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Abstract

:

Predicting the optimal recovery time following a soccer player’s injury is a complex task with heavy implications on team performance. While most current decision-based models rely on the physician’s perspective, this study proposes a machine learning (ML)-based approach to predict recovery duration using three modeling techniques: linear regression, decision tree, and extreme gradient boosting (XGB). Performance is compared between the models, against the expert, and together with the expert. The results demonstrate that integrating the expert’s predictions as a feature improves the performance of all models, with XGB performing best with a mean   R 2   score of   0.72  , outperforming the expert’s predictions with an   R 2   score of   0.62  . This approach has significant implications for sports medicine, as it could help teams make better decisions on the return-to-play of their players, leading to improved performance and reduced risk of re-injury.
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1. Introduction


Return-to-play (RTP) is the process of determining when an athlete who has suffered an injury or illness is ready to return to sports participation. This decision is made based on a careful evaluation of the athlete’s medical condition, physical readiness, and sport-specific requirements; and is often made by medical professionals and team physicians [1,2].



Making a good RTP decision is crucial to prevent further mental or physical harm and reduce the risk of re-injury, as it is sometimes the case that the rehabilitation time from re-injuries is longer than for index injuries [3]. This further highlights the importance of having enough time to recover, which is why there have been several approaches to estimating RTP. While recommendations and decision-based models have been established to help determine the appropriate time to return to play [4,5,6], most of these still rely solely on the physician’s perspective [2].



The assessment of RTP time has significant implications for the game and its tactical features. To compensate for the absence of the player, a coach’s decision-making process may be affected and he may have to adjust tactics, relocate players and give other instructions. A study conducted by E. Eliakim et al. found a statistically significant relationship between the number of days team members were absent due to injury during a season and the difference between a team’s actual and expected EPL standings [7]. In addition, a UEFA Champions League injury study conducted over an 11-year period found that injuries have a significant impact on the performance of male professional footballers in both the league and the European Cup.



While the views of team physicians hold paramount importance in deciding the optimal RTP time for athletes, it is possible that their assessments could be supplemented by machine learning (ML) techniques. ML has had a profound impact in medicine [8], and its influence has grown throughout the years in sports as well [9]. In the field of sports medicine, ML algorithms have been increasingly utilized. Although most of the available research focuses on assessing the risk of injury [10,11,12,13], there have also been incentives to include ML into the process of determining RTP time [14]. Because deep-learning-based computer-aided diagnosis (CAD) systems have been proven to increase radiologists’ diagnosis accuracy [15], we hypothesize that physicians’ RTP predictions could also be improved using ML. However, given the nature of medical records and their tabular representation, simpler ML approaches, such as decision trees, may be utilized [16].



Muscle injuries are among the most common in professional soccer [3], with varying recovery time length [17]. Valle et al. [14] attempted to predict RTP time following a hamstring muscle injury by applying ML techniques on data derived from magnetic resonance (MR) images. Their system achieved an   R 2   score of   0.48  , and exhibited a mean absolute error of   9.8   days. The data which were input to their model consisted of multiple attributes describing the location and severity of injuries, including injury chronology (index injury, re-injury). We hypothesize that the accuracy of such models, similar to CAD systems [15], could be further improved by coupling these types of attributes with physicians’ predictions. The aim of this study is to assess the recovery time after muscle injury by integrating ML techniques and expert judgment. To the best of our knowledge, no similar study has attempted to integrate these approaches for this particular topic.




2. Materials and Methods


This section presents a comprehensive overview of the data collection process and its distribution, including the classification method used to identify muscle injuries and the implementation techniques used by physiotherapists. The feature processing phase is also discussed, outlining the modifications or eliminations made to various features. The setup for model training and hyperparameter tuning is presented, along with a thorough evaluation of all methods employed. The objective of this section is to provide a detailed and impartial understanding of the entire process.



2.1. Study Design


This study was conducted using data collected from a professional soccer club during both the preseason and competitive periods. The observed team competes at the highest level of its national championship and regularly participates in European competitions. The club’s medical staff used an internal online platform to collect injury records and monitor the rehabilitation process. To ensure accuracy, each injury and recovery progress was recorded by reaching a consensus among the medical team. Data collection began in February 2021 and continued until February 2023. Muscle injuries were the only injuries included in the analysis for this study.



The research included 41 unique male soccer players (mean age   24 ± 4.2   years) who experienced a total of 84 muscle injuries during the examined period. The players who have not suffered an injury were excluded from the study. The identities of the players were anonymized and not available to the researchers. Of the players involved, one player experienced 7 injuries, two players experienced 5 injuries each, and one, eight, and six players experienced 4, 3, and 2 injuries, respectively. All other players experienced only one injury each.




2.2. Procedures and Variables


The injury reporting process in the study involved the entry of injury details by a physiotherapist into an internal online platform. A report was filled in after an on-site examination by the clinician. The injury report consisted of three parts: (1) general injury information, (2) injury-specific details, and (3) recovery-specific details. Injury parameters and their descriptions can be found in Table 1. While the club staff entered new records according to the recovery progress of the affected player, only the initial examination parameters were used as input for the model in this study.



The focus of this study was to estimate muscle injuries, which were classified using the British Athletic Muscle Injury Classification (BAMIC) [18]. This system is widely used in sports medicine and allows for grading muscle injuries based on clinical examination and imaging findings.



The BAMIC system consists of five grades, ranging from grade 0 to grade 4, with each grade representing a different level of injury severity. Grade 0 represents a minor injury, while grade 4 represents a complete muscle rupture. It is an important tool in sports medicine as it enables the accurate diagnosis and grading of muscle injuries, informs treatment decisions, and aids in predicting recovery time. Its use provides a common language for communication among medical professionals, coaches, and athletes regarding the severity of muscle injuries, ensuring that everyone involved in the care and management of an injured athlete is on the same page and working toward the same goals. As a result, it has contributed to improved outcomes and reduced recovery times for injured athletes.



As described in Section 2.1, the final dataset comprised 84 muscle injuries. However, the distribution of recovery time for these injuries, as presented in Figure 1, reveals some outliers where recovery took considerably longer than other injuries. This poses a challenge for training ML algorithms on such a sparse distribution. To address this issue, a cut-off threshold of 35 days (5 weeks) was set, resulting in a final pool of 80 muscle injuries. The discarded injuries had a recovery duration of 39, 45, 52, and 67 days, respectively, with the first two being attributed to repetitive injury of the calf and an abdominal wall rupture. The longest recovery periods of 52 and 67 days were reported for adductor and hamstring injuries (respectively) of goalkeepers. Expanding the dataset could potentially enable an extension of the cut-off threshold to 7 weeks, allowing for the inclusion of more injuries with longer recovery periods. However, to capture injuries with even lengthier recovery durations, it would be necessary to collect data on the entire league over several years in order to capture a more extensive range of injury occurrences.




2.3. Feature Processing


From the general features group shown in Table 1, parameters P4 (place of injury) and P5 (body side) are discarded, along with recovery feature P17. The features P1 (date of an examination) and P19 (medical notes) were not provided by the club to save the players’ identities. However, the injury duration, needed for this study, was calculated by subtracting the last date of examination (player is considered fit) and the first date (start of an injury). The injury-specific features P12 and P13 were also discarded because these parameters are not relevant for muscle injuries. The rest of the injury-specific parameters are preserved with some additional processing. Initial muscle injury classification (P6) distribution is shown in Figure 2. To standardize the values, all contusions (C) are mapped to values 0, while values 1A and 1B are mapped to 1, values 2A and 2B to 2, 3A to 3 and, finally, 3B to 4. This mapping scheme corresponds to the injury severity grade.



Another important feature was the position of the injury according to the muscle (P7). To account for the possibility of a single injury affecting multiple muscle groups, the available choices—proximal, abdominal and distal muscles—were one-hot encoded. In this context, ‘abdominal’ refers exclusively to injuries affecting the abdominal wall region. To streamline the analysis, the possible outcomes for the depth feature (P8) were combined into a single feature. This consolidated feature contained values ranging from 0 to 3, corresponding to no information, superficial fascia, middle muscle and deep fascia, respectively.



Body position features (P9) also played a significant role in our analysis, providing information about the affected body region. To simplify this, the features were grouped into five categories: hamstring, quadriceps, adductors and abductors, calf and abdominal wall. As with parameter P7, it is possible for an injury to affect multiple muscle groups. Therefore, each category was one-hot encoded to accommodate such cases.



Clinical examination features, such as swelling, tone, crepitation and elasticity (P10–P13), contained values ranging from 0 to 3, describing the level of each. Pain ratings of palpation, contraction, and stretching (P14–P16) were described as either painful or not painful. Finally, recovery features were considered, such as the expected recovery duration (P18), which was converted into days for easy comparison.




2.4. Model Training and Hyper-Parameter Tuning Process


To accurately estimate injury recovery time in days, a comparative analysis of three distinct algorithms was employed, namely: linear regression (LR), decision trees (DT), and extreme gradient boosting (XGB). LR was selected as the baseline due to its proven effectiveness across a range of tasks [19]. DT was preferred for processing a large number of features and providing understandable explanations for decision-making [20], which is beneficial to medical staff. XGB [21] was chosen for its superior flexibility and performance in comparison to simpler machine learning (ML) algorithms across various datasets [22,23]. The hyperparameters of each algorithm were fine-tuned to optimize their performance.



A five-fold Bayesian search cross-validation (CV) was employed to determine optimal hyperparameter values for each model. Mean squared error (MSE) was used as the cost function. Subsequently, the best hyperparameter values were utilized for training and evaluating the models. Due to a very scarce dataset, and previous research on a similar topic [14], the performance was assessed using the leave-one-out (LOO) method. The nature of Bayesian search and data variability in CV folds might influence model performance. For this reason, the experiment was run 10 times. This provided insight into the model stability concerning the different distribution of data in CV folds. The metrics of   R 2  , mean absolute percentage error (MAPE), mean absolute error (MAE), MSE, and root mean squared error (RMSE) were calculated for each iteration, both for Bayesian search CV and LOO performance. Ultimately, the model with the lowest average MSE value on the five-fold Bayesian search CV was selected as the representative model. This approach ensured the best possible performance for our models and provided a robust and reliable estimation of injury recovery time. The visualization of the whole process is shown in Figure 3.



To test our hypothesis of whether incorporating human expertise into ML models could improve their performance, the process was executed twice. In the first run, the feature containing expert-estimated recovery (in days) was excluded. In the second run, this feature was included in our model. By comparing the performance of the two runs, we aimed to evaluate the added value of incorporating expert knowledge into our approach.




2.5. Comparison with the Expert


From the starting count of 80 muscle injuries, the expert provided input on 69. This meant that the expert did not estimate recovery time for 11 injuries, leaving us with a smaller dataset. To ensure a fair comparison between the algorithms and the expert, the LOO performance evaluation was conducted solely on this pool of 69 injuries. On the other hand, the process of hyperparameter selection was performed using the entire dataset to maximize the optimization of each algorithm’s performance. This approach allowed us to evaluate the effectiveness of the algorithms both with and without the inclusion of expert knowledge.





3. Results


In this section, the performance results of each algorithm are presented and compared to the expert’s evaluation. Specifically, Section 3.1 showcases the algorithmic performance across 10 iterations, allowing for a comprehensive comparison. Building on this, Section 3.2 analyzes how the best algorithm performs against the expert, highlighting areas where it outperforms or underperforms. Finally, in Section 3.3, the benefits of combining expert predictions with an ML model are demonstrated, as well as the resulting improvements in predictions.



3.1. Algorithm Performance


Table 2 presents the performance scores of each algorithm obtained through a five-fold CV along with LOO scoring after hyperparameter tuning. The selection of the best iteration, used in Figure 4, was based on the mean MSE score calculated across five CV folds. Notably, all models exhibited consistent performance across iterations with minimal variance. It was observed that both XGB and DT demonstrated superior performance in comparison to the simpler LR model. Moreover, XGB consistently outperformed DT across all LOO score metrics, thus emerging as the top-performing model.



While overall scores can provide some insight into the model’s performance, they may not be fully indicative. For a more accurate evaluation, it is necessary to conduct a closer examination. Therefore, Figure 4 is presented, which displays the model’s predictions on the x-axis and the true recovery duration on the y-axis. Focusing on a 15-day period of recovery, it can be observed that the models tend to overestimate the recovery time (as indicated by the green background), with LR being particularly prone to this issue. In contrast, DT demonstrates the largest outliers when underestimating the recovery time, especially within this 15-day period (indicated by the red background). Considering the entire figure, it is clear that XGB exhibits greater consistency in prediction when compared to DT, which is more prone to significant deviations when incorrect.




3.2. Algorithm Estimation vs. Expert


In order to assess the effectiveness of the models, it is necessary to compare their performance with that of the current practice, which involves an estimation made by the expert. As shown in Table 3, it can be observed that the expert still outperforms each model in every metric. Table 4 presents a comparison of the performance of the expert with the best iterations obtained by each model.



In Figure 5, the predictions of the best-performing model—XGB—are presented in comparison to the estimations of the expert. The expert’s predictions generally align well with actual recovery times but tend to overestimate the time needed for the players’ recovery. Additionally, the expert’s predictions do not deviate significantly when predicting injury recovery longer than 2 weeks. This may be due to the fact that humans tend to estimate time in different units, such as weeks instead of days, which may affect the expert’s ability to estimate return dates more precisely.



The next section will demonstrate the impact of incorporating expert predictions as a feature on the model’s performance and estimations.




3.3. Joint Performance of Expert and ML


In Table 4, it is evident that incorporating experts’ predictions as a feature has led to a significant improvement in the performance of all models. LR and XGB have benefitted the most from this addition, displaying notable enhancements across all metrics and demonstrating a stable performance over different iterations. While DT also exhibits improvement, its performance varies considerably across iterations. Upon selecting the best iteration for each algorithm and comparing mean scores, based on a five-fold CV, it is apparent that LR and DT have a similar level of performance. Table 5 compares the performance of the best iteration of each algorithm with that of the expert. Although DT and LR marginally outperform the expert, it is worth noting that they were heavily reliant on the expert feature. On the other hand, XGB significantly outperformed the expert, achieving a very good mean   R 2   score of   0.72  .



Figure 6 presents a comparison of the mean MSE and its standard deviation for the estimated injury duration between the expert, XGB, and XGB with the expert feature. The figure clearly shows that the combination of XGB and expert feature has the lowest mean MSE and standard deviation compared to a regular XGB and the expert using the LOO test. This indicates that incorporating expert estimations as a feature in the XGB model greatly improves the accuracy and consistency of the injury duration predictions.



To better demonstrate the benefits of adding the expert feature to the XGB model, a more detailed inspection is necessary. Figure 7 shows the estimated recovery duration in days on the x-axis and the true recovery duration in days on the y-axis. It is clear that the XGB model with the expert feature produces more accurate predictions compared to the regular XGB and the expert estimations alone. The XGB model’s predictions are better aligned with the ideal prediction line.





4. Discussion


Injuries can significantly impact the performance of sports teams, causing them to lose games and even suffer financial losses. Head coaches, therefore, need to know how long it takes for a particular injury to heal to make informed decisions. Investing in injury prevention and rehabilitation programs can help reduce the number of days lost due to injury, improve a team’s overall performance, and increase their chances of success. Several studies have demonstrated that lower injury burdens and higher match availability are associated with higher final league rankings, increased points per league match, and success in prestigious tournaments such as the UEFA Champions League or Europa League [7,24,25].



Estimating the duration of recovery after an initial clinical examination is a challenging task, as it depends on various factors such as injury history, age, body type, mental state and more [4]. Additionally, the recovery process may not always follow a predictable pattern, and individual players may recover at different rates [17,26]. This makes accurately predicting RTP time a daunting task, even for experts in the field.



State-of-the-art approaches for estimating the recovery time for a particular injury often involve providing physicians with various recommendations and instructions. However, despite these guidelines, the ultimate decision is usually based on the clinician’s experience with different injury types and their subjective judgment. This decision-making process may be influenced by factors within the soccer club, as well as the clinician’s internal state. Therefore, having a tool that can assist clinicians in their decision-making process could result in more accurate and confident estimates of recovery time.



To date, there has been only one study that attempted to use ML to assess RTP time after hamstring injuries using the MLG-R classification system and the data derived from MR images [14]. The study involved male professional football players from FC Barcelona, and three different ML approaches to assess the importance of each factor of the MLG-R classification system. The results demonstrated that the most important factors to determine the RTP were whether the injury was at the free tendon of the biceps femoris long head or whether it was a grade 3r injury. The study found the MLG-R classification system to be reliable, with excellent results in terms of reliability, prognosis capability and objectivity. However, the performance of the system has not been tested in conjunction with assessments of a medical team. Nonetheless, ML assistance has been already demonstrated in the area of medicine, such as the use of CAD systems to increase radiologists’ diagnosis accuracy [15]. A similar approach can be also applied in the context of clinicians’ estimations regarding RTP in soccer.



This paper presents an approach that enhances the process of recovery estimation by incorporating an expert’s estimations as a feature in the model, in addition to comparing its performance with that of an expert. By integrating human knowledge into the algorithm, we achieve improved performance. This highlights the potential benefits of combining ML methods and human expertise to tackle difficult tasks such as recovery estimation.



One limitation of our study is the relatively small amount of muscle injuries in the dataset. With a longer collection period covering a larger number of soccer clubs and injuries, the algorithm’s performance could increase significantly. The longer period and the amount of data across many seasons might open up an opportunity for expanding the application of the RTP estimator to other injury types, such as bone, joint and tendon. Nonetheless, our dataset reflects a real-world scenario found in many soccer clubs where data are collected over multiple seasons on a single team. Therefore, teams can apply the methods we presented to their own data to improve their injury management processes.




5. Conclusions


In this study, we proposed an ML-based approach for improving the accuracy of predicting the recovery duration of soccer players after an injury. We used three different modeling approaches, namely LR, DT and XGB, to model the recovery duration. We evaluated the performance of these models using several metrics, including MAPE, MSE, RMSE and   R 2   score and compared it against the expert’s predictions.



The results demonstrated that incorporating the expert’s predictions as a feature greatly improved the performance of all algorithms. XGB achieved the best performance with a mean   R 2   score of   0.72  , outperforming the expert’s predictions with an   R 2   score of   0.62  . Our approach demonstrated the potential of combining human knowledge with ML models to improve performance in complex tasks.



These findings have practical implications for soccer practitioners, such as head coaches and medical teams. Accurate recovery duration information for key players could inform tactical decisions and enable coaches to adjust their strategies for upcoming matches. Integrating ML in the RTP decision-making process also adds an additional layer of safety and validity to the medical team’s estimation. Ultimately, this approach can improve the entire RTP process and make it more efficient for planning.



In conclusion, our study demonstrated that ML techniques, in conjunction with human expertise, have the potential to significantly improve the accuracy of predicting recovery duration for injured soccer players. This approach could have important implications for sports medicine, enabling teams to make better decisions regarding the RTP of their players, ultimately improving their performance and reducing the risk of re-injury.
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The following abbreviations are used in this manuscript:



	ML
	Machine Learning



	LR
	Linear Regression



	DT
	Decision Trees



	XGB
	Extreme Gradient Boosting



	RTP
	Return-to-play



	MR
	Magnetic resonance



	CAD
	Computer-aided diagnosis



	BAMIC
	British Athletic Muscle Injury Classification



	C
	Contusion



	CV
	Cross-Validation



	LOO
	Leave-one-out



	MSE
	Mean squared error



	MAE
	Mean absolute error



	MAPE
	Mean absolute percentage error



	RMSE
	Root mean squared error
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Figure 1. Distribution of muscle injuries based on the required recovery time. The vertical dashed line indicates the cut-off threshold of 35 days (5 weeks). Injuries with longer recovery times were excluded from the analysis. 
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Figure 2. Distribution of muscle injuries by type, as classified by the BAMIC system. The x-axis denotes different injury types, including classes 1A, 1B, 2B, 3A, and 3B, as well as contusions denoted by C. The y-axis displays the occurrence count for each type of injury. 
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Figure 3. A flowchart illustrating the data collection process, feature processing (including data cleaning), hyperparameter tuning and evaluation. 
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Figure 4. Estimated versus true recovery duration for LR (blue circles), DT (green asterisks) and XGB (orange triangles) algorithms. The diagonal black dotted line represents ideal estimations, while green and red backgrounds indicate that the recovery was faster or slower than estimated, respectively. 
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Figure 5. Comparison of the estimations made by the expert (blue circles) with the predictions of the best performing algorithm, XGB (orange asterisks). The black dotted line shows ideal predictions, while green and red backgrounds indicate cases where the recovery was faster or slower than expected. 
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Figure 6. A bar plot showing the mean MSE of expert’s estimations (blue bars), XGB model (orange bars) and XGB model with the inclusion of expert’s predictions as a feature (green bars). The black lines on each bar indicate the corresponding standard deviation of the MSE. 






Figure 6. A bar plot showing the mean MSE of expert’s estimations (blue bars), XGB model (orange bars) and XGB model with the inclusion of expert’s predictions as a feature (green bars). The black lines on each bar indicate the corresponding standard deviation of the MSE.



[image: Applsci 13 06222 g006]







[image: Applsci 13 06222 g007 550] 





Figure 7. Visualization of the estimations made by the expert (blue circles), and XGB with the inclusion of the expert’s predictions as a feature (orange asterisks). The black dotted line shows ideal predictions, while green and red backgrounds indicate cases where the recovery was faster or slower than expected. 
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Table 1. Injury report example which is filled out by the club’s physiotherapist. The table contains only the data that are relevant to muscle injuries in this study. Values separated by a slash “/” denote that a single value may be selected, whereas those separated by a vertical bar “/” indicate that multiple values can be selected.






Table 1. Injury report example which is filled out by the club’s physiotherapist. The table contains only the data that are relevant to muscle injuries in this study. Values separated by a slash “/” denote that a single value may be selected, whereas those separated by a vertical bar “/” indicate that multiple values can be selected.





	

	
Injury Parameter Description

	
Values






	
General

	
P1: Date of a clinical examination

	
Date




	
P2: Is the injury the result of a tackle?

	
Yes/No




	
P3: Has the player stopped playing?

	
Yes/No




	
P4: Where has it occurred?

	
Training/game/national team/other




	
P5: On which side of the body is it located?

	
Left/right/middle




	
Injury-specific

	
P6: Injury classification according to the BAMIC.

	
Numbers 0–4, suffix A/B/C




	
P7: What is the position according to muscle?

	
Proximal|distal|abdominal




	
P8: What is the depth?

	
Middle muscle|deep|superficial fascia




	
P9: Which body part is affected?

	
Hamstring|quadriceps|




	

	
adductors|abductors|calf




	
P10: What is the swelling level?

	
None/low/moderate/high




	
P11: What is the tone level?

	
None/low/moderate/high




	
P12: What is the crepitation level?

	
None/low/moderate/high




	
P13: What is the elasticity level?

	
None/low/moderate/high




	
P14: Is palpation painful?

	
Yes/no




	
P15: Is contraction painful?

	
Yes/no




	
P16: Is stretching painful?

	
Yes/no




	
Recovery

	
P17: What is the current phase of recovery?

	
Numbers 1 to 6




	
P18: Expected duration in days, weeks and months.

	
Number




	
P19: Additional comments from the medical staff.

	
Text
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Table 2. Performance of LR, DT and XGB models during Bayesian CV search and LOO evaluation. The best model is determined by the lowest average ( μ ) MSE score through the five-fold CV, with the standard deviation of MSE represented in a column labeled “ σ  MSE”. The repeatability of each model is presented with the mean and standard deviation values for each column, representing the average performance of 10 iterations. The best-performing iteration on  μ  MSE is highlighted in boldface.
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Iteration

	
LOO Scores

	
CV Scores






	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
LR

	
1

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
2

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
3

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
4

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
5

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
6

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
7

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
8

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
9

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	
10

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	

	
  μ  

	
0.36575

	
0.56509

	
4.75074

	
37.10271

	
6.0912

	
39.0987

	
13.02878




	

	
  σ  

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0




	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
DT

	
1

	
0.36856

	
0.56112

	
4.84436

	
36.93808

	
6.07767

	
33.69378

	
8.44224




	
2

	
0.38041

	
0.58571

	
4.88129

	
36.24516

	
6.0204

	
32.6839

	
8.98252




	
3

	
0.41784

	
0.54969

	
4.49069

	
34.05541

	
5.8357

	
30.68957

	
10.92026




	
4

	
0.4205

	
0.54509

	
4.51262

	
33.90005

	
5.82238

	
31.1122

	
11.44684




	
5

	
0.39972

	
0.5511

	
4.69415

	
35.11582

	
5.92586

	
30.7318

	
9.60456




	
6

	
0.37144

	
0.57182

	
4.88579

	
36.76976

	
6.06381

	
34.98135

	
7.70743




	
7

	
0.43006

	
0.54371

	
4.43694

	
33.34053

	
5.77413

	
30.68957

	
10.92026




	
8

	
0.39793

	
0.54126

	
4.65291

	
35.22026

	
5.93467

	
36.84938

	
9.30861




	
9

	
0.42946

	
0.53794

	
4.42913

	
33.37593

	
5.77719

	
30.68957

	
10.92026




	
10

	
0.4126

	
0.55927

	
4.72277

	
34.3621

	
5.86192

	
35.30978

	
9.18693




	

	
  μ  

	
0.40285

	
0.55467

	
4.65506

	
34.93231

	
5.90937

	
32.74309

	
9.74399




	

	
  σ  

	
0.02305

	
0.01502

	
0.18021

	
1.34805

	
0.11374

	
2.32672

	
1.24685




	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
XGB

	
1

	
0.43967

	
0.50008

	
4.43158

	
32.77833

	
5.72524

	
32.87888

	
8.36284




	
2

	
0.45005

	
0.47844

	
4.34835

	
32.17158

	
5.672

	
32.3166

	
11.82537




	
3

	
0.44055

	
0.49098

	
4.41247

	
32.7271

	
5.72076

	
32.75645

	
12.10305




	
4

	
0.41978

	
0.51323

	
4.54118

	
33.94185

	
5.82596

	
31.12103

	
10.89239




	
5

	
0.41368

	
0.47679

	
4.41468

	
34.29913

	
5.85655

	
32.90218

	
10.89093




	
6

	
0.44002

	
0.46938

	
4.37676

	
32.75795

	
5.72346

	
31.99108

	
9.21831




	
7

	
0.42941

	
0.48437

	
4.3992

	
33.37888

	
5.77745

	
31.09984

	
10.66784




	
8

	
0.43504

	
0.50181

	
4.44338

	
33.04964

	
5.74888

	
33.14041

	
8.97922




	
9

	
0.44142

	
0.50929

	
4.47258

	
32.67641

	
5.71633

	
31.7312

	
12.08996




	
10

	
0.48429

	
0.49104

	
4.27796

	
30.16831

	
5.49257

	
31.62637

	
12.81656




	

	
  μ  

	
0.43939

	
0.49154

	
4.41181

	
32.79492

	
5.72592

	
32.1564

	
10.78465




	

	
  σ  

	
0.01915

	
0.01451

	
0.07083

	
1.12011

	
0.09874

	
0.75348

	
1.50068
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Table 3. Comparison of performance of the expert versus LR, DT and XGB models. Values printed in boldface represent the best performance.
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	Source
	    R 2    
	MAPE
	MAE
	MSE
	RMSE





	Expert
	0.62242
	0.40259
	3.55072
	23.31884
	4.82896



	LR
	0.37484
	0.55471
	4.72464
	38.6087
	6.21359



	DT
	0.35607
	0.54977
	4.84058
	39.76812
	6.3062



	XGB
	0.42272
	0.4709
	4.31884
	35.65217
	5.97094
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Table 4. Performance of LR, DT and XGB models during Bayesian CV search and LOO evaluation, however, this time with the inclusion of the expert’s estimation as a feature. The best model is determined by the lowest average ( μ ) MSE score through the five-fold CV, with the standard deviation of MSE represented in a column labeled “ σ  MSE”. The repeatability of each model is presented with the mean and standard deviation values for each column, representing the average performance of 10 iterations. The best-performing iteration on  μ  MSE is highlighted in boldface.
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Iteration

	
LOO Scores

	
CV Scores






	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
LR

	
1

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
2

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
3

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
4

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
5

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
6

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
7

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
8

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
9

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	
10

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	

	
  μ  

	
0.6355

	
0.40236

	
3.47055

	
22.51088

	
4.74456

	
24.18168

	
11.73257




	

	
  σ  

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0

	
0.0




	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
DT

	
1

	
0.56135

	
0.43025

	
4.06224

	
27.09026

	
5.20483

	
24.23774

	
8.00767




	
2

	
0.56588

	
0.40654

	
4.07746

	
26.8105

	
5.17789

	
24.58617

	
9.96156




	
3

	
0.65213

	
0.38963

	
3.55799

	
21.4841

	
4.63509

	
23.13874

	
12.39801




	
4

	
0.48511

	
0.41564

	
4.13162

	
31.79884

	
5.63905

	
24.88708

	
10.97593




	
5

	
0.56682

	
0.40528

	
4.06732

	
26.75267

	
5.1723

	
24.58617

	
9.96156




	
6

	
0.63713

	
0.41954

	
3.74522

	
22.41051

	
4.73397

	
29.02981

	
12.13646




	
7

	
0.55367

	
0.4334

	
3.98921

	
27.56484

	
5.25022

	
27.33906

	
12.30718




	
8

	
0.55991

	
0.43168

	
4.07508

	
27.17943

	
5.21339

	
25.46586

	
8.81431




	
9

	
0.65213

	
0.38963

	
3.55799

	
21.4841

	
4.63509

	
23.13874

	
12.39801




	
10

	
0.53225

	
0.40429

	
4.1087

	
28.88768

	
5.37473

	
24.83022

	
5.37688




	

	
  μ  

	
0.57664

	
0.41259

	
3.93728

	
26.14629

	
5.10366

	
25.12396

	
10.23376




	

	
  σ  

	
0.05442

	
0.01626

	
0.22746

	
3.36112

	
0.33164

	
1.8156

	
2.3225




	

	

	
   R 2   

	
MAPE

	
MAE

	
MSE

	
RMSE

	
 μ  MSE

	
 σ  MSE




	
XGB

	
1

	
0.68989

	
0.33421

	
3.36068

	
19.15167

	
4.37626

	
16.69036

	
3.66068




	
2

	
0.73061

	
0.31059

	
3.11775

	
16.63706

	
4.07886

	
15.77372

	
4.0823




	
3

	
0.71298

	
0.30976

	
3.16809

	
17.72571

	
4.21019

	
16.12723

	
3.91683




	
4

	
0.72953

	
0.32833

	
3.21782

	
16.70385

	
4.08703

	
15.03208

	
3.47678




	
5

	
0.71938

	
0.29577

	
3.07532

	
17.33056

	
4.163

	
16.66

	
5.41802




	
6

	
0.74768

	
0.30955

	
3.07108

	
15.58318

	
3.94755

	
15.51867

	
4.03146




	
7

	
0.70573

	
0.32659

	
3.2798

	
18.17383

	
4.26308

	
15.43757

	
3.80829




	
8

	
0.74478

	
0.30252

	
3.06184

	
15.76225

	
3.97017

	
15.33776

	
5.10925




	
9

	
0.72551

	
0.32377

	
3.19032

	
16.95234

	
4.11732

	
15.88516

	
3.67151




	
10

	
0.7425

	
0.3084

	
3.08914

	
15.90284

	
3.98784

	
15.33761

	
4.20763




	

	
  μ  

	
0.72486

	
0.31495

	
3.16318

	
16.99233

	
4.12013

	
15.78002

	
4.13828




	

	
  σ  

	
0.01839

	
0.01249

	
0.10021

	
1.13567

	
0.13686

	
0.56481

	
0.63608
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Table 5. The performance of the expert versus that of three ML models (LR, DT and XGB), including the expert’s predictions as a feature. The best-performing models are indicated by values printed in boldface.
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	Source
	    R 2    
	MAPE
	MAE
	MSE
	RMSE





	Expert
	0.62242
	0.40259
	3.55072
	23.31884
	4.82896



	LR+Expert
	0.63227
	0.40701
	3.46377
	22.71014
	4.76552



	DT+Expert
	0.65152
	0.39336
	3.57971
	21.52174
	4.63915



	XGB+Expert
	0.72239
	0.33234
	3.26087
	17.14493
	4.14064
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