23376
σ 0.05442 0.01626 0.22746 3.36112 0.33164 1.8156 2.3225

X
G

B

R2 MAPE MAE MSE RMSE µ MSE σ MSE

1 0.68989 0.33421 3.36068 19.15167 4.37626 16.69036 3.66068
2 0.73061 0.31059 3.11775 16.63706 4.07886 15.77372 4.0823
3 0.71298 0.30976 3.16809 17.72571 4.21019 16.12723 3.91683
4 0.72953 0.32833 3.21782 16.70385 4.08703 15.03208 3.47678
5 0.71938 0.29577 3.07532 17.33056 4.163 16.66 5.41802
6 0.74768 0.30955 3.07108 15.58318 3.94755 15.51867 4.03146
7 0.70573 0.32659 3.2798 18.17383 4.26308 15.43757 3.80829
8 0.74478 0.30252 3.06184 15.76225 3.97017 15.33776 5.10925
9 0.72551 0.32377 3.19032 16.95234 4.11732 15.88516 3.67151

10 0.7425 0.3084 3.08914 15.90284 3.98784 15.33761 4.20763

µ 0.72486 0.31495 3.16318 16.99233 4.12013 15.78002 4.13828
σ 0.01839 0.01249 0.10021 1.13567 0.13686 0.56481 0.63608

Table 5. The performance of the expert versus that of three ML models (LR, DT and XGB), including
the expert’s predictions as a feature. The best-performing models are indicated by values printed
in boldface.

Source R2 MAPE MAE MSE RMSE

Expert 0.62242 0.40259 3.55072 23.31884 4.82896

LR+Expert 0.63227 0.40701 3.46377 22.71014 4.76552
DT+Expert 0.65152 0.39336 3.57971 21.52174 4.63915
XGB+Expert 0.72239 0.33234 3.26087 17.14493 4.14064
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Figure 6. A bar plot showing the mean MSE of expert’s estimations (blue bars), XGB model
(orange bars) and XGB model with the inclusion of expert’s predictions as a feature (green bars). The
black lines on each bar indicate the corresponding standard deviation of the MSE.

Figure 7. Visualization of the estimations made by the expert (blue circles), and XGB with the
inclusion of the expert’s predictions as a feature (orange asterisks). The black dotted line shows ideal
predictions, while green and red backgrounds indicate cases where the recovery was faster or slower
than expected.

4. Discussion

Injuries can significantly impact the performance of sports teams, causing them to
lose games and even suffer financial losses. Head coaches, therefore, need to know how
long it takes for a particular injury to heal to make informed decisions. Investing in injury
prevention and rehabilitation programs can help reduce the number of days lost due to
injury, improve a team’s overall performance, and increase their chances of success. Several
studies have demonstrated that lower injury burdens and higher match availability are asso-
ciated with higher final league rankings, increased points per league match, and success in
prestigious tournaments such as the UEFA Champions League or Europa League [7,24,25].

Estimating the duration of recovery after an initial clinical examination is a challenging
task, as it depends on various factors such as injury history, age, body type, mental state
and more [4]. Additionally, the recovery process may not always follow a predictable
pattern, and individual players may recover at different rates [17,26]. This makes accurately
predicting RTP time a daunting task, even for experts in the field.
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State-of-the-art approaches for estimating the recovery time for a particular injury often
involve providing physicians with various recommendations and instructions. However,
despite these guidelines, the ultimate decision is usually based on the clinician’s experience
with different injury types and their subjective judgment. This decision-making process
may be influenced by factors within the soccer club, as well as the clinician’s internal state.
Therefore, having a tool that can assist clinicians in their decision-making process could
result in more accurate and confident estimates of recovery time.

To date, there has been only one study that attempted to use ML to assess RTP
time after hamstring injuries using the MLG-R classification system and the data derived
from MR images [14]. The study involved male professional football players from FC
Barcelona, and three different ML approaches to assess the importance of each factor of the
MLG-R classification system. The results demonstrated that the most important factors to
determine the RTP were whether the injury was at the free tendon of the biceps femoris
long head or whether it was a grade 3r injury. The study found the MLG-R classification
system to be reliable, with excellent results in terms of reliability, prognosis capability and
objectivity. However, the performance of the system has not been tested in conjunction with
assessments of a medical team. Nonetheless, ML assistance has been already demonstrated
in the area of medicine, such as the use of CAD systems to increase radiologists’ diagnosis
accuracy [15]. A similar approach can be also applied in the context of clinicians’ estimations
regarding RTP in soccer.

This paper presents an approach that enhances the process of recovery estimation by
incorporating an expert’s estimations as a feature in the model, in addition to comparing its
performance with that of an expert. By integrating human knowledge into the algorithm,
we achieve improved performance. This highlights the potential benefits of combining ML
methods and human expertise to tackle difficult tasks such as recovery estimation.

One limitation of our study is the relatively small amount of muscle injuries in the
dataset. With a longer collection period covering a larger number of soccer clubs and
injuries, the algorithm’s performance could increase significantly. The longer period and
the amount of data across many seasons might open up an opportunity for expanding
the application of the RTP estimator to other injury types, such as bone, joint and tendon.
Nonetheless, our dataset reflects a real-world scenario found in many soccer clubs where
data are collected over multiple seasons on a single team. Therefore, teams can apply the
methods we presented to their own data to improve their injury management processes.

5. Conclusions

In this study, we proposed an ML-based approach for improving the accuracy of
predicting the recovery duration of soccer players after an injury. We used three different
modeling approaches, namely LR, DT and XGB, to model the recovery duration. We
evaluated the performance of these models using several metrics, including MAPE, MSE,
RMSE and R2 score and compared it against the expert’s predictions.

The results demonstrated that incorporating the expert’s predictions as a feature
greatly improved the performance of all algorithms. XGB achieved the best performance
with a mean R2 score of 0.72, outperforming the expert’s predictions with an R2 score of
0.62. Our approach demonstrated the potential of combining human knowledge with ML
models to improve performance in complex tasks.

These findings have practical implications for soccer practitioners, such as head
coaches and medical teams. Accurate recovery duration information for key players could
inform tactical decisions and enable coaches to adjust their strategies for upcoming matches.
Integrating ML in the RTP decision-making process also adds an additional layer of safety
and validity to the medical team’s estimation. Ultimately, this approach can improve the
entire RTP process and make it more efficient for planning.

In conclusion, our study demonstrated that ML techniques, in conjunction with human
expertise, have the potential to significantly improve the accuracy of predicting recovery
duration for injured soccer players. This approach could have important implications for
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sports medicine, enabling teams to make better decisions regarding the RTP of their players,
ultimately improving their performance and reducing the risk of re-injury.
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ML Machine Learning
LR Linear Regression
DT Decision Trees
XGB Extreme Gradient Boosting
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C Contusion
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