
Citation: Zhang, J.; Dai, Z.; Li, R.;

Deng, L.; Liu, J.; Zhou, N.

Acceleration of a Production-Level

Unstructured Grid Finite Volume

CFD Code on GPU. Appl. Sci. 2023,

13, 6193. https://doi.org/10.3390/

app13106193

Academic Editors: Pavel Lyakhov

and Maxim Deryabin

Received: 4 May 2023

Revised: 12 May 2023

Accepted: 12 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Acceleration of a Production-Level Unstructured Grid Finite
Volume CFD Code on GPU
Jian Zhang 1,2 , Zhe Dai 2, Ruitian Li 2, Liang Deng 2,*, Jie Liu 1 and Naichun Zhou 2

1 Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense
Technology, Changsha 410073, China; zhangjian@cardc.cn (J.Z.); liujie@nudt.edu.cn (J.L.)

2 Computational Aerodynamic Institute, China Aerodynamic Research & Development Center,
Mianyang 621000, China; daizhe_cardc@163.com (Z.D.); to_ruitian@126.com (R.L.); zhounc@cardc.cn (N.Z.)

* Correspondence: dengliang11@nudt.edu.cn

Abstract: Due to the complex topological relationship, poor data locality, and data racing problems
in unstructured CFD computing, how to parallelize the finite volume method algorithms in shared
memory to efficiently explore the hardware capabilities of many-core GPUs has become a significant
challenge. Based on a production-level unstructured CFD software, three shared memory parallel
programming strategies, atomic operation, colouring, and reduction were designed and implemented
by deeply analysing its computing behaviour and memory access mode. Several data locality
optimization methods—grid reordering, loop fusion, and multi-level memory access—were proposed.
Aimed at the sequential attribute of LU-SGS solution, two methods based on cell colouring and
hyperplane were implemented. All the parallel methods and optimization techniques implemented
were comprehensively analysed and evaluated by the three-dimensional grid of the M6 wing and
CHN-T1 aeroplane. The results show that using the Cuthill–McKee grid renumbering and loop fusion
optimization techniques can improve memory access performance by 10%. The proposed reduction
strategy, combined with multi-level memory access optimization, has a significant acceleration effect,
speeding up the hot spot subroutine with data races three times. Compared with the serial CPU
version, the overall speed-up of the GPU codes can reach 127. Compared with the parallel CPU
version, the overall speed-up of the GPU codes can achieve more than thirty times the result in the
same Message Passing Interface (MPI) ranks.

Keywords: unstructured-grid; CFD; shared memory parallelization; GPU; data racing

1. Introduction

Computational fluid dynamics (CFD) play an important role in modern industry and
science, which can be used to simulate and predict the physical and chemical properties
of fluid motion, helping to improve the design and manufacturing of products such as
aircraft [1] and buildings [2]. The development of CFD software has always been driven by
high-performance computing (HPC) technology, and the improvement of HPC computing
capabilities will bring revolutionary breakthroughs in CFD applications. The computational
demands of CFD are increasing at an ever-faster pace as engineers attempt to model increas-
ingly complex flow phenomena like chemically reactive flows using more high resolution
method such as Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS). The
LES method requires a grid size of Re1.8, and DNS even reaches Re9/4. For general aircraft,
the Reynolds number (Re) is usually at the million level, which requires a huge amount
of grid. This places higher demands on high-performance computers. In recent years, the
computing power of HPC has been advancing towards the exascale level [3]. However,
manufacturing constraints and power requirements have forced computer vendors to seek
continued improvements through vastly higher levels of parallelism and developing more
complicated memory hierarchies [4]. In particular, with the rapid development of the
General Purpose Graphics Processing Unit (GPGPU), GPUs with formidable computing

Appl. Sci. 2023, 13, 6193. https://doi.org/10.3390/app13106193 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106193
https://doi.org/10.3390/app13106193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7676-7609
https://doi.org/10.3390/app13106193
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106193?type=check_update&version=1

Appl. Sci. 2023, 13, 6193 2 of 17

power and low power consumption have played an increasingly important role in scientific
computing. Kim et al. [5] proposed a method to solve the one-dimensional magnetohydro-
dynamics (MHD) problem by building a CFD simulator within the Hadoop Ecosystem in
heterogeneous environments, mainly in GPU, and achieved sufficient performance. Nowa-
days, many of the fastest supercomputers in the world’s Top 500 are designed based on
GPU architecture. ORNL’s Summit supercomputer used a CPU/GPU heterogeneous archi-
tecture with 27,648 NVIDIA Volta V100 GPUs, and its next-generation system, Frontier, was
based on AMD CDNA GPUs [6]. The Leonardo supercomputer of EuroHPC/CINECA uses
14,000 Nvidia GPUs [7]. Achieving the performance of exascale computing is necessitating
a paradigm shift from traditional computing advances.

There are generally two types of grids used in CFD simulations: structured grids and
unstructured grids. The structured grid was constructed by elements within the domain
that have the same adjacent elements (hexahedron). Unstructured grids are composed
of elements of different shapes (tetrahedral, hexahedral, polyhedral, etc.). Currently, the
mainstream industrial CFD software uses unstructured grids, mainly because unstructured
grids are more suitable for handling complex geometric shapes, such as impeller blade [8],
automobile [9], stirred tank reactor [10], urban buildings [11], and so on, than structured
grids, and can adaptively adjust the size and shape of the grids to better adapt to the
characteristics of fluid flow. In addition, unstructured grids can better handle complex
problems such as moving bodies and multiphase fluids and have better scalability and
flexibility [12]. However, unstructured grid CFD solvers encounter significant challenges
when porting to GPU. The traditional parallelization strategy uses the idea of domain de-
composition to divide the computational grid and uses Message Passing Interface (MPI) for
communication. However, as the number of partitions increases, the overhead of copying
data into (and from) communication buffers will cause parallel inefficiency. Algorithm
inefficiency will also incur when the subdomains are small [13]. Under the new architecture,
implementation of heterogeneous parallelism is required between CPU and GPU, i.e., utiliz-
ing multiple nodes to simultaneously process a grid system with communication by using
MPI, and efficient and scalable shared memory parallel algorithms are required within
GPU. However, the irregularity of the computation and indirect addressing in inner loops
due to the unstructured meshes makes this a daunting challenge [14]. Current methods
for handling such data races lead to reduced parallelism and suboptimal performance.
Particularly for GPUs that have increasing core/thread counts, reducing data movement
and exploiting memory locality is vital for gaining good performance [15]. Moreover,
the inherent sequential properties of most implicit schemes make it more difficult for the
algorithm to achieve parallel acceleration. For example, the lower-upper symmetric Gauss-
Seidel (LU-SGS) algorithm is the most popular implicit method for solving large sparse
linear equations in CFD. However, the strong data dependency during the forward and
backward sweep makes it a tough challenge for shared-memory parallelization [16].

In-depth shared memory parallelization studies for production-level CFD applications
are still relatively limited and are a focus of active research. Jespersen accelerated NASA’s
overset grid CFD solver OVERFLOW by moving a portion of the code to the GPU. How-
ever, due to the dependencies of the iteration, the Jacobian algorithm used to solve the
sparse linear system was ported to the GPU instead of the original SSOR algorithm and
demonstrated a 25% improvement in performance over the CPU alone [17]. Williams et
al. improved the performance of the famous open-source CFD code OpenFOAM by GPU.
However, they only ported the linear solver part of the code, achieving a 2.5 times improve-
ment. Utilizing NVIDIA’s Tesla K20 GPU compared to a parallel CPU implementation on
ten cores of an Intel Xeon E5-2670 v2 [18], Nastac et al. presented a CUDA C++ implemen-
tation of FUN3D’s thermochemical nonequilibrium flow simulation capabilities targeting
GPUs. They mainly used atomic operations to address the race condition issue [19]. In
summary, when targeting GPU architecture and complex production-level unstructured
CFD software, comprehensive research and analysis are needed in terms of parallelization
methods and memory access optimization techniques.

Appl. Sci. 2023, 13, 6193 3 of 17

The motivation of this paper is to accelerate a production-level unstructured CFD
software on GPU. NNW-FlowStar (FlowStar for short) is an industrial CFD software
developed by China Aerodynamics Research and Development Center (CARDC) [20]. Its
solver is developed based on the unstructured finite volume method and MPI parallel
technology. To adapt to the new trend of HPC development, it is necessary to further
develop MPI+X hierarchical parallel technology, the CUDA programming model of GPU
is a kind of X. The remainder of this paper is organized as follows. Section 2 details the
governing equations for the finite volume method for unstructured grids and the data
racing problem due to irregular memory access patterns. Section 3 introduces the GPU
parallelization implementation for face-loop kernels with data conflicts problem and the
implicit method of LU-SGS. Section 4 describes some optimization methods to improve
memory access efficiency. Section 5 presents the performance and efficiency results analysis
for practical engineering problems. Section 6 provides the conclusion of this work and a
plan for future work.

2. Unstructured Grid Finite Volume Method (FVM) CFD Solver
2.1. Cell-Centered FVM Scheme

The governing equation solved by FlowStar is the Reynolds Averaged Navier Stokes
(RANS) equation, discretized by a cell-centered finite volume method for unstructured grids,

∂

∂t

∫
Ω
~WdΩ +

∮
∂Ω

(~Fc − ~Fv)dS = ~Q (1)

where Ω defines the control volume, bounded by the closed surface ∂Ω, ~W is the vector of
conservative variables, ~Fc is the vector of convective fluxes, and ~Fv is the vector of viscous
fluxes. ~Q is the source term. For cell-centred schemes, the control volumes are identical
with the grid cells and the flow variables are associated with the centres of the grid cells.
If considering a particular volume ΩI , the following expression will be obtained after
space discretization:

d~WI
∂t

= − 1
ΩI

[
NF

∑
m=1

(
~Fc − ~Fv

)
m

∆Sm −
(
~QΩ

)
I

]
(2)

where I is the index of the control volume, NF denotes the number of the faces of the control
volume ΩI , and ∆Sm is the area of mth face.

After solving the right-hand side of Equation (2), the final residual for every cell will
be obtained. Then, the solving was advanced through a temporal discretization method,
approximating the final solution:

A∆~Wn = −~Rn
I (3)

where A is the system matrix of left-hand side, n denotes to the number of iteration, and
∆~Wn is the variable’s update for all cells.

2.2. Data Structure for Unstructured Grid

For structured grids, the computational space can be represented by the index i, j, k,
which directly corresponds to the storage way of flow field variables in the computer. This
feature can easily obtain adjacency relationships between grid entities (nodes, faces, and
cells). However, unstructured grids do not have this property, and grid entities typically
do not have a regular arrangement order, requiring additional data structures to store grid
topology information. Unstructured grid data structures can be abstractly viewed as sets
of grid entities. Physical quantities are defined corresponding to these collections, e.g.,
coordinates, velocities, and fluxes, and explicit connectivity data is needed to represent the
adjacent info between entities. For cell-centered schemes, the numerical operation is mainly
on the faces of the control volume, so it is natural to adopt a face-based data structure [21].
For example, when solving the decentralized control Equation (2), the flux at the face center

Appl. Sci. 2023, 13, 6193 4 of 17

of the control volume must be provided. As shown in Figure 1, to compute the flux at
f0, pointers to the two cells (c0 and c1) sharing f0 should be provided to access the flow
variables associated with them.

Figure 1. Data structure of cell-centred FVM scheme for unstructured grid.

2.3. Data Racing Due to Irregular Memory Access Pattern

The computations on unstructured grids are loops over a set of grid entities. If a
loop over a set only writes the data defined on that set, then the loop can run in parallel.
However, if there is indirect access to data, there may be situations where iterating from
multiple entities simultaneously updates the same memory location value, leading to data
race issues. This kind of loop with indirect memory access is common in CFD applications
based on unstructured grids, such as the convective flux evaluation (Algorithm 1).

Algorithm 1 Calculation of convection flux based on face-based loop

Input: Pointers from face to cell f 2cl, f 2cr. Flow variables q.
Output: Right hand side residuals RHS

1: for f ace = 0 to nFaces do
2: c0 = f 2cl[f ace]
3: c1 = f 2cr[f ace]
4: Fij = InvicidFlux(q[c0], q[c1], ...)
5: RHS[c0] -= Fij
6: RHS[c1] += Fij
7: end for

In Algorithm 1, the face-based loop follows a gather-scatter memory access pattern.
Firstly, obtain the flow variables from a face’s two adjacent cells (line 2 and line 3). Then
calculate the fluxes by calling the inviscid flux-computing kernel (line 4). Finally, update
RHS in cells using the computed fluxes (line 5 and line 6). Because one cell has multiple
faces, simultaneous updates variables on it from different faces may lead tio data races.
Take Figure 1 as an example. f0, f1, and f2 belong to different threads, after completing flux
calculation separately, simultaneously updating the value of c0 will lead to data racing.

2.4. The Inherent Sequential Properties of Implicit Algorithms

The LU-SGS scheme is widely used in CFD because of its low numerical complexity
and modest memory requirements. The LU-SGS scheme is based on the factorization of
Equation (3) into the following form

(D + L)D−1(D + U)∆~Wn = −~Rn
I (4)

Appl. Sci. 2023, 13, 6193 5 of 17

where L is the lower triangular matrix of system matrix, U is the upper triangular matrix,
D is diagonal terms. Equation (4) is then solved in two steps, a forward and a backward
sweep, that is,

(D + L)∆~W∗ = −~Rn
I

(D + U)∆~Wn = D∆~W∗
(5)

The process of LU-SGS solving is inherently serial. In solving a triangular system
through a forward or backward sweep, the solution depends on pre-updated solutions
whose elimination order is in the front. Take forward sweeping as an example, as shown in
Algorithm 2. The outer loop corresponding to the variable i is sequential. Parallelizing the
sparse dot product in the inner loop according to the variable j is also inefficient because
the length of the vector involved in the dot product is typically short [22].

Algorithm 2 Forward sweeping of LU-SGS

1: for i = 1 to nCells do
2: ∆Wi = −Ri
3: for all j in L(i) do . L(i) : the lower neighbour cells of cell i.
4: ∆Wi = ∆Wi − Li,j∆Wj
5: end for
6: ∆Wi = ∆Wi/Di
7: end for

3. Parallelization on GPUs

This work uses CUDA (compute unified device architecture) to port the code from
CPU to CPU. CUDA is a parallel computing platform and programming model for the GPU
to reduce the complexity of programming. As described in Section 2, the data racing in
face-based loops and data dependency in the implicit algorithm are the two main obstacles
to realizing the parallelization on GPU. This section will provide a detailed description of
the solution.

3.1. Face-Loop Parallelization
3.1.1. Atomic Operations

The most direct solution is to use atomic operations, which can protect access to
potentially conflicting memory locations. The advantage of atomic operation is that changes
to the code are minimal to avoid data racing while maintaining acceptable parallelism.
For example, implementing aggregate accumulation operation to RHS in Algorithm 1
by calling atomicAdd of CUDA kernel. However, when conflicts occur frequently, the
scalability of the solution is limited. This is because when multiple atomic updates are
applied simultaneously to the same memory location, each individual update is applied
serially and in an arbitrary order, which reduces the throughput of atomic updates [23].

3.1.2. Face Colouring

Another approach to avoid a race condition is colouring the faces of the mesh. The
faces of a mesh can be coloured into separate groups so that no cell possesses faces that
belong to the same colour [24]. An example of a two-dimensional mesh and a face colouring
strategy is shown in Figure 2.

Algorithm 3 gives the pseudocode of flux calculation based on face-colouring technol-
ogy. The loops within each colour can be executed in parallel on GPU.

Appl. Sci. 2023, 13, 6193 6 of 17

Figure 2. A two-dimensional example of face colouring. Edges represent the faces in three-
dimensional case. Faces of the same colour can be executed in parallel.

Algorithm 3 Face-colouring approach for the flux computation.

Input: Pointers from face to cell f 2cl, f 2cr. Flow variables q. Start cell index of a colour ic.
Output: Right hand side residuals RHS

1: for color = 0 to nColors do . Traverse all the colors.
2: for f ace = ic[color] to ic[color+1] do . This loop can be parallelized.
3: c0 = f 2cl[f ace]
4: c1 = f 2cr[f ace]
5: Fij = InvicidFlux(q[c0], q[c1], ...)
6: RHS[c0] −= Fij
7: RHS[c1] += Fij
8: end for
9: end for

3.1.3. Reduction

The disadvantage of face colouring is that it loops over discontinuous surfaces, result-
ing in poor data locality. Therefore, another parallel strategy based on reduction thought
was proposed. The principle of the reduction strategy is separating the gather and scatter
parts of face-based loops [13]. The former does not have data conflicts so it can be paral-
lelized. Face quantities were stored (without scattering) during the loop over faces and
were then reduced for each cell independently in a second loop over cells. As illustrated in
Algorithm 4, the reduction approach makes the residual update loop of Algorithm 1 able to
run in parallel.

Algorithm 4 Separating the gather and scatter parts of convective flux calculating loop.

Input: Pointers from face to cell f 2cl, f 2cr. Flow variables q.
Output: Right hand side residuals RHS

1: for f ace = 0 to nFaces do . This loop can be parallelized.
2: c0 = f 2cl[f ace]
3: c1 = f 2cr[f ace]
4: flux[f ace] = InvicidFlux(q[c0], q[c1], ...) . Store face quantities.
5: end for
6: for cell = 0 to nCells do . This loop can be parallelized.
7: for each f ace on cell do . Reduction quantities on a cell.
8: RHS[cell] += (face’s normal point to cell) ? flux[f ace] : -flux[f ace]
9: end for

10: end for

Appl. Sci. 2023, 13, 6193 7 of 17

3.2. LU-SGS Algorithm Parallelization
3.2.1. Cell Colouring

As mentioned in Section 2.4, the updated solution appears on both the left-hand and
right-hand sides when solving the linear systems. If executing line 4 of Algorithm 2 in
parallel, the ordering of computation is not one way (the data race occurs for ∆W of the
right), and the solution is unreproducible. Referring to the face colouring technique used
in parallel flux calculation, this paper introduced the cell colouring technique [25] to solve
this problem. As shown in Figure 3, transform the unstructured grid topology into an
undirected graph. The vertices in the graph represent each grid cell, and the edges represent
the adjacency relationship between two cells sharing the same face. All the computational
cells are painted with multiple colours so the colours of neighbour cells are different from
one another. Then traverse all the colours forward and backward respectively, each time
performing the elimination in parallel within the same colour.

(a) (b)

Figure 3. Cell coloring for unstructured grid. (a) The original mesh topology. (b) Painted with
multiple colors. Elements of the same colour can be solved in parallel.

3.2.2. Hyperplane Partition

Cell colouring could solve the data dependency problem, but it degrades the implicit
property of the LU-SGS algorithm. Because different colours are executed in sequential
order, the value ∆Wj appearing on the right-hand side may not be the latest update.
Therefore, this paper proposes a reordering method based on the hyperplane. This method
was originally applied to the vectorization of the LU-SGS algorithm on unstructured
grids [26].

The principle of this method is to partition and reorder all grid cells into different
groups (hyperplanes), achieving the decoupling of intra-group dependencies. The majority
of cells from a group have connections to cells from groups with lesser numbers as well as
to cells from groups with greater numbers. Every cell from one group has no connections
with other cells of the same group. As shown in Figure 4, first, partition the grid cells
into preliminary hyperplanes. Select the initial grid cell as the first plane, and according
to the grid topology, spread from the initial cell to the whole grid from near to far. The
external grid cells with the same topological distance are divided into the same plane, that
is, the distance between the grid cells in the same plane and the initial grid cell is the same.
Following that, further group the cells in each hyperplane. For each hyperplane, no cells of
the same group are connected.

Thus, the lower matrix in Equation (5) was computed by surrounding cells j(i) whose
group indexes are less than a group of cell i, j ∈ L(i) : (group(j) < group(i)), while the
upper matrix is computed by surrounding cells j(i) whose group index is greater than the
current group of i, j ∈ U(i) : (group(j) > group(i)). The forward sweep is performed by
the group numbers from 1 to the maximum and vice versa for the backward sweep. For all

Appl. Sci. 2023, 13, 6193 8 of 17

cells of the same group, the computation can be done concurrently, and thus the LU-SGS
algorithm can be parallelized on GPU.

1

2

3

4

5 6

Starting cell

(a)

1

2

4

6

9 11

3

5

7

8

10

(b)

Figure 4. Hyperplane partition for unstructured grid. (a) Preliminary partition into hyperplanes.
(b) Final groups. The numbers in the figure represent the number of the group. Elements belong to
the same group are marked with same colour.

4. Data Locality Optimization

Exploiting memory locality is vital for unstructured mesh algorithms to gain good
performance on GPUs. This section provides several data locality optimization strategies.

4.1. Grid Reordering

Due to the irregular shape of the unstructured grid, the numbering index span between
adjacent grid elements is large. Therefore, when accessing data, the caching system may
not be able to effectively cache the required data, resulting in low memory access efficiency.
Reordering the grid elements is a way to improve the access pattern in face-based loops
by minimising the distance between memory references when gathering and scattering
data from and to pairs of cells that share a face [27]. Moreover, it does not alter the shape
and distribution of the grid, so it will not affect the reliability of CFD calculations. In this
work, three reordering methods, including Cuthill–McKee [28], space-filling curve [29],
and graph partitioning [30], were implemented. Figure 5 shows the system matrix form
obtained by reordering a grid using different algorithms, where the non-zero block of the
matrix is represented by a filled rectangle. It can be seen that after reordering, the index
between adjacent grid cells is closer, and the bandwidth of the matrix is significantly re-
duced. Among the three methods, the Cuthill–McKee method had the best result. Detailed
comparisons of the three reordering methods will be provided later.

We renumbered the cells using the above bandwidth-minimization techniques then
subsequently renumbered the faces according to the minimum cell number on each face, as
shown in Figure 6. All of these renumbering algorithms are of complexity O(N), or at most
O(Nlog(N)), and are well worth the effort [31].

Appl. Sci. 2023, 13, 6193 9 of 17

(a) (b)

(c) (d)

Figure 5. The system matrix after grid reordering using different algorithms: (a) The original not
reordered. (b) Cuthill–McKee. (c) Space-filling curve. (d) Graph partitioning.

cell index

fa
c

e
 i
n

d
e

x

0 nCells

0

nFaces

(a)

cell index

fa
c

e
 i
n

d
e

x

0 nCells

0

nFaces

(b)

Figure 6. Pointer from face to cell: (a) The original not reordered. (b) After reordering the face.

4.2. Loop Fusion

In order to improve the modularity of the code, FlowStar encapsulates some subrou-
tines that contain a large number of loops, such as loading variables, reconstruction, flux
calculation, and updating RHS in the module of convective flux calculation. This will
decrease the data locality. It is common in CFD code that an array is written sequentially

Appl. Sci. 2023, 13, 6193 10 of 17

in a previous loop, and is likely to be read again in subsequent loops. When the length
of the array is large, the data that need to be read are no longer in the cache and must be
reloaded from memory. It can optimize data locality through loop fusion operations. In this
way, the written values can be read in a timely manner, greatly reducing the probability of
cache misses.

4.3. Multi-Level Memory Access by Shared Memory

GPU’s shared memory is a type of memory that can be accessed within a block, with
storage hardware located on the chip, and has fast access speed. The shared memory
life-cycle management are unlike L1 caches—its usage is controlled by the user, while
L1 is controlled by the system. Therefore, shared memory can be used as an explicitly
managed cache to store the data that need to be read and written frequently to improve
memory access efficiency. Papers [15,32] attempted to adopt this caching mechanism
by loading indirectly accessed elements into GPU’s shared memory based on colouring
algorithms, but the performance improvement was limited, and colouring also brought
further memory discontinuity. In this work, a new shared memory optimization method
based on the reduction strategy (Algorithm 4) was proposed. The GPU kernel first loads
the data from global memory into shared memory units. After completing the face-to-
cell reduction operation, write the updated data from shared memory back to the global
memory. An example is given in Figure 7, which shows the data flow of updating the
RHS of Algorithm 4. For three-dimensional unstructured grids, each cell has at least four
or more faces. Multiple faces-to-cell data writes on shared memory can increase the data
reuse rate. After counterbalancing the overhead of loading from and write-back to global
memory, this will bring additional performance improvement. Compared to the colouring
scheme, this method has minimal changes to the original code and is relatively simple
to implement.

Global Memory

Compute Units

Shared Memory

L1 Cache

CPU

Memcpy

rhs

sdata in Shared Memory

Load rhs

into

Shared

Memory

sdata

Reduction

flux into

sdata

Load

Shared

Memory

sdata

back to rhs

GPU

PCI

Figure 7. Data flow of using GPU shared memory as an explicitly-managed cache.

5. Performance and Discussion
5.1. Test Cases and Environment

To analyse the performance of different parallel algorithms and the effectiveness of
related optimization techniques, performance tests were conducted by three-dimensional
unstructured grids of the ONERA M6 wing and the CHN-T1 aircraft standard model [33],
respectively. The computational mesh are shown in Figure 8. To make the image more clear,
only a very coarse level grid is illustrated here. In actual calculations, the growth rate of
the height of the grid in the boundary layer is approximately 1.2.

Appl. Sci. 2023, 13, 6193 11 of 17

(a) (b)

Figure 8. The computational grid used for performance test. (a) The ONERA M6 wing. (b) The
CHN-T1 airplane.

Different size levels of grids were supplied to validate how the performance varies
with the size of the problem, as shown in Tables 1 and 2. The testing was conducted on a
GPU workstation, configured with Intel(R) Xeon(R) Platinum 8268 @ 2.90 GHz and NVIDIA
RTX™ A6000 48 G GPU.

Table 1. Grid information of M6 wing.

Size Level Total Cells Total Faces

Grid 1 123,158 55,109
Grid 2 804,367 352,639
Grid 3 3,718,474 1,321,496
Grid 4 10,834,928 4,519,009

Table 2. Grid information of CHN-T1.

Size Level Total Cells Total Faces

Grid 1 6,518,485 2,318,948
Grid 2 17,376,357 5,952,147

5.2. Performance of Loop Parallelization

The effectiveness of different reordering methods was compared to determine the best
grid index manner. By simulating the M6 wing with the same calculation condition, the
residual convergence history of different reordering methods was obtained. Figure 9 illus-
trates the results of Grid 1. The results show that the Cuthill–McKee method has the best
performance. Compared to the original, it takes about 10% less time to reduce the residual
by four orders of magnitude. The result is in line with expectations. According to Figure 5,
the Cuthill–McKee method has the best data locality and the minimum matrix bandwidth
after reordering. In the subsequent testing, all implementations are based on this method.

The biggest performance obstacle of parallelization on GPU is the subroutines with
write data conflicts. The performance of these subroutines can best reflect the effect of differ-
ent parallelization methods. Figure 10 shows the acceleration achieved by the UpdateRHS
function in FlowStar after GPU parallelization compared to CPU serial computation. It
can see that the acceleration effect of the reduction and face colouring strategy is almost
the same, and both are better than atomic operations. It can also find from the results
that the larger the grid size, the more significant the acceleration effect. It is because as
the problem size increases, the proportion of data movement overhead between CPU and
GPU decreases, and the benefits of utilizing GPU multi-core parallel acceleration will be
more prominent.

Appl. Sci. 2023, 13, 6193 12 of 17

time(s)

L
o

g
1

0
(r

e
s

)

0 50 100 150 200 250 300 350

3

2

1

0

1

Original

CuthillMcKee

Spacefilling curve

Graph partition

10%

Figure 9. Comparison of convergence history using different reordering methods.

Figure 10. Speed up of UpdateRHS subroutine for different grid level of M6 wing.

Section 4.3 discusses that explicit management of shared memory can further improve
memory access efficiency by caching data that need to be read and written repeatedly.
Figure 11 gives the results of the speed-up ratio of the UpdateRHS function before and after
shared memory optimization. The effect of shared memory optimization based on the face
colouring method is limited (red curve in the figure). This conclusion is consistent with
the Reference [32]. The group colouring method (black curve in the figure) refers to the
two-layered colouring or hierarchical colouring method of Reference [15]. The performance
is still poor. The reason for achieving a good acceleration ratio in the original literature is
that its results considered changing variable storage from the Array of Structure (AoS) to
the Structure of Array (SoA). However, the data structure of FlowStar is already SoA, so
the effect is not significant. In contrast, the optimization of shared memory proposed by
this work based on the reduction strategy (blue curve) is impressive. After optimization,
the performance can be further improved by three times, verifying the effectiveness of the
method proposed in this paper.

Furthermore, based on the above reduction strategy and shared memory optimiza-
tion, this work investigated the acceleration effect of loop fusion described in Section 4.2.
Table 3 gives the time consumption (s) before and after loop fusion for convective flux and

Appl. Sci. 2023, 13, 6193 13 of 17

viscous flux. It is obvious that the time consumed after fusion is less, especially for the
calculation of convective flux, which can be reduced by nearly half.

Figure 11. Comparison of speed up of UpdateRHS of simulating M6 wing before and after shared
memory optimization.

Table 3. Comparison of time consumption (s) before and after loop fusion for convective flux and
viscous flux.

Grid Level
Convective Flux Viscous Flux

Original Loop Fusion Original Loop Fusion

Grid 1 18.7 9.6 12.0 10.3
Grid 2 102.1 48.0 69.4 50.1
Grid 3 565.5 317.6 372.2 274.9
Grid 4 1622.8 861.5 1077.2 801.3

5.3. Performance of LU-SGS Parallelization

The performance of two LU-SGS parallelization methods was investigated using the
M6 wing grid at various levels. Figure 12a shows the speed-up ratio of the single-card GPU
calculation of colouring and hyperplane algorithms compared with the serial version on
the CPU. These data reflect the concurrency level of the algorithm. Considering that the
colouring or hyperplane method will bring additional overhead, it is necessary to compare
it with the original LU-SGS algorithm to evaluate the acceleration benefits of the parallel
algorithm. The result is shown in Figure 12b. Results show that the concurrency of the
face colouring method is significantly higher than that of the hyperplane. Both algorithms
require dividing the grid cells into different colours of groups, with each group executing
in parallel. Thread initialization and synchronization are needed before and after parallel
execution. Therefore, the more groups divided, the lower the degree of concurrency, and
the higher the overall parallel overhead. The number of divided hyperplanes is large,
and the number of grid cells between the planes is uneven. In extreme situations, one
hyperplane has only one grid cell, resulting in high parallel synchronization overhead and
low concurrency. As the scale of the grid increases, the problem of low concurrency will be
alleviated, so the speed up gradually increases.

Appl. Sci. 2023, 13, 6193 14 of 17

(a) (b)

Figure 12. Speed up of LU-SGS subroutine for different grid level of M6 wing: (a) Compared with
the same method running on CPU. (b) Compared with the original LU-SGS running on CPU.

5.4. Overall Performance

Finally, we tested the parallelized GPU code by coarse and fine grids of CHN-T1
and counted the performance of the acceleration ratio of each sub-module compared
to the serial CPU version, as shown in Figure 13. It can see that the acceleration effect
is very obvious, and the overall speed-up ratio of the program can reach 127.7. In the
flux calculation part, the acceleration ratio of the subprogram can reach more than 400,
demonstrating the effectiveness of the proposed parallelization method and the memory
access optimization technique.

(a) (b)

Figure 13. Overall speed-up of parallel computing the CHN-T1 on GPU: (a) Grid level 1. (b) Grid
level 2.

In practical CFD engineering calculations, it is usually necessary to compute until the
residual converges to a specified level to obtain stable aerodynamic parameters. Next, this
section evaluated the actual performance of the implemented parallel algorithm in terms of
convergence speed indicators. Figures 14 and 15 show the residual convergence history of
complete calculations for M6 and CHN-T1 with grid size orders of more than 10 million,
respectively. This experiment uses CPU+GPU heterogeneous computing cluster with six
computing nodes. It is obvious that the colouring algorithm has an impact on convergence
efficiency due to the degradation of the implicit property of LU-SGS. It requires more
iterative steps to reduce the residual to the same order and even does not converge for the
M6. However, the concurrency of colouring algorithms is high, requiring less time for every
single iteration, which can compensate for the loss of algorithm convergence efficiency.
The concurrency of hyperplane algorithms is not as high as colouring, but it improves the
convergence efficiency of LU-SGS because it reduces the bandwidth of the system matrix
by cell reordering. By comprehensive comparison, the hyperplane method is more stable

Appl. Sci. 2023, 13, 6193 15 of 17

and efficient. With the same number of processes, CPU+GPU heterogeneous computing
can speed up more than 30 times compared with pure CPU computing.

iter

L
o

g
1

0
(r

e
s

)

0 5000 10000 15000 20000

5

4

3

2

1

0

CPU,6MPI
CPU+GPU, 6MPI, Hyperplane

CPU+GPU, 6MPI, Cell coloring

(a)

time(s)

L
o

g
1

0
(r

e
s

)

0 20000 40000 60000
5

4

3

2

1

0

CPU,6MPI

CPU+GPU, 6MPI, Hyperplane
CPU+GPU, 6MPI, Cell coloring

(b)

Figure 14. Convergence history of M6 wing. (a) Residual versus iterations. (b) Residual versus time.

iter

L
o

g
1

0
(r

e
s

)

0 5000 10000 15000 20000
5

4

3

2

1

0

CPU,6MPI
CPU+GPU, 6MPI, Hyperplane

CPU+GPU, 6MPI, Cell coloring

(a)

time(s)

L
o

g
1

0
(r

e
s

)

0 50000 100000 150000 200000 250000
5

4

3

2

1

0

CPU,6MPI
CPU+GPU, 6MPI, Hyperplane
CPU+GPU, 6MPI, Cell coloring

(b)

Figure 15. Convergence history of CHN-T1. (a) Residual versus iterations. (b) Residual versus time.

6. Conclusions

In this study, different shared memory parallel methods were implemented for un-
structured CFD applications on the GPU platform. Performance was further improved
through three memory access optimization techniques. Performance tests were conducted
using two three-dimensional unstructured-grid cases of the M6 wing and the CHN-T1
airplane. The specific main conclusions are presented as follows:

1. Three parallel strategies based on loops have been implemented, among which the
face colouring and reduction strategies are superior to atomic operations.

2. The reduction strategy combined with shared memory optimization has a signifi-
cant acceleration effect. Compared to the serial CPU version, single GPU parallel
computing can achieve an acceleration ratio of 127×.

3. Improving data locality has a significant effect on improving the computational perfor-
mance of unstructured CFD. Using Cuthill–McKee grid renumbering and loop fusion
techniques can improve the memory access performance by 10%.

4. The proposed multi-level memory-access optimization strategy can speed up the hot
spot subroutine with data racing by three times.

5. The implicit algorithm part is the main obstacle to parallel scalability. Multiple colour-
ing strategies have high concurrency, but the degrading of implicit property may affect
convergence efficiency. The concurrency of hyperplane algorithms is not as high as

Appl. Sci. 2023, 13, 6193 16 of 17

colouring, but it improves the convergence efficiency of LU-SGS because it reduces
the bandwidth of the system matrix by cell reordering.

6. With the same number of MPI ranks, CPU+GPU heterogeneous computing can speed
up more than 30 times compared with pure CPU computing to reduce the residuals to
the same order of magnitude.

There is still a great deal of potential for improvement in the performance optimization
of production-level CFD software GPU parallel computing, such as communication/com-
puting overlap, mixed precision computing, etc. Further research will be conducted in
future work.

Author Contributions: Conceptualization, J.Z. and J.L.; methodology, L.D.; software, R.L. and Z.D;
validation, J.Z., L.D. and J.L.; formal analysis, J.Z.; investigation, L.D.; resources, Z.D.; data curation,
R.L.; writing—original draft preparation, J.Z.; writing—review and editing, L.D.; visualization, Z.D.
and R.L.; supervision, J.L. and N.Z.; project administration, N.Z.; funding acquisition, J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Numerical Wind Tunnel (NNW) Project of
China, the Sichuan Science and Technology Program (2023YFG0152), the National Key Research and
Development Program of China (2021YFB0300101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Synylo, K.; Krupko, A.; Zaporozhets, O.; Makarenko, R. CFD simulation of exhaust gases jet from aircraft engine. Energy 2020,

213, 118610. [CrossRef]
2. Tan, H.; Wong, K.Y.; Othman, M.; Kek, H.Y.; Nyakuma, B.B.; Ho, W.S.; Hashim, H.; Wahab, R.A.; Sheng, D.D.C.V.; Wahab, N.H.A.;

et al. Why do ventilation strategies matter in controlling infectious airborne particles? A comprehensive numerical analysis in
isolation ward. Build. Environ. 2023, 231, 110048. [CrossRef]

3. Zhang, L.P.; Deng, X.G.; He, L; Li, M. He, X. The opportunity and grand challenges in computational fluid dynamics by exascale
computing. Acta Aerodyn. Sin. 2016, 34, 13. [CrossRef]

4. Cary, A.; Chawner, J.; Duque, E.; Gropp, W.; Kleb, B.; Kolonay, R.; Nielsen, E.; Smith, B. Realizing the Vision of CFD in 2030.
Comput. Sci. Eng. 2022, 24, 64–70.

5. Kim, M.; Lee, Y.; Park, H.; Hahn, S.; Lee, C. Computational fluid dynamics simulation based on Hadoop Ecosystem and
heterogeneous computing. Comput. Fluids 2015, 115, 1–10.

6. ORNL. Available online: https://www.olcf.ornl.gov (accessed on 20 March 2023).
7. CINECA. Available online: http://www.cineca.it (accessed on 1 April 2023). [CrossRef]
8. Gomez-Flores, A.; Heyes, G.W.; Ilyas, S.; Kim, H. Effects of artificial impeller blade wear on bubble–particle interactions using

CFD (k–ε and les), PIV, and 3D printing. Miner. Eng. 2022, 186, 107766. [CrossRef]
9. Jadhav, C.; Chorage, R. Modification in commercial bus model to overcome aerodynamic drag effect by using CFD analysis.

Results Eng. 2020, 6, 100091.
10. Mittal, G.; Kikugawa, R. Computational fluid dynamics simulation of a stirred tank reactor. Mater. Today Proc. 2021, 46, 11015–11019.
11. Saddok H.; Rafik B.; Noureddine Z. A CFD Comsol model for simulating complex urban flow. Energy Procedia 2017, 139, 373–378.

[CrossRef]
12. Wong, K.Y.; Tan, H.; Nyakuma, B.B.; Kamar, H.M.; Tey, W.Y.; Hashim, H.; Chiong, M.C.; Wong, S.L.; Wahab, R.A.; Mong, G.R.;

et al. Effects of medical staff’s turning movement on dispersion of airborne particles under large air supply diffuser during
operative surgeries. Environ. Sci. Pollut. Res. 2020, 29, 82492–82511. [CrossRef]

13. Gomes, P.; Economon, T.D.; Palacios, R. Sustainable high-performance optimizations in su2. In Proceedings of the AIAA Scitech
2021 Forum, Online, 19–21 January 2021. [CrossRef]

14. Farhan, M.A.; Keyes, D.E. Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures. IEEE Trans.
Parallel Distrib. Syst. 2018, 29, 2317–2332.

15. Sulyok, A.A.; Balogh, G.D.; Reguly, I.Z.; Mudalige, G.R. Locality optimized unstructured mesh algorithms on GPUs. J. Parallel
Distrib. Comput. 2019, 134, 50–64. [CrossRef]

http://doi.org/10.1016/j.energy.2020.118610
http://dx.doi.org/10.1016/j.buildenv.2023.110048
http://dx.doi.org/10.1016/j.buildenv.2023.110048
https://www.olcf.ornl.gov
http://www.cineca.it
http://dx.doi.org/10.1109/MCSE.2021.3133677
http://dx.doi.org/10.1016/j.compfluid.2015.03.021
http://dx.doi.org/10.1016/j.mineng.2022.107766
http://dx.doi.org/10.1016/j.rineng.2019.100091
http://dx.doi.org/10.1016/j.matpr.2021.02.102
http://dx.doi.org/10.1007/s11356-022-21579-y

Appl. Sci. 2023, 13, 6193 17 of 17

16. Li, D.; Xu, C.; Cheng, B.; Xiong, M.; Gao, X.; Deng, X. Performance modeling and optimization of parallel LU-SGS on many-core
processors for 3D high-order CFD simulations. J. Supercomput. 2017, 73, 2506–2524.

17. Jespersen, D.C. Acceleration of a CFD code with a GPU. Sci. Program. 2010, 18, 193–201. [CrossRef]
18. Williams, J.; Sarofeen, C.; Shan, H.; Conley, M. An accelerated iterative linear solver with GPUs for CFD calculations of

unstructured grids. Procedia Comput. Sci. 2016, 80, 1291–1300. [CrossRef]
19. Nastac, G.; Walden, A.; Nielsen, E.; Frendi, A. Implicit thermochemical nonequilibrium flow simulations on unstructured grids

using gpus. In Proceedings of the AIAA Scitech 2021 Forum, Online, 19–21 January 2021. [CrossRef]
20. Chen, J.Q.; Wu, X.J.; Zhang, J.; Li, B.; Jia, H.Y.; Zhou, N.C. FlowStar: General unstructured-grid CFD software for National

Numerical Windtunnel(NNW) Project. Acta Aeronaut. Astronaut. Sin. 2021, 42, 625739. [CrossRef]
21. Blazek, J. Computational Fluid Dynamics: Principles and Applications: Third Edition; Elsevier: Amsterdam, The Netherlands, 2015;

pp. 139–142. [CrossRef]
22. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2003; pp. 369–392.
23. Stone, C.P.; Walden, A.; Zubair, M.; Nielsen, E.J. Accelerating unstructured-grid CFD algorithms on NVIDIA and AMD GPUs. In

Proceedings of the IA3 2021: Workshop on Irregular Applications: Architectures and Algorithms, Held in Conjunction with SC
2021: The International Conference for High Performance Computing, Networking, Storage and Analysis, Saint Louis, MO, USA,
14–19 November 2021.

24. Giuliani, A.; Krivodonova, L. Face coloring in unstructured CFD codes. Parallel Comput. 2017, 63, 17–37.
25. Sato, Y.; Hino, T.; Ohashi, K. Parallelization of an unstructured Navier-Stokes solver using a multi-color ordering method for

OpenMP. Comput. Fluids 2013, 88, 496–509.
26. Sharov, D.; Nakahashi, K. Reordering of 3-D hybrid unstructured grids for vectorized lu-sgs navier-stokes computations.

In Proceedings of the 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, USA, 29 June–2 July 1997;
pp. 131–138.

27. Hadade, I.; Wang, F.; Carnevale, M.; di Mare, L. Some useful optimisations for unstructured computational fluid dynamics codes
on multicore and manycore architectures. Comput. Phys. Commun. 2019, 235, 305–323. [CrossRef]

28. Cuthill, E.; McKee, J. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the ACM National Conference,
New York, NY, USA, 26–28 August 1969; pp. 157–172. [CrossRef]

29. Fournier, Y.; Bonelle, J.; Moulinec, C.; Shang, Z.; Sunderland, A.G.; Uribe, J.C. Optimizing Code_Saturne computations on
Petascale systems. Comput. Fluids 2011, 45, 103–108.

30. Oliker, L.; Heber, G.; Biswas, R. Parallel conjugate gradient: Effects of ordering strategies, programming paradigms, and
architectural platforms. Off. Sci. Tech. Inf. Tech. Rep. 2000. [CrossRef]

31. Rainald, L. Cache-efficient renumbering for vectorization. Int. J. Numer. Methods Biomed. Eng. 2010, 26, 628–636.
32. Zhang, X.; Sun, X.; Guo, X.H.; Du, Y.F.; Lu, Y.T.; Liu, Y. Optimizations of graph coloring method for unstructured finite volume

computational fluid dynamics on GPU. J. Natl. Univ. Def. Technol. 2022, 44, 24–34. [CrossRef]
33. Yu, Y.G.; Zhou, Z.; Huang, J.T.; Mou, B.; Huang, Y.; Wang, Y.T. Aerodynamic design of a standard model CHN-T1 for single-aisle

passenger aircraft. Acta Aerodyn. Sin. 2018, 36, 505–513.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2018.2826533
http://dx.doi.org/10.1016/j.jpdc.2019.07.011
http://dx.doi.org/10.1007/s11227-016-1943-0
http://dx.doi.org/10.1155/2010/564806
http://dx.doi.org/10.1016/j.procs.2016.05.504
http://dx.doi.org/10.1016/j.parco.2017.04.001
http://dx.doi.org/10.1016/j.compfluid.2013.10.008
http://dx.doi.org/10.1016/j.cpc.2018.07.001
http://dx.doi.org/10.1016/j.compfluid.2011.01.028

	Introduction
	Unstructured Grid blackFinite Volume Method (FVMblack) CFD Solver
	Cell-Centered FVM Scheme
	Data Structure for Unstructured Grid
	Data Racing Due to Irregular Memory Access Pattern
	The Inherent Sequential Properties of Implicit Algorithms

	Parallelization on GPUs
	Face-Loop Parallelization
	Atomic Operations
	Face Colouring
	Reduction

	LU-SGS Algorithm Parallelization
	Cell Colouring
	Hyperplane Partition

	Data Locality Optimization
	Grid Reordering
	Loop Fusion
	Multi-Level Memory Access by Shared Memory

	Performance and Discussion
	Test Cases and Environment
	Performance of Loop Parallelization
	Performance of LU-SGS Parallelization
	Overall Performance

	Conclusions
	References

