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Abstract: This article investigates the study of Topology Optimization (TO) in 3D elasticity problems
to determine the optimal topology by applying the evolutionary methods of Smoothing Evolutionary
Structural Optimization (SESO), Sequential Element Rejection and Admission (SERA), and Evolu-
tionary Structural Optimization (ESO). These procedures were implemented in MATLAB code as
an extension of Top3d implemented for SIMP by using the eight-node hexahedral finite element
formulation in three-dimensional elastostatic structures. The approaches conducted in the present
study are demonstrated with numerical examples involving the compliance minimization criterion.
Further, a brief synthesis of flexible mechanisms was studied to emphasize the performance of com-
plaint mechanisms measured in terms of two design specifications/functionalities: mechanical and
geometrical advantages, which are the highlights of this article. To show the gains of the proposed
methods, numerical results obtained are compared with Solid Isotropic Material with Penalization
(SIMP) models.

Keywords: topology optimization; MATLAB; SIMP; ESO; SESO; SERA

1. Introduction

As its main objective, structural optimization has the best distribution of materials
in the solution domain. Researchers have investigated this topic for 2D elastic analysis in
high-level programming languages, such as MATLAB or Python, because of easier imple-
mentation and post-processing analysis. For example, the pioneering work of Sigmund [1]
presented a code with 99 lines by using the Solid Isotropic Material with Penalization
(SIMP) method. In addition, as an extension of [1] and considering a density filter scheme,
88 lines achieved more computational efficiency [2]. Different methods have been explored
in this sense, such as a compact implementation of the Level Set method (LSM) for statically
loaded structures, where the minimization of compliance for a 2D linear elastic analysis was
modeled [3]. The Bi-Evolutionary Structural Optimization (BESO) model was developed
by [4] using the objective function of compliance minimization. It is also an extension of
the code presented in [3]. In the work of [5], the code written in MATLAB for topology
optimization of structures and compliant mechanisms was developed and implemented in
the Sequential Element Rejection and Admission (SERA). This included sensitivity analysis
and a mesh-independency filter.

In the sense of 3D topology optimization elastic problems, many solutions have been
proposed using MATLAB code and the SIMP method, such as [6], which investigated
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a stress-based topology optimization mathematical model, or [7], which considered multi-
ple load cases. Additionally, some works generated suitable outputs for additive manufac-
turing [8,9]. Large-scale topology optimization problems have been previously discussed
by [10], which showed a parallel computing paradigm added to domain decomposition
and a preconditioned conjugate gradient algorithm applied to solve equilibrium equations.
Moreover, optimization was solved using sequential convex programming. A 100-line
code using Python language was presented by [11], where general 3D topology optimiza-
tion problems were solved via compliance minimization and with a volume constraint
using the BESO method in multiple load cases and nonlinearities models. In [12], a TO
formulation, including simplified additive manufacturing (AM), was presented. The pro-
cedure involved compliance minimization, eigenfrequency maximization, and compliant
mechanism design.

Recent research has proposed the application of deep learning-based paradigms in
TO models. For instance, Ref. [13] explored the use of a framework by training data to
accelerate the convergence of the final required optimal topology, mapping out the design
variables and their respective sensitivities. Moreover, Ref. [14] were the first to apply
the deep reinforcement learning agent concept to optimize 2D topologies and discretized
problems solved via a classical gradient-based TO. Additionally, Ref. [15] proposed the use
of a convolutional neural network in the deep-learning model to maximize, via data-driven
models, the bulk modulus and shear modulus in metamaterial design systems.

This article investigates the application of SESO (originally proposed by [16]), the
application of classical ESO (originally proposed by [17] and reviewed by [18]), and the
application of SERA evolutionary methods. The main novelty of the paper is the extension
of SESO and ESO (in MATLAB code) to a 3D TO using the minimization of compliance
growth for solving flexible mechanisms, as it has only been previously evaluated using
the SERA method [19]. Additional novelties in the present study include the extension of
the SERA method for 3D TO problems with several load cases in flexible mechanisms and
in structures with cavities. Furthermore, the final secondary novelty is the implementa-
tion of the conjugate gradient method using the Jacobi preconditioner in all the present
formulations for accelerating the linear solver algorithm.

The remainder of the article is organized as follows: Section 2 presents the definition
of the minimum compliance problem for the different optimization methods implemented
in this article; Section 3 presents the influence of certain parameters in the optimization
procedures, comparing ESO, SERA, SESO, and SIMP; Section 4 briefly describes compli-
ant mechanism synthesis; Section 5 presents numerical examples; and Section 6 offers
conclusions.

2. Optimization Problem Formulation
2.1. Problem Statement—Minimum Compliance

The topological optimization (TO) problem can be defined as a binary problem whose
the objective is to provide the best material distribution in the solution domain, according
to the specified criteria. The TO problem analyzed herein is the classical formulation for
compliance, which minimizes the work done by external forces subject to a desired pre-
scribed volume, V*. The mathematical formulation of this problem may be expressed as

Minimize C(x) = Flu(x) = Y/ ul K;(x;)u;

subject to: V(x) = Y5 "V, < V* @

where compliance C(x) is the objective function ; F and u are the global force and
generalized displacement vectors, respectively; K is the global stiffness matrix; V' (x) is the
total volume of the structure; V; is the volume of the element at each iteration; V* is the
prescribed final limit volume ; x; is the artificial density of the element; and 7 is the total
number of elements.

The evolutionary structural optimization methods are based on a simple and empirical
concept that a structure evolves to an optimal, slowly removing the elements with lower
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desired sensibility. To maximize the structure’s stiffness, compliance minimization has
replaced the stress criterion, as described in Equation (1). Thus, it can be highlighted that
in the ESO, SESO, and SERA methods, the material is added and removed from the design
domain until an optimal setting is reached. Therefore, they are bidirectional in nature. The
major difference between them is the heuristic of removal and adding elements from the
structure domain. The SERA method applies two separate criteria for removing and adding
elements from the domain, allowing the status change from “passive” to “active” and vice
versa. In this way, the final topology is constructed with all real materials present in the
structure. For more details about the SERA method, see [5,16].

The SESO method uses only one criterion to perform this procedure, the elements that
attend this criterion are removed from the design domain, ordered, grouped, and p% of the
groups with lower compliance are discarded and (1 — p%) are returned to the structure,
smoothing the “hard-kill” procedure used in ESQO, i.e., the total removal of the elements that
meet the rejection criterion. In addition, discrete variables ensure that the final topology is
free of gray regions, as in continuous methods, such as the SIMP. It's important to point out
that SESO and ESO use domain elements as their discrete variables, while SERA [5,19] and
SIMP [1,2] use element density instead.

It is noteworthy that, in the formulation described in Equation (1), the artificial density
of the element x; is the design variable of all methods, which is computed as follows:

ESO

x; = 1 (active element) x; =X, (inactive element)
SESO:

x; = 1 (active element)

X = Xy (inactive element)

x; = (i) (active element)

SERA : X = { xmin,l}

SIMP : X < x; < 1

@

considering x,,;, = 1E —9, (i) being a weighted function, 0 < #(i) < 1, presented
in [13]. The stiffness matrix is updated as presented in the item 2.2 and p is the penalization
factor, with p = 1 being considered to ESO, SESO and SERA methodsand p=1,2, ..., puax
(Pmax > 3) for SIMP [1,2].

The way as all the aforementioned methods evaluate the artificial density parameter
is defined by the desired objective function by computing the elemental sensibility, which
is iteratively applied to remove or keep the element in the design domain. Some methods,
such as the SERA [5,19] or the variant of ESO, BESO [4], can reintroduce elements into the
actual design domain, from which the procedure of creating cavities is applied until the
criterion is reached.

Using the Optimality Criteria (OC) method and the strategy suggested by [20], the
design variables were updated. According to the OC formulation, when the constraint
is inactive, convergence will be achieved if the Karush-Kuhn-Tucker (KKT) conditions
are met.

2.2. Sensitivity Analysis

There are several methods to obtain the sensitivity of the design variables, such as
those pointed out by [6,7,18]. Thus, without changing its removal heuristic, according
to [13], it can be expressed as follows:

Ei(x) = Epin + xf(EO - Emin) 3)

with E,,;;, being the modulus of elasticity for the “empty” material, the value E,;, = 107
used to avoid the singularity in the stiffness matrix, K(x), Eg is the modulus of elasticity
for the “solid” material. Therefore, the stiffness matrix using Equation (3) can be written as

K(x) = Y0y [ Ewin + ! (Eo = Enin) | K] @
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Deriving the equilibrium equation K(x)u(x) = F and making some mathematical
manipulations:
du(x) -1
=K
o (1 2 () ©

The derivative of the objective function, Equation (1), in relation to x;, after applying
Equation (5) and using the expression FT = uT (x)K(x), we obtain, which is given by

2 T i) ©

Substituting the derivative of Equation (4) in relation to x; in Equation (6), the sensitiv-
ity of the objective function can be rewritten as follows:
aC(x)
axi

= —u" (%) [ p (%) ™ (Eo — Epin )| () )

The sensitivity of the cost function with respect to the design variables, Equation (7), is
obtained using the finite difference method. The sensitivity expression is valid for the four
methods described in this paper. However, with different physical interpretations since
SIMP and SERA have the element density as a design variable, while ESO and SESO use
the domain element instead.

3. Comparing SESO and SERA with Other Topology Optimization Methods

Currently, the SIMP method is the most used for TO and has shown its effectiveness
in structural engineering applications. The SESO, SERA, and ESO methods implemented
in this article use the same eight-node hexahedpral finite element proposed by [7]. Con-
sequently, the findings of SESO, SERA, and ESO are compared with Top3d by [7], which
make use of SIMP. Issues such as checkerboard, local optimal, and mesh dependence arise
with evolutionary optimization models, according to [21]. By using this heuristic filtering
scheme to address numerical instabilities in TO, a comparison can be made between two
levels: with and without a mesh independence filter.

Mathematically, the spatial filter is an additional constraint inserted into the optimiza-
tion problem as a way of smoothing out the spatial distribution of the design variables
in the solution domain, minimizing the mesh dependence, and controlling the topology
complexity. Thus, with an increase in the radius value, gradients are restricted to smaller
values and the transition between solid (material) and empty (without material) becomes
smoother, generating more intermediate compliance elements. Given that the OT procedure
is affected by the radius of the filter, particularly when it is larger, the optimization problem
would not have a solution using the initial condition proposed, as the gradients of the
design variables would be restricted to very low rates of variation. Thus, a simple function
for the density filter can be written as follows:

2}1:1 H,‘]'U]'x]‘

Xi = N (8)
Lj=—1 Hijvj

where the element x; with volume v;, x; is the weighted average of the distances from the

centers of the neighboring elements x; within a sphere of radius R with Hj; its weighting

factor defined as follows:
Hj; = R — djj )

with R being the radius, see Figure 1, of the sphere centered on the element x; and d;; is the
distance between the centers of the elements x; and x; given by:

dij = \/(xi - xj)z + (y; — y]')z + (z; — Zj)2 (10)
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where (x;,y;,2z;) and (xj, i, zj) are, respectively, the coordinates of the centers of the ele-
ments i and j.

Figure 1. Spatial filter, elements i, j and distance d.

The filtered element is incorporated into the optimization procedure, and the modulus
of elasticity of the modified SIMP method is given by:

Ei(X) = Epin + (%3)"(Eo — Epin), % € {0,1} (11)

Thus, it is possible to determine the sensitivity of the x; (filtered) elements of the SESO,
SERA, and ESO methods which given by the expression:

Ei(X) = Epin + %i(Eo — Emin), Xi € {0,1} (12)

Therefore, SESO, SERA, and ESO have the sensitivity at the level of the filtered
elements given by:
oC(x; _ _
D) ) [ (B — By K] () 13
Xi

where u is the nodal vector of the elements’ displacements and K is the stiffness matrix of
the element. For the SIMP method:

acagcfi) = —uj (%) [P(XT)” “NEy - Emin)K?} ui (%7) (14)

The algorithm of the optimization methods can be described as follows:

Step 1: Discretize the domain using a refined finite element mesh;

Step 2: Specific the maximum final volume (V*) and the parameters for the desired method.
ESO and SESO: rejection rate (RR), evolutionary rate (ER) and the weighted function
(7). SERA: total number of iterations (Nyo), progression rate (PR) and smoothing
ratio (SR). SIMP: p and x,,;,,

Step 3: Solve the linear elastic problem, applying boundary conditions;
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Step 4: Calculate the value of the compliance sensitivity value of each element and update
the ratios or thresholds for the method;

Step 5: Remove or introduce elements with the lowest (highest) sensitivity number;

Step 6: Repeat Steps 3 to 5 until the prescribed limit volume has been reached.

3.1. Comparing Topology Optimization Algorithms with a Mesh-Independency Filter

A long cantilever, Figure 2, is selected as a test example. It involves a series of broken
bars during the optimization procedure. A concentrated load of F = 1 KN is applied in the
middle of the free edge. The cantilever has dimensions L = 160, h = 40 and b = 4. Young’s
modulus E = 1 MPa and Poisson’s coefficient 0.30. The design domain was discretized
with a fine mesh of 160 x 40 x 4, totaling 25,600 cubic elements of eight nodes, and
the volume constraint for this structure is 0.30 of the initial volume. Table 1 shows the
optimization parameters used in the four methods presented. Using the filter, it is noted
that the topologies obtained with the SESO, SERA, and ESO methods are similar since the
topology achieved with the SIMP method is quite different. It is noteworthy that the ESO
and SESO methods obtained equal compliances, with a lower value than the SERA, which
computationally, for this problem, proved to be more efficient.

In most cases, discrete evolutionary methods, when using a small evolutionary ratio
(ER) and a finer mesh, reach optimal settings in the solution domain. This is one of
the advantages of these methods. However, its computational efficiency is extremely
dependent on the selected parameters, such as its mesh and ER parameter. Compared
to these methods, the modified SIMP is more stable and less dependent on optimization
parameters provided that exponent p of the penalty is correctly calibrated; in this article,
p = 3. This method will produce optimal solutions because the optimization criteria are met.
The optimum solution presented by SIMP has approximately 41.5% greater compliance,
and the manufacture of the resulting structure is more difficult.

L
b

Figure 2. Long Cantilever beam subjected to tip point load.
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Table 1. Comparing Topology Optimization algorithms with a mesh-independency filter.

Number of . . .
Methods Parameters Iterations/Costs Optimal Settings/Compliance
RR =0.02 )
iter = 200
ESO ER =002 time = 815.65 5
min T -
C =1593.4232
PR =0.02
SR =1.02 iter = 200
SERA B = 0.007 time = 77551 s
Tmin = 1.5
C = 1599.4558
RR =0.02 )
iter = 200
SESO bR =002 time = 887.90 5
min — +*
C = 1593.4232
p=3 itor —
iter = 200
SIMP M?YE__105'02 time = 853.08 s
min — **

C = 2255.9835

3.2. Comparing Topology Optimization Algorithms without a Mesh-Independency Filter

The problem above is analyzed again using the same mesh, but now without using
the mesh independence filter. Table 2 lists the parameters and solutions obtained. It is
highlighted that SESO and ESO are similar in their structural design and the final values
of the objective function. This is not surprising, as the evolutionary procedure for these
methods uses the same removal heuristic. However, SESO is a bidirectional method; that
is, it has a “soft-kill” removal. It allows adding elements during the evolutionary process,
and ESO is unidirectional because it has its most radical “hard-kill” removal. The SERA
and SIMP methods have a density as the design variables. These methods showed a higher
concentration of zones with checkerboard patterns and optimal settings quite different from
those presented by ESO and SESO methods. As the SIMP has a penalty factor (p = 3) and
the central element is not filtered, the sensitivity of the stiffness of this element increases
proportionally to the triple of the square of its density, justifying this concentration, i.e., the
sensitivity is given by Equation (14). Replacing the value of (p = 3) in this equation results
in the proportionality factor of 3%2, where x; is the density of the element.
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Table 2. Comparing Topology Optimization algorithms without a mesh-independency filter.

Number of : i i
Methods Parameters Iterations/Costs Optimal Settings/Compliance
RR =0.02 ;
iter = 135
ESO fR —_0.10§ time = 718.01 s
min T
C = 1688.1480
PR =0.02
SR =1.02 iter = 131
SERA B = 0.007 time = 647.09 s
Tmin = 1.5
C = 1658.9346
RR =0.02 ;
iter = 135
SESO ER —_0~10§ time = 689.15 s
min —
C = 1688.1480
p=3 iter =
iter = 57
SIMP M?YE_—105-02 time — 292.92 s
min — *

C =1968.4670

In a refined mesh, the number of finite elements within the radius increases, providing
greater control over the region. Thus, it is possible to smooth out large variations in the
objective function (compliance); that is, the peaks in the objective function can be controlled
by the filter. In addition, the filter has the ability to control topology complexity. The
absence of the filter allows the appearance of checkerboard formations (regions where
compliance is high).

4. Compliant Mechanism Synthesis

Topology optimization of a compliant mechanism by the evolutionary structural
optimization procedures ESO, SESO, SERA, and SIMP are presented here. In [22] defines
a compliant mechanism as a morphing structure that undergoes elastic deformation to
transform force, displacement, or energy. A typical goal of a compliant mechanism design
is to maximize certain displacements. Another different way of expressing the problem is
with the mechanical advantage objective function, where the design purpose is to maximize
the output force for a given input force. Herein, the optimization problem in terms of
maximum output displacement is given by:

Minimize C (x) = —tiou(x)" = —LTU(x)
subject to V(x) = xTV - V* <0 (15)
xe¥, ¥={xeR"/0<x<1}
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L is a unit length vector with zeros at all degrees of freedom except at the output point
where it is unity, and U(x) = [K(x)] “'F. The sensitivity of the cost function obtained from
Equation (4) is given by:

K(x)Uy(x) = —L (16)

where it is defined a global adjoint vector U, (x) from the solution of the adjoint problem.
Therefore, the objective function is expressed as follows:

C(x) = Uy(x) K(x)Uy(x) (17)

where the vector U, is the dummy load-displacement field, and the vector U is the input
load displacement.

The new design variable will be updated by the derivative of the objective function
that represents the sensitivity of the element and is given by Equation (18):

3(;5261') = —ug(x)" {xi(EO - Emin)k?} ui(x;) (18)

5. Numerical Example

The following examples focus on TO based on minimizing compliance. The geometry
and boundary conditions for numerical applications are represented in each case. All
numerical examples were processed on a Core i7-2370, 8th Gen notebook, 2.8 GHz CPU
with 20.0 GB (RAM).

5.1. Example 1—L-Shaped Beam Problem

In this section, an L-shaped structure is investigated, as shown in Figure 3, where
the red area represents the restricted displacements. To simulate the L-shaped structure,
a rectangular design domain is defined, using a fine mesh of 40 x 40 x 20 hexahedral finite
elements with dimensions equal to Imm, producing a total of 32,000 finite elements, and
certain elements in the domain are forced to be in the lower limits of the density values
(0; = 1077) for SERA and SIMP, while SESO and ESO have their limit values of the elements
(x; = 107?). The minimum radius is equal to 1.2 mm. Table 3 shows the optimization
parameters, the number of iterations, the objective function, and the computational cost of
each method for the problem of an L-shaped structure. Figure 4 shows the cross-section,
quota z = 10 mm, of the optimal settings of the L-shaped structures presented in Figure 4.
It was observed that the place where the force is applied has relatively higher values of
compliance, and the methods SESO, ESO, and SIMP keep a larger amount of material
close to this region. In contrast, the SERA method can remove more material. This can be
explained by the fact that the method has a heuristic of inserting virtual elements in regions
where compliance is high. Additionally, on the internal surface of Figure 4, at the edge
where the structure forms an angle of 90°, compliance has high values, also requiring more
material in this corner region. Figure 5d shows that the SIMP model needs more material
in the corner region, where the structure has bending stress, unlike the discrete models that
managed to keep the structure’s stiffness by removing material in this region, supporting
these stresses with two bars as can be seen in Figure 5a—c.
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Figure 3. Design domain with essential and natural boundary conditions (measures in mm).
Table 3. Results obtained for the L-shaped structure.

Number Objective Computational
Method Parameters of Iterations Function Cost (Minutes)
SESO RR = ER =0.02 100 65.74 49.72
ESO RR = ER =0.02 100 65.88 49.57
SR =1.15,
SERA B = 0.007 100 64.83 48.39
PR = 0.02
SIMP p=3 100 92.04 58.70
MOVE = 0.02 ’ ’

(a)
(<)

(d)
Figure 4. Optimal topology—(a) SESO, (b) ESO, (c) SERA and (d) SIMP.
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Figure 5. Optimal topology—(a) SESO, (b) ESO, (c) SERA and (d) SIMP.

5.2. Example 2—A Channel Beam

Figure 6 shows a U-shaped structure, fixed at both ends, with an initial thickness
of 0.5 m. The elasticity module of the material is E = 210 GPa, and Poisson’s ratio
v = 0.30 is assumed. It is considered a combination of gravitational and external loads,
with a density of p = 2700 kg/m3 and a distributed load of intensity q = 0.094 MPa. The
domain was discretized with a 90 x 18 x 18 mesh, and the constraint volume equals
V = 13.5 m3. Figure 7 shows the optimal setting in the form of an arched bridge with
hangers. The optimal topologies are shown in Figure 7. It is evident that an arch profile
with fairly uniform thickness is generated above the deck. The four topologies are similar
because the combined load requires more materials in the arc to support heavier loads. If
a fine mesh was used, the arc profile could be smoother. However, there is a great similarity
between the optimal topologies and the real arch bridges. This means that the optimization
process is valid. It should be noted that the structural design using the SERA method added
material at the top, bracing the two arches. The SESO, SERA, ESO, and SIMP methods
effectively find optimal solutions to problems that include the combined use of gravity
loading and external forces. Additionally, SERA reached the lowest value for the objective
function, approximately C = 1186.87 Nm, 3.4% in relation to the SESO and ESO methods
and 41% in relation to the SIMP.

The compliances of solutions SESO, SERA, and ESO are very close. However, with
p = 3, the SIMP method converges to a great location with higher compliance. Figure 8
shows the evolution history of the objective function using the four topology optimization
methods. Compliance for the SESO, SERA, and ESO methods increases with small jumps
(due to the formation of hangers on the structure) as the total volume gradually decreases.
After reaching the prescribed volume, in subsequent iterations, while the volume remains
unchanged, compliance gradually converges to a constant value. Unlike SESO, SERA,
and ESO, the SIMP method has the volume restriction met throughout the iterative proce-
dure. Thus, the volume remains constant, and compliance gradually decreases until the
convergence criterion is reached.
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()

Figure 7. Optimal topology—(a) SESO, (b) SERA, (c) ESO and (d) SIMP.
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5.3. Example 3—Compliant Mechanism—Mechanical Advantage and Geometrical Advantage

Flexible mechanisms are jointless mechanisms that use elastic deformation as a source
of motion. Therefore, in the elastic deformation of the structure of a flexible mechanism,
energy is absorbed and can no longer be considered conserved between the input and
output ports. Thus, the elastic deformation changes the kinematic characteristics and the
optimal solution [23]. In rigid-body mechanisms, Mechanical Advantage (MA) is entirely
decided by kinematics. In compliant mechanisms, kinematics, forces, and elastic deforma-
tion contribute to MA. Therefore, the main tasks that the designer must associate with the
optimization topology of flexible mechanisms are flexibility, stiffness, and efficiency.

According to [24], it can be stated that the problem formulation, in which the mechani-
cal advantage (MA) and the geometric advantage (GA) are placed as an objective function
for SESO, is given by Equation (19):

Minimize — MA = 77{5%;’”
subjectto  Ku =F
uin S U;kn (19)

n
Vix)= L Vi< v
i=1
X={x1x1 ... X, }x=10" and x; =1

where k; is the output spring stiffness, U,y is the displacement of the output, Fj, is the
input force, and U;, is the upper limit specified in the displacement at the input. In this
formulation, see Equation (19), MA indicates the mechanical advantage of a resulting
topology. If a spring model, as shown in Figure 8, is used to describe the interaction
between a compatible mechanism and a workpiece, the output force is given by force
induced in the deformed spring. This article considers the problem of finding the optimal
mechanism topology, distributing an amount of material within a design domain that
exposes the maximum mechanical advantage and satisfies the objectives and constraints
mentioned above

Minimize GA = gt

in

subjectto Ku =F
n

Vix)= Y xIV, < v*
=1

i=

X={x1x1 ... x4 }x;=10" and x; =1

(20)

In the formulation, see Equation (20), the geometric advantage of a resulting topology
is given by the ratio between output displacement and input displacement. When the (GA)
objective function is maximized, the input offset, U;,,, which appears in the GA denominator,
is effectively minimized, according to [23]. Thus, without any additional restriction of
entry, displacement is as in Equation (19). In this example, the approaches SESO, SERA,
SIMP, and ESO proposed for topology optimization are applied to the optimal design of
an inverter mechanism, which outputs the displacement in the opposite direction to an
actuating force. A mesh 40 x 40 x 2 is used to discretize the design domain sketched in
Figure 9. An input force Fin = 1 N is horizontally applied at the center of the left edge. The
output port at the center of the right edge is expected to produce a horizontal displacement
to the left. The volume constraint is limited to 30% of the design domain during the whole
evolutionary procedure. The material properties are Young’s modulus E = 100 GPa and
Poisson’s ratio v = 0.3. The filtering radius used for all the methods was 1.25. Figure 10a—d
depict the optimal settings for SESO, SERA, ESO, and SIMP optimization methods.

It is worth highlighting that the optimal settings for the SESO, SERA, and ESO methods
are similar, with a final volume of 35% of the initial volume. Comparing these results with
the SIMP model, there is a small difference in the material distribution.

The mechanical advantage results for the same parameters used to obtain the settings
in Figure 10 is displayed in Table 4. Table 5 shows the geometric advantage results for
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the same parameters used to obtain the optimal topologies shown in Figure 10, using
compliance as the objective function, Equation (15).

Figure 9. Design domain and boundary conditions of the inverter mechanism.

DI

Figure 10. (a) SESO, (b) SERA, (c) ESO, and (d) SIMP.
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Table 5. Comparing Topology Optimization Algorithms for Compliant mechanism (Geometrical

Advantage).
Method SESO SERA ESO SIMP
GA
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5.4. Example 4—Simply Supported Beam—Performance Characteristic Curve

In this problem is considered a simply supported beam under the loading and bound-
ary conditions, as shown in Figure 10, with L = 40, h = 20 and F = 1 kN. The design domain
is discretized into 40 x 20 x 40. The volume constraint is limited to 20% of the design do-
main during the whole evolutionary process. The material properties are Young’s modulus
E =100 GPa and Poisson’s ratio v = 0.3, and the filtering radius is 1.5 mm. Figure 11 shows
the optimal topologies in the solution domain for the models implemented. It is observed
that the topologies of Figure 12a,b, respectively, ESO and SESO, whose design variables are
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the domain elements, have similar settings. Figure 12c,d, SERA and SIMP have the element
density as design variables and presented different topologies. It is noteworthy again that
SIMP converged with greater compliance, approximately 45% higher than other methods.
The SESO, SERA, and ESO methods allow the withdrawal of elements with low compliance
to improve the performance of the structure. Therefore, a characteristic performance curve
for this continuum structure is shown in Figure 13. The weight of a structure is gradually
reduced during the optimization procedure while compliance increases. The characteristic
curve of the performance of a structure during the optimization procedure can be expressed
through the weight of the structure and its strain energy, according to [25]. Structure
performance informs the success of the stiffness-optimized design. In addition, it informs
the designer of its viability.

Figure 11. Design domain, boundary, and loading conditions.

(a) I ® l
(c) I (d) '

Figure 12. Optimal topology—(a) ESO, (b) SESO, (c) SERA and (d) SIMP.
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Figure 13. Performance characteristic curve for structures with compliance constraints: (a) SESO,
(b) ESO, (c) SERA, and (d) SIMP.

The designer, when analyzing the curves below, should note that the optimal structure
reached with compliance 5% greater than the initial compliance, in the graph C;/Cy = 1.05,
is obtained with an approximate ratio volume V;/Vy = 0.3. Therefore, a volume less than
30%, for example: V;/Vy = 0.26 is below the curve and, therefore, violates the compliance
constraint, C;/Cy = 1.1 because of the needed 10% greater compliance than the initial.
Additionally, this structural design would not be feasible because it lacks the material to
finish it. On the other hand, projecting the compliance ratio, C;/Cy = 1.05, to a point above
the curve, V;/Vy = 0.5, the amount of volume is more than sufficient for executing the
project; that is, the project is feasible, but it is oversized.

Therefore, the structural optimization methods SESO, SERA, and ESO can improve
the performance of oversized structures while saving material. According to Figure 13,
these structures meet the design conditions, are not oversized, and have resulted in consid-
erable material savings, as indicated in [25]. In SIMP, this process is continuous, and the
topology evolves by changing the modulus of elasticity continuously. Therefore, the SIMP
characteristic curve graph is a parallel line to the compliance axis because the volume has
a minimum variation in the order of 1074

Figure 14 shows the surface graphs of these structures showing the differences between
the optimal settings. The SERA and SIMP methods, based on density, presented very
different topologies from the other two SESO and ESO methods. It is also observed that the
SERA and ESO topologies are similar and have the same value for the objective function,
which can characterize an optimal stationary, identical to these two methods. Moreover, it
is worth noting that SESO, ESO, and SERA had similar computational costs; however, this
was 5% higher than the SIMP method.
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Figure 14. Surface graphs for optimal topology: (a) SERA, (b) SESO, (c) SIMP, and (d) ESO.

5.5. Example 5—Industrial Application: Flexible Coupler

The TO concepts for the manufacture and assembly of a welded industrial pipe are
applied to evaluate the best topological configuration of a metal clamp, which is part
of the member pipe tool called a flexible coupler. The Brazilian company called YPY
Engineering [26] manufactures the model, where in Figure 15a can be seen the flexible
coupler in the assembly of a tube-curve type, which has been obtained via an “empirical”
process through CAE (Computer Aided Engineering) analysis and Figure 15b illustrates
the design domain and boundary conditions for the flexible coupler composed of clips
specially developed to form an adjustable strap according to the size of the pipe. TO is per-
formed with the SESO method, which applies a Finite Element Analysis to a 180 x 75 x 8
geometry containing 57,120 hexahedral finite elements. The material properties are Young's
modulus E = 2.1E5 MPa and Poisson’s ratio v = 0.3, the filtering radius is 1.5 mm, and the
optimization parameters are RR = ER = 0.01. The loads have a magnitude of 7.5 kN and
are applied at four different points, as shown in Figure 15. The optimal topology is shown
in Figure 16 with front and cross-sectional views, which was achieved with a final volume
fraction of 0.25 and compliance of 7.333 kN-mm. After obtaining the optimal structure,
tests of deflection and straining of the component were done using SolidWorks. The model
optimized via SESO and post-processed in SolidWorks achieved a volume reduction of
approximately 62% of the one proposed by [26], and Figure 17 shows that the model created
through the TO procedure had seven cavities, compared to the three cavities of [26].
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Figure 15. (a) metal clamp model, [26]; (b) Design domain and boundary conditions.

Figure 16. Topology optimal: (a) frontal view—SESO and (b) cross view—SESO.
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Figure 17. Topology optimal—(a) YPY ENG 2018 and (b) SESO.

6. Conclusions

This article approaches four different TO methods based on compliance minimization
procedures applied to 3D elastostatic problems. The SESO, SERA and ESO methods were
implemented in Matlab code, and the results obtained are compared with the deterministic
SIMP method. A free code, presented in [6], was used to introduce the methods mentioned
above, in which a hexahedpral finite element is used to discretize the design domain, and
an elastic analysis is used to calculate the objective function in each method.

It is possible to conclude that the implemented models can generate optimal topologies
that can support the loads applied under defined boundary conditions. Additionally, with
the results presented, it is clear that the SESO and ESO methods, whose design variables
are the domain elements, have very close optimal settings with a low computational cost. It
is highlighted that these methods’ compliance is much lower than those presented with the
SIMP method. It was observed that the four methods presented chessboard settings when
the filter was disabled, implying an increase in compliance. Nevertheless, SERA and SIMP
showed denser chessboard regions. It was also verified that the increase in the number of
mesh elements provides an increase in the computational cost since the number of variables
increases with the cube of the proportionality ratio of the mesh. In addition, the result
presented for the synthesis of flexible mechanisms with the approaches proposed in this
article showed good accuracy with the examples in the literature. Moreover, these models
can be extended to incorporate constraints of stress, displacements, and natural frequency.
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