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Featured Application: Critical clinical variables, such as ECOG performance status, are required
for retrospective research but may be incomplete. A natural language processing algorithm was
used to improve the completeness of ECOG performance status across an electronic health record-
derived database.

Abstract: Our goal was to develop and characterize a Natural Language Processing (NLP) algorithm
to extract Eastern Cooperative Oncology Group Performance Status (ECOG PS) from unstructured
electronic health record (EHR) sources to enhance observational datasets. By scanning unstructured
EHR-derived documents from a real-world database, the NLP algorithm assigned ECOG PS scores
to patients diagnosed with one of 21 cancer types who lacked structured ECOG PS numerical
scores, anchored to the initiation of treatment lines. Manually abstracted ECOG PS scores were
used as a source of truth to both develop the algorithm and evaluate accuracy, sensitivity, and
positive predictive value (PPV). Algorithm performance was further characterized by investigating
the prognostic value of composite ECOG PS scores in patients with advanced non-small cell lung
cancer receiving first line treatment. Of N = 480,825 patient-lines, structured ECOG PS scores were
available for 290,343 (60.4%). After applying NLP-extraction, the availability increased to 73.2%. The
algorithm’s overall accuracy, sensitivity, and PPV were 93% (95% CI: 92–94%), 88% (95% CI: 87–89%),
and 88% (95% CI: 87–89%), respectively across all cancer types. In a cohort of N = 51,948 aNSCLC
patients receiving 1L therapy, the algorithm improved ECOG PS completeness from 61.5% to 75.6%.
Stratification by ECOG PS showed worse real-world overall survival (rwOS) for patients with worse
ECOG PS scores. We developed an NLP algorithm to extract ECOG PS scores from unstructured EHR
documents with high accuracy, improving data completeness for EHR-derived oncology cohorts.

Keywords: EHR; machine learning; ECOG PS; RWD; RWE; NLP; cancer diagnosis; natural
language processing

1. Introduction

Real-world data (RWD), defined as clinical data collected in the course of routine
medical care, and real-world evidence (RWE), the insights gathered via analysis and
interpretation of those data [1], have become major components of the clinical research
landscape. RWD rely on several possible sources, such as administrative claims, registries
or electronic health records (EHRs). The adoption of new technologies in the clinic, the
digitization of clinical information management, and analytical advances in particular have
unlocked the potential for the use of EHRs as a major RWD source for clinical research [2–6].

However, EHRs have known limitations as research data sources. Information col-
lected during routine patient care within EHRs varies between practices and may be driven
by different EHR software or clinical workflows. Critical data points related to oncology
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care may not be comprehensively captured in structured fields and rather captured in an
unstructured format [7]. In addition, the dynamics of routine care affect documentation
practices. For example, documentation for purposes of patient care may be less complete
because data elements pertinent for supporting decision making or billing may be priori-
tized; thus, normal values may be less likely to be captured compared to abnormal. As a
result, incomplete or missing data and documentation variability may be suboptimal in the
use of EHR-derived data for research [8–11]. One approach to optimize the completeness
of EHR-derived data is to combine, via manual abstraction, unstructured information
(e.g., from physician notes and scanned documents) with structured data captured in
predefined EHR data fields [2,12,13]. This approach can unlock information found only
in unstructured formats and also leverage potential overlaps between unstructured and
structured sources. For instance, treating physicians may describe general health status
using predefined EHR fields and document it in their notes. Consulting both these sources
may unveil nuances in clinical information and help resolve discrepancies during quality
control processes. However, manual abstraction requires curation, detailed procedures and
policies, and careful quality controls; therefore, overall scalability may be limited by its
resource intensiveness [2,13,14].

Natural language processing (NLP) has emerged as a valuable approach to automate
information extraction from unstructured clinical data sources, becoming a fertile ground
for the development of tools in the healthcare setting [15–21]. NLP applications to support
clinical decision making range from interpretation of diagnostic tests [22,23] to the stratifi-
cation of patients based on unstructured EHR data [24–27]. Within the field of oncology,
NLP can also be deployed to improve the quality and completeness of important clinical
details, including stage, recurrence, and labs [28–33].

Eastern Cooperative Oncology Group performance status (ECOG PS) score is a crit-
ical variable in oncology retrospective research. ECOG PS is a qualitative numeric score
indicative of the general health status of a patient with cancer. The score ranges from 0
(no limitations) to 5 (deceased) and has been consistently shown to have strong prognostic
value [34]. ECOG PS score is commonly evaluated by clinicians, particularly to inform
management decisions, such as whether to initiate a new treatment. ECOG PS is also a
standard clinical trial eligibility criterion, a key stratification factor, and an important vari-
able to include in multivariable analyses in oncology studies [35–40]. However, depending
on EHR work-flows and physician preference, ECOG PS may not always be recorded as a
structured data point, or even documented at all [34,41–43].

In our study, we developed and evaluated an NLP algorithm to extract ECOG PS
scores from unstructured EHR sources at the time of new treatment initiation, when ECOG
PS most impacts clinical decision making. NLP extraction occurred across 21 distinct cancer
types and supplemented available structured scores to enhance data completeness. We used
a nationwide EHR-derived RWD cohort with manually abstracted ECOG PS scores as a
reference source. We further investigated the prognostic value of composite (structured and
NLP-extracted) ECOG PS scores in a cohort of patients with advanced NSCLC (aNSCLC)
receiving first line (1L) treatment by comparing real-world overall survival (rwOS) for
patients with structured vs. extracted ECOG PS scores.

2. Related Work

Prior efforts to extract ECOG PS score using NLP exist in the literature, but our research
has some key distinctions [44–48]. First our algorithm was developed and tested on a
nationwide dataset with approximately 280 US cancer clinics spanning both community
and academic settings. In contrast, past ECOG PS NLP efforts have been developed using
smaller cohorts primarily from single sites of cancer care [44,45]. Additionally, previous
work has only been carried out within a single disease, or indexed around time of diagnosis,
but this study developed an algorithm that works across 21 cancer types and extracts ECOG
PS scores around treatment initiation across a patient’s care journey [45–47]. Our algorithm
also focused on supplementing structured ECOG PS scores with NLP-extracted ECOG PS



Appl. Sci. 2023, 13, 6209 3 of 12

scores from unstructured data to create a composite ECOG PS score that provides a more
complete picture of a patient’s ECOG performance status from RWD [47,48]. To further
ensure fit-for-use with RWE, this study was unique in evaluating the composite score for
prognostic use as well as stratifying performance by ECOG PS score [44,46].

3. Materials and Methods
3.1. Data Source

This study used the nationwide electronic health record (EHR)-derived de-identified
Flatiron Health database. This is a longitudinal database, comprising de-identified patient-
level structured and unstructured data [49], curated via technology-enabled abstraction [13].
During the study period, the de-identified data originated from approximately 280 US
cancer clinics (~800 sites of care). Institutional Review Board approval of the study protocol
was obtained prior to study conduct, and included a waiver of informed consent.

This study used EHR-derived de-identified data for patients diagnosed after 2011 with
at least one of the 21 cancer types: acute myeloid leukemia (AML), metastatic breast cancer
(mBC), chronic lymphocytic leukemia (CLL), metastatic colorectal cancer (mCRC), diffuse
large B-cell lymphoma (DLBCL), early breast cancer (eBC), endometrial cancer, follicu-
lar lymphoma (FL), advanced gastro-esophageal cancer (aGE), hepatocellular carcinoma
(HCC), advanced head and neck cancer (aHNC), mantle cell lymphoma (MCL), advanced
melanoma (aMel), multiple myeloma (MM), aNSCLC, ovarian cancer, metastatic pancreatic
cancer, metastatic prostate cancer, metastatic renal-cell carcinoma (mRCC), small cell lung
cancer (SCLC), and advanced urothelial cancer (detailed eligibility in the Supplement).

3.2. Components of the NLP-Extracted ECOG PS Variable

A regular-expression-based NLP algorithm was developed to scan through unstruc-
tured EHR documents (including oncology clinic visit notes, nursing notes, radiology
reports, pathology reports, and other uncategorized documents) and extract ECOG PS
score values, numeric (e.g., ‘0’) or non-numeric (e.g., ‘zero’ or ‘PS0’), within three words of
a set of signifiers (‘ECOG’, ‘ECOG PS’, ‘Performance’, or ‘Performance Status’) (Figure 1).
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after) for a given patient. We considered this time window most clinically relevant, as 
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Figure 1. NLP algorithm approach to the extraction of ECOG PS scores from unstructured data
sources. 1. Select relevant documents within treatment window (−30 to +7 days); 2. Search for terms
such as “ECOG” or “performance” within three words of the numbers 0–5, in numeral or word form;
3. Apply a regular expression to parse the ECOG PS score; 4. Identify the extracted score qualifying
as the patient’s ECOG PS score.

As inputs, the extraction algorithm receives all eligible documents in a patient’s
treatment window (described below), and the regular expression is run across the full
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text contents of each document. Each extracted ECOG PS score is tethered to the date of
the document from which it was extracted. Through a process of manual and automated
review, the base regular expression was adjusted to incorporate observed Optical Character
Recognition (OCR) errors and common, alternative clinical documentation patterns not
already captured, as well as made robust to erroneous ECOG-like documentation patterns
not related to performance status or indicative of boiler plate text. We iteratively developed
several optimizations to ensure that any form of a number (e.g., both underlined and not
underlined numeric values) is picked up by the algorithm, but that numbers or dates that
start with ECOG PS-like values are not mistakenly assigned as ECOG PS values [50]. The
regular expression and heuristics for safe ECOG extraction were tuned across multiple
held-out patient sets, with no overlap with the testing cohorts on which the approach was
subsequently validated.

The categorizations by the algorithm classify patients into the following strata: PS0,
PS1, PS2, PS3, and unknown. PS4 is not categorized but grouped into the unknown category
due to the rare prevalence and expected resulting low performance of the algorithm. PS5
(patient deceased) is not categorized given mortality is rarely documented this way and
such patients are not eligible for treatment. We anchored the extraction of ECOG PS
scores to the initiation of a treatment line (period between 30 days prior through 7 days
after) for a given patient. We considered this time window most clinically relevant, as
ECOG PS is used to inform clinical intervention decisions. Furthermore, we allowed for
ECOG PS scores up to 7 days after treatment initiation to improve completeness while
taking into account lags in documentation ingestion around the time of treatment initiation.
When multiple ECOG PS scores were extracted during a relevant treatment initiation
window, the one closest to the treatment line index date was selected (in cases needing
tie-break, scores from pre-initiation dates were selected). Demographic descriptions were
generated using distinct patient, cancer-type combinations and do not reflect the number of
treatment lines.

3.3. Study Cohorts

For inclusion in the study, patients needed to have been diagnosed with at least one
of the 21 cancer types and have at least one treatment line defined as an anti-neoplastic
therapy following the disease cohort inclusion date (detailed eligibility in the Supplement).
To obtain labeled data for the training, validation, and test sets, manual abstraction of
ECOG PS was performed on patients without available structured ECOG PS score in the
treatment window.

A training set (consisting of 700 patients; 900 patient-lines) was used to develop the rule-
based algorithm. A subsequent validation set (consisting of 1600 patients; ~2400 patient-lines)
was then used for error analysis to make improvements to the initial extraction approach.

The resulting rule-based algorithm was then applied to a holdout testing set to evaluate
the algorithm’s performance. The testing cohort was sampled at random with no overlap
with the training/validation datasets and consisted of ~7700 patient-lines (~5100 patients)
without structured ECOG PS documentation in the time window before initiation of a
given treatment line.

3.4. Performance Analyses

For the training, validation, and testing cohorts, the NLP algorithm was applied to
patients lacking structured ECOG PS scores in the extraction time window and compared
to manually-abstracted ECOG PS scores for the equivalent time window. We evaluated
algorithm performance for individual ECOG PS strata as well as for binary ECOG PS
categories (e.g., ECOG 0–1 vs. ECOG > 1, a cutoff commonly used for stratified analyses in
clinical research).

We evaluated performance via the following metrics calculated in the testing cohort:
overall accuracy (the number of assignments matching between the algorithm and the
manually-abstracted information, relative to the total number of possible assignments);
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sensitivity (the number of manually-abstracted known ECOG PS scores for which the
algorithm identifies the same score, relative to the total number of manually-abstracted
known ECOG PS scores); PPV (the number of model-extracted known ECOG PS scores that
match the manually-abstracted score, relative to the total number of model-extracted known
ECOG PS scores); and F1-score (the harmonized mean of sensitivity and PPV). Accuracy,
sensitivity, PPV, and F1-score were analyzed on a held-out test cohort of 7709 treatment
lines from 5341 patients present in the database as of July 2021. These performance metrics
were also evaluated by specific strata (e.g., ECOG 0–3, ECOG < 2).

The performance of the NLP algorithm was further characterized by applying it to a
cohort of patients with aNSCLC who were missing a structured ECOG PS score in their
1L treatment. We quantified the proportion of patients for whom the algorithm extracted
an ECOG PS score, shifting their standing from PS-unknown to PS-known. We then
investigated the prognostic value of the composite ECOG PS scores that resulted from
combining patient-lines with structured scores with patient-lines with extracted scores. We
first compared rwOS via KM estimates by the source of the ECOG PS score (extracted vs.
structured), stratified by ECOG PS Score (0, 1, 2, 3). We additionally compared median
rwOS by data source (extracted vs. structured), stratified by ECOG PS Score (0, 1, 2, 3).

4. Results
4.1. Overall Study Population and Impact on ECOG PS Completeness

As of 30 June 2021, in the overall database across all tumor types (N = 480,825 patient
lines, N = 229,257 patients), structured ECOG PS scores were available for 290,343 patient
lines (60.4%). After applying NLP-extraction, the availability of ECOG PS scores increased
to 73.2% of patient lines. For certain treatment lines, the improvement was greater than
20% (Table S2). For example, for AML patients at 3L, our baseline completeness for ECOG
PS was 43.4%, and after adding NLP ECOG PS, our completeness increased to 63.9%.
Additionally, across many diseases, completeness of ECOG PS improved to a greater extent
in later lines. For example, in the metastatic breast cohort, the baseline completeness of
ECOG PS at first line therapy was 65.5% compared to 78.7% in fourth line (Table S2). This
is perhaps attributable to clinicians being more likely to explicitly document ECOG PS
in patients who have progressed through multiple treatments and are therefore likely to
be sicker.

4.2. Algorithm Performance in Training and Testing Cohorts

Table 1 shows the demographic distribution of patients in the training set and testing
cohorts. Across all cancer types, the NLP algorithm’s overall accuracy, sensitivity, PPV,
and F1-score in the testing set were 93.0% (95% CI: 92–94%), 88.0% (95% CI: 87–89%),
88.0% (95% CI: 87–89%), and 88.0% (95% CI: 87–89%), respectively (Table 2). Performance
for the testing cohort was better than in the training cohort, as might be expected in this
case, since the training cohort was purposefully enriched in less frequent ECOG PS strata
and patients from originating care sites of small size, where algorithm performance was
slightly worse.

4.3. Analysis of an aNSCLC Cohort: Impact on Sample Availability and Prognostic Value

Using a cohort of patients with aNSCLC in the 1L treatment window (N = 51,948, of
whom 31,949 had structured ECOG PS scores, for 61.5% completeness), the NLP algorithm
was applied to patients missing structured ECOG PS resulting in extracted ECOG PS
scores for 7335 of them, increasing completeness to 75.6%. Stratifying the cohort with both
structured ECOG PS (when available) and/or extracted ECOG PS (when structured ECOG
PS was unavailable), rwOS analyses showed that for both structured and extracted scores,
median OS worsened (18.8 to 4.8 months for patients with NLP-extracted ECOG PS and
18.4 to 4.1 months for patients with structured ECOG PS) (Table S3) as ECOG PS worsened,
consistent with clinical expectations (Figure 2).
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Table 1. Characteristics of patients in the study cohorts (training and testing cohorts).

Characteristic

Testing
N = 5341
Unique
Patient-Disease

Training
N = 2519
Unique
Patient-Disease

p-Value 1

Age at 1L

18–64 2232 (41.8%) 1028 (40.8%)

>0.0565–74 1732 (32.4%) 781 (31.0%)

75 and older 1377 (25.8%) 710 (28.2%)

Race

Asian 112 (2.1%) 45 (1.8%)

0.004

Black or African American 469 (8.8%) 222 (8.8%)

Other Race 619 (11.6%) 297 (11.8%)

Unknown 490 (9.2%) 300 (11.9%)

White 3651 (68.5%) 1655 (65.7%)

Ethnicity
Hispanic or Latino 332 (6.2%) 203 (8.0%)

0.002
Unknown/Non-Hispanic 5009 (93.8%) 2316 (92.0%)

Gender

F 2769 (51.9%) 1307 (51.9%)

>0.9M 2571 (48.1%) 1212 (48.1%)

(Missing) 1 0

Practice Type
Academic 1186 (22.2%) 221 (8.8%)

<0.001
Community 4155 (77.8%) 2298 (91.2%)

Year of Initial/Adv/Met
Diagnosis/First Treatment 2

<2018 4323 (80.9%) 2151 (85.34%)
<0.001

≥2018 1018 (19.1%) 368 (14.6%)

Group Stage (if applicable)

0 1 (<0.1%) 1 (<0.1%)

Not Applicable 3

I 284 (5.3%) 114 (4.5%)

II 387 (7.2%) 185 (7.3%)

III 815 (15.3%) 405 (16.1%)

IV 2090 (39.1%) 1066 (42.3%)

Not Applicable 1764 (33.0%) 748 (29.7%)

Year of start of 1L
<2018 3847 (72.0%) 2008 (79.7%)

<0.001
≥2018 1494 (27.3%) 511 (20.3%)

1 Pearson’s Chi-squared test; 2 The Year of treatment is selected based on the availability order of: initial diagnosis,
advanced diagnosis, metastatic diagnosis and first treatment. 3 Due to the small size of one group, the p-value is
not applicable.

Table 2. Performance results of the algorithm in the training (3353 treatment lines) and testing cohorts
(7709 treatment lines).

Cohort Accuracy a Sensitivity PPV F1-Score

ECOG 0–4 in Testing set 0.93 (0.92–0.94) 0.88 (0.87–0.89) 0.88 (0.87–0.89) 0.88 (0.87–0.89)

ECOG 0–4 in Training set b 0.83 (0.82–0.84) 0.80 (0.78–0.82) 0.75 (0.73–0.77) 0.77 (0.76–0.78)

Testing Cohort

ECOG PS 0 0.98 (0.98–0.980 0.90 (0.88–0.92) 0.89 (0.87–0.91) 0.90 (0.89–0.91)
ECOG PS 1 0.96 (0.96–0.96) 0.88 (0.86–0.90) 0.88 (0.86–0.90) 0.88 (0.87–0.89)
ECOG PS 2 0.98 (0.98–0.98) 0.85 (0.81–0.89) 0.84 (0.80–0.88) 0.84 (0.83–0.85)
ECOG PS 3 1.00 (1.00–1.00) 0.75 (0.67–0.83) 0.89 (0.83–0.95) 0.81 (0.80–0.82)
ECOG PS 0–1 0.95 (0.95–0.95) 0.91 (0.90–0.92) 0.91 (0.90–0.92) 0.91 (0.90–0.92)
ECOG PS 2–4 0.98 (0.98–0.98) 0.84 (0.81–0.87) 0.85 (0.82–0.88) 0.85 (0.84–0.86)

Training Cohort

ECOG PS 0 0.95 (0.94–0.96) 0.74 (0.70–0.78) 0.84 (0.80–0.88) 0.79 (0.78–0.80)
ECOG PS 1 0.94 (0.93–0.95) 0.78 (0.75–0.81) 0.87 (0.84–0.90) 0.83 (0.82–0.84)
ECOG PS 2 0.98 (0.98–0.98) 0.81 (0.76–0.86) 0.88 (0.83–0.93) 0.84 (0.83–0.85)
ECOG PS 3 0.97 (0.96–0.98) 0.95 (0.92–0.98) 0.69 (0.63–0.75) 0.80 (0.79–0.81)
ECOG PS 0–1 0.90 (0.89–0.91) 0.79 (0.76–0.82) 0.89 (0.87–0.91) 0.84 (0.83–0.85)
ECOG PS 2–4 0.92 (0.91–0.93) 0.94 (0.92–0.96) 0.64 (0.60–0.68) 0.76 (0.75–0.77)

a Accuracy including Unknown ECOG; b Training set included patients with ECOG PS 4 scores, however due to
low performance, those ECOG PS 4 patients were grouped into Unknown ECOG Category for the results.
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with ECOG PS scores available as structured data, and for the subcohort with ECOG PS scores
extracted via algorithm.

Likewise, an analysis looking at patients across all diseases in the testing set (stratified
by ECOG PS score) showed similar results. Patients with worse ECOG PS lived less long
than patients with better ECOG PS for both manually abstracted and extracted ECOG PS
scores (26.7 to 5.8 months for patients with ECOG from abstraction and 26.4 to 4.3 months
for patients with ECOG from NLP extraction) (Table S5).

5. Discussion

We developed an NLP algorithm that extracts ECOG PS scores from unstructured
EHR documents with high performance compared to manually abstracted data. In contrast
to prior research, which largely trained and applied ECOG extraction efforts to smaller
single-site cohorts, this study applies a rule-based information extraction approach on a
large nationwide EHR-derived de-identified RWD source to extract ECOG PS across a
multitude of cancer types [44]. We showed that this strategy can achieve high performance,
extracting ECOG PS at the time of treatment initiation, with a transparent and explainable
algorithm deployed onto a large database that originated from real-world EHR data sources.
The underlying study network from which the training and testing cohorts were selected
includes approximately 280 cancer clinics (~800 sites of care) distributed nationwide (US-
based), including academic and community practices, with a wide range of sizes [13,49].
The Flatiron Health database has been compared to The Surveillance, Epidemiology, and
End Results Program (SEER) program and the National Program of Cancer Registries
(NPCR)—both authoritative sources for population cancer surveillance and research in the
US—and found general similarities in demographic and geographic distribution. However,
patients from the Flatiron Health database appeared to be diagnosed with later stages of
disease and their age distribution differs from the other datasets [49]. Another unique
strength of this study is the availability of a patient sub-cohort with manually abstracted
ECOG PS scores as the internal reference for quality, together with access to the primary
EHR data sources, both structured and unstructured. This infrastructure enabled the
verification of discrepancies and the identification and investigation of potential errors in
both directions (of both the NLP algorithm-extracted and the manually-abstracted data).

Another strength of this study includes our improvement upon data completeness for
EHR-derived study cohorts in oncology. In our database of interest (N = 480,825 patient-lines),
use of this algorithm increased overall ECOG PS completeness from 60.4% to 73.2%. Guidelines
from health authorities have highlighted completeness as a key component of data integrity and
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a common shortcoming of observational data [51,52], spurring investigation in this area. NLP
has been proven useful for the extraction of information from clinical notes in oncology EHRs;
for example, date or site of disease recurrence, presence of symptoms or adverse events, date of
disease onset, etcetera [28,30–33,40,53,54]. NLP techniques can be deployed to derive variables
from EHR data, increasing data completeness and quality, boosting analytic robustness, and
therefore improving the utility of RWE [18]. For our work, we considered NLP to be the best
suited to extract explicit assessments of a patient’s ECOG PS recorded in the EHR, rather than
relying on contextual inferences made from EHR documents. The fact that NLP is traceable and
auditable to source documentation is another benefit of the approach.

Furthermore, a strength of this study was our RWE focus in algorithmic evaluation.
First, we stratified performance by ECOG score to allow researchers to understand the
implications of using different ECOG PS-based criteria in their studies. Additionally, we
assessed how NLP-extracted ECOG PS scores correlate with overall survival. Ensuring that
extracted ECOG PS scores align with clinical expectations (the observation that patients
with worse ECOG PS scores do not live as long [55–59]) provides reassurance about the
prognostic value of the data extracted by the algorithm. By evaluating both the prognostic
value as well as reporting out metrics such as sensitivity and PPV and utilizing error
analysis, researchers can be surer of the impact of using these extracted clinical details in
generating RWE. A final strength of this study is the ability to extract multiple ECOG PS
scores for a patient over time and not just at time of diagnosis. This enables a better under-
standing of a patient’s longitudinal journey over time, as well as improved completeness
of ECOG PS in later lines of therapy, which may be important for some research studies
focused on care provided towards the end of life.

Given the relevance of ECOG PS as a variable in oncology research, and the challenges
associated with its overall documentation in RWD sources, our work has several implica-
tions for investigators. ECOG PS is critical to define potential clinical trial eligibility for
use-cases in which RWE is generated for contextualization of clinical trials results [60,61].
ECOG PS incompleteness may impair the generation of adequate study samples and
introduce bias. Therefore, maximizing availability of this variable would facilitate these
contextual studies and would minimize any potential selection bias associated with reliance
only on patients with structured ECOG PS. ECOG PS can be an important confounder
in oncology studies, the application of this algorithm can increase analytic robustness,
interpretability, and relevance by enabling multivariate analyses, increasing their statis-
tical power, and by mitigating the need for imputation approaches altogether. Similar
NLP algorithms could be deployed in practice, beyond analytic scenarios, to automate
clinical trial eligibility screening processes or to enhance risk assessment to aid in clinical
decision making.

While understanding the generalizability to other tumor types warrants further re-
search, we believe basing our characterization step for the variable and the deeper analyses
on one solid tumor type aNSCLC is an important contribution to the field and, to our
knowledge, is among the first of its kind. For the scope of the present study, aNSCLC
provided a disease setting where the ECOG PS documentation is particularly useful (due
to expected frequent treatment changes in a short disease course), and the investigation
of its relevance has been thorough [36,62,63], providing an ample backdrop of scientific
literature to ascertain the performance of our NLP-extracted variable. Furthermore, while
completeness of ECOG PS is indeed improved using an NLP algorithm, many patients
still do not have an explicitly documented ECOG PS score and ECOG PS 3–4 is infre-
quently recorded. Future research should focus on novel methods to infer functional
status and improve our understanding of the health of patients missing ECOG PS scores in
their records.

Limitations

Study limitations include the variability of our algorithm’s performance across settings
and across score strata. This may be due to the relatively small sub-cohort sizes for the
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low-prevalence strata (usually the poorer ECOG PS scores), or the potentially different
documentation practices according to ECOG PS score or other clinician/patient factors.
It is important to reiterate here that we did not categorize ECOG PS4, but grouped it
into the Unknown category due to rare prevalence. This resulted in low performance of
the algorithm. Nonetheless, the use of ECOG PS scores in clinical studies is most often
based on the cutoff 0–1 vs. >1; therefore, the performance of this algorithm for this binary
categorization is valuable. Furthermore, the prognostic analysis also boosts the confidence
on the meaningfulness of the scores extracted by the algorithm, since they perform as would
be expected. Finally, the algorithm itself was developed for the specific EHR-derived data
source used; as such, further research will be needed to develop algorithms for different
data sources.

6. Conclusions

In conclusion, we developed an NLP algorithm that extracts ECOG PS scores from
unstructured documents across an EHR network of diverse real-world clinical settings. The
algorithm improves the completeness of a critical variable at the time of treatment initiation
and performs well across 21 distinct cancer types. Furthermore, additional validation,
including the comparison of rwOS of patients with extracted vs. structured ECOG PS
scores within a cohort of patients with aNSCLC, demonstrated clinically expected results.
The use of high-performing algorithms such as this can help to overcome key challenges
in RWD, such as missingness, as well as make one of the key advantages of RWD more
attainable: the capability to aggregate longitudinal routine clinical care information from
large patient cohorts for high-quality clinical research, ultimately benefiting providers,
regulatory stakeholders, and, most importantly, patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13106209/s1, Figure S1: rwOS in patients present in the study
databases across all eligible diseases, stratified according to their ECOG PS score; Table S1: Detailed
cohort eligibility criteria; Table S2: Impact of the application of the NLP algorithm on the ECOG PS
completeness in EHR-derived databases for 21 diseases; Table S3: rwOS (months) in patients with
aNSCLC stratified according to their ECOG PS score for the subcohort with ECOG PS scores available
as structured data, and for the subcohort with ECOG PS scores extracted via algorithm; Table S4: HR
for patients with structured ECOG (reference group) in patients with aNSCLC. Table S5. Median real
world OS (months) for patients present in the testing set across all eligible diseases.
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