
Citation: Zhai, C.; Wang, L.; Yuan, J.

New Fusion Network with

Dual-Branch Encoder and

Triple-Branch Decoder for Remote

Sensing Image Change Detection.

Appl. Sci. 2023, 13, 6167. https://

doi.org/10.3390/app13106167

Academic Editor: Yu-Dong Zhang

Received: 20 April 2023

Revised: 13 May 2023

Accepted: 14 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

New Fusion Network with Dual-Branch Encoder and
Triple-Branch Decoder for Remote Sensing Image
Change Detection
Cong Zhai, Liejun Wang * and Jian Yuan

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
yuaijian@stu.xju.edu.cn (J.Y.)
* Correspondence: wljxju@xju.edu.cn; Tel.: +86-139-9981-6618

Abstract: Deep learning plays a highly essential role in the domain of remote sensing change
detection (CD) due to its high efficiency. From some existing methods, we can observe that the
fusion of information at each scale is quite vital for the accuracy of the CD results, especially for
the common problems of pseudo-change and the difficult detection of change edges in the CD task.
With this in mind, we propose a New Fusion network with Dual-branch Encoder and Triple-branch
Decoder (DETDNet) that follows a codec structure as a whole, where the encoder adopts a siamese
Res2Net-50 structure to extract the local features of the bitemporal images. As for the decoder in
previous works, they usually employed a single branch, and this approach only preserved the fusion
features of the encoder’s bitemporal images. Distinguished from these approaches, we adopt the
triple-branch architecture in the decoder for the first time. The triple-branch structure preserves not
only the dual-branch features from the encoder in the left and right branches, respectively, to learn
the effective and powerful individual features of each temporal image but also the fusion features
from the encoder in the middle branch. The middle branch utilizes triple-branch aggregation (TA) to
realize the feature interaction of the three branches in the decoder, which enhances the integrated
features and provides abundant and supplementary bitemporal feature information to improve the
CD performance. The triple-branch architecture of the decoder ensures that the respective features of
the bitemporal images as well as their fused features are preserved, making the feature extraction
more integrated. In addition, the three branches employ a multiscale feature extraction module
(MFE) per layer to extract multiscale contextual information and enhance the feature representation
capability of the CD. We conducted comparison experiments on the BCDD, LEVIR-CD, and SYSU-CD
datasets, which were created in New Zealand, the USA, and Hong Kong, respectively. The data were
preprocessed to contain 7434, 10,192, and 20,000 image pairs, respectively. The experimental results
show that DETDNet achieves F1 scores of 92.7%, 90.99%, and 81.13%, respectively, which shows better
results compared to some recent works, which means that the model is more robust. In addition, the
lower FP and FN indicate lower error and misdetection rates. Moreover, from the analysis of the
experimental results, compared with some existing methods, the problem of pseudo-changes and the
difficulty of detecting small change areas is better solved.

Keywords: convolutional neural network (CNN); change detection (CD); remote sensing (RS);
multibranch; feature fusion

1. Introduction

Remote image change detection (CD) is the process of obtaining semantic change
information such as vegetation and buildings from analyzing multitemporal remote images
taken in the same location at different times. Lately, due to the advancement of high-
resolution remote images, CD has been broadly employed for disaster monitoring [1,2], in
which CD can discover the scope of the damage, so that the rescue and relief personnel can

Appl. Sci. 2023, 13, 6167. https://doi.org/10.3390/app13106167 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106167
https://doi.org/10.3390/app13106167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0210-2273
https://doi.org/10.3390/app13106167
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106167?type=check_update&version=1


Appl. Sci. 2023, 13, 6167 2 of 19

be reasonably arranged and dispatched; urban expansion [3], in which CD can identify
alterations in and demolitions of urban buildings and detect the presence of unauthorized
buildings; forest and vegetation changes [4], in which CD can effectively identify the
growth change areas of forest and vegetation; and many other aspects, which have also
attracted more and more scholars to be more interested in this task and to produce a lot of
work. The process of CD is shown in Figure 1.

T1 image

T2 image

Change

detec�on

method

Figure 1. The process of CD.

Deep learning also has a very promising future in the domain of CD. Owing to the
excellent characteristic extraction ability of convolutional neural networks (CNNs), some
early CD algorithms have used CNNs to extract bitemporal features [5–12] to complete CD.
Zhan et al. [6] established a dual-attention convolutional siamese network, which processed
two input images with shared weights and firstly introduced the siamese construction com-
posed of two identical structures in the CD task. However, its loss function only improved
the data imbalance and did not effectively solve the problems of pseudo-change and the
difficult detection of boundary regions. Daudt et al. [7] first proposed codec-based fully
convolutional neural networks (FCNNs), which replaced the fully connected layer with a
convolutional layer and could receive inputs of arbitrary size. As none of these methods
could obtain the global information of the images due to the local limitations of traditional
convolutional feature extraction, some subsequent works made some improvements in
this regard as well. Peng et al. [8] put forward the UNet++ Multiple Side-Outputs Fusion
network based on UNet++ [13], which fused deep supervision and dense connection mech-
anisms to optimize the edge details of change regions. In addition, UNet++ consists of
different depths of UNet, providing improved segmentation performance for objects of
different sizes. Yet, this method ignored the effect of season, light, etc., on change detection.
Chen and Shi [10] proposed the pyramid spatial–temporal attention module that modeled
the spatial–temporal relationships during the feature extraction phase and considered
capturing multiscale spatial–temporal relationships to extract more discriminative features.
In [11], a deep-supervised image fusion algorithm was presented to optimize the boundary
integrity and compactness inside the target by means of merging multilayer depth features
and differential image features. In [12], channel and spatial attention were used when
processing images at each moment to obtain more discriminative features. Zhang et al. [9]
utilized dilated convolution to enlarge the receptive field, where the dilated convolution
was conducted by setting the dilated rate to fill the conventional convolution kernel with
0. Fang et al. [14] adopted UNet++, where features of different levels were closely inter-
connected in a bottom-up manner to yield fine-grained change maps. These methods
somewhat improved the disadvantages of traditional convolution, but they still could not
fully extract global information, neither could they accurately identify large-scale objects
nor perform well enough to acquire the correlations between the surface objects and the
rest of the objects on the entire image.



Appl. Sci. 2023, 13, 6167 3 of 19

The Transformer [15] has been gradually applied in the domain of computer vision [16–19]
due to its superior ability to capture long-term dependencies. Similarly, for the purpose of
solving the limitations of the CNN mentioned above, the Transformer has made consid-
erable achievements in CD tasks [20,21]. Chen et al. [20] presented a method, where the
Transformer was firstly brought into the CD task to enhance the spatial–temporal contextual
information extraction capability through the Transformer module, and Were et al. [21] pro-
posed a transformer-based siamese network architecture (abbreviated as ChangeFormer)
for CD that united a hierarchical Transformer encoder to generate ConvNet-like multilevel
features with a multilayer perceptron (MLP) decoder to effectively extract multiscale long-
range relationships. However, these algorithms lacked some capture of local information,
and the tight semantic features led to the loss of information such as contour.

Based on the above problems, we realize that both local and global information are
important, and the extraction of multiscale features is also an urgent work. SPNet [22]
puts forward the feature enhancement and fusion module to fully explore the feature
interaction between multimodal information and strengthen the feature communication
between different scales, which has made good progress in salient object detection, which
is a task to detect the most salient object.

Inspired by SPNet [22], we determined to extend this structure into the field of CD and
designed a New Fusion network with Dual-branch Encoder and Triple-branch Decoder
(DETDNet). DETDNet adopts a codec architecture. The encoder is a dual-branch siamese
structure, and the bitemporal image features are fused by a concise but effective module,
namely concatenation and a 1× 1 convolution operation (CAC). Moreover, the decoder
uses a triple-branch structure, while using a refined Receptive Field Block (RFB) improved
from [23,24] to extract the multiscale contextual characteristics of the three branches, de-
noted as the multiscale feature extraction module (MFE), and to fuse the features of each
layer in the middle branch with the next layer via the triple-branch aggregation (TA) mod-
ule. Finally, the resolutions of the three change maps are recovered to be in accordance
with the raw images after upsampling, and these three change maps are fused to build the
final change map we need.

The key work of this article unfolds in three ways:
(1) DETDNet is proposed, in which the encoder is a dual-branch structure that captures

the local features of images, and for the first time, a three-branch structure is used in the
decoder to obtain multiscale features by using MFE.

(2) We use different feature fusion methods for the decoder and encoder, respectively.
The encoder applies CAC to fuse the bitemporal images taken in the same location at
different times, and the decoder uses the TA module to fuse the triple-branch features.
Futhermore, a cascade operation is adopted to fuse the features from the same stage in the
encoder and decoder.

(3) The experiments implemented on three publicly available datasets demonstrate
our approach exceeds some recent approaches in terms of the F1 score, IoU, and OA.

The rest of this paper is structured as follows. Section 2 lists related works. Section 3
shows the whole DETDNet structure and its details. Section 4 discusses the experiments
conducted to provide evidence of the superiority of our approach, and Section 5 draws
together the work of this paper.

2. Related Work
2.1. CNN-Based Network

Deep learning is being broadly employed in CD tasks due to its potent ability to process
computer vision tasks. Among them, the powerful feature representation capability of CNN
enables it to play a great role in early CD. Zhan et al. [6] framed a two-branch structure
with shared weights, and the difference image of the input images could be obtained
by calculating the feature maps output from the two-branch network with Euclidean
distance. Weighted contrastive loss was used to distinguish the changed pixels from
the unchanged pixels more effectively, so as to reduce the influence of data imbalance.
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However, the network was not well altered to effectively extract image features, and
the small sample of datasets used was not convincing enough to perform comparison
experiments. Daudt et al. [7] brought fully convolutional into the CD domain by proposing
three CD algorithms, namely the FC-EF, FC-Siam-conc, and FC-Siam-diff. The FC-EF
is an early fusion-based model that concatenates bitemporal images along the channel
dimension and later passes them into a fully convolutional network, while the other two,
FC- Siam-conc and FC-Siam-diff, are siamese architectures. Moreover, the models achieved
better performance than the previously proposed methods, while being at least 500 times
faster than related systems. Similarly, these networks are not a good solution to the problem
of pseudo-change and small change targets that are difficult to detect. Aiming to solve
the circumstance of pseudo-change and the difficult detection of change edges in remote
sensing image CD, much recent research has been directed to the strategy of feature fusion.
STANet [10] designed a siamese neural network through obtaining illumination invariance
and misalignment robustness features, but the proposed BAM and PAM only considered
the spatial attention weights between bitemporal images. Zhang et al. [11], using dual
branches, presented a depth-supervised strategy to optimize the change boundary by
means of merging multilayer deep features and differential image features. In addition
to this, various works have been conducted by researchers to expand the receptive field,
such as the use of atrous convolution [25] and the use of various attention mechanisms.
SNUNet [14] presented a dense connection network based on UNet++ that incorporated
multiscale features, and finally, the ECAM module enhanced the feature representation
by an attention mechanism [26]; however, ECAM only employed a channel attention
mechanism and ignored spatial relations. Liu et al. [12] described a dual-attention module
to obtain both the spatial and channel attention at the same time.

Although a growing number of CNN-based works consider CD from the perspective
of multiscale feature fusion, these works still lack the modeling of global contextual features;
therefore, we remedy this shortcoming in our work.

2.2. Transformer-Based Network

Given the predominance of the Transformer in modeling long-range dependencies,
it has also been applied to CD tasks in recent years. A bitemporal image Transformer
network (BiT) was put forward in [20], in which the Transformer was firstly applied in
the domain of CD. The BiT effectively modeled contextual information in the token-based
spatial–temporal, and context-rich tokens were used to boost the original features. This
method takes into account the influence of pseudo-change on the change detection results.
Nevertheless, the BiT ignored the utilization of multiscale features. A Transformer-based
siamese network was later presented in [21], which efficiently extracted multiscale long-
range information by combining a hierarchical Transformer encoder well as a simple MLP
decoder to locate the change location more precisely. Nevertheless, Changeformer did not
have an advantage in terms of computation.

Based on the above presentation and analysis of some of the previous works, we
propose DETDNet, a model to compensate for the shortcomings of the above works, mainly
including the effect of pseudo-change on the CD results, the detection of small target
objects, the detection of change boundaries, etc. The model achieves a good tradeoff in
performance and computation. The network presented in this article is described in detail
in the next section.

3. Methodology

In this section, we demonstrate the general framework of DETDNet first, followed by
a detailed description of the encoder structure and then the decoder. The MFE module is
then shown in Section 3.4. Finally, two different feature fusion modules are provided, one
for the encoder and another for the decoder.
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3.1. Overview

The DETDNet presented in this article involves a dual-branch input and a triple-
branch output. The model diagram, as depicted in Figure 2, employs a U-shaped structure
overall. More detailed internal implementation of the encoder and decoder are revealed in
Figures 3 and 4. Initially, the bitemporal images are input into a dual-branch encoder to
obtain multilevel local feature representations, where the feature representations of each
level are fused by CAC. In addition, the original features of each layer from the encoder are
aggregated to the corresponding layer of the decoder by a skip connection. The decoder
adopts a triple-branch structure, which extracts the multiscale contextual features using
MFE and aggregates the features extracted by the MFE from the three branches using the
proposed TA module at each layer of the decoder. The concrete details of each module are
elaborated as follows.

Figure 2. Overview of DETDNet.

3.2. Encoder

As shown in Figure 3, we used Res2Net-50 [27] to construct the encoder, used for
local feature extraction, and pretrained it first on the ImageNet [28] dataset. Given the
aligned original input images T1 and T2, both of size 3× 256× 256, T1 and T2 passed
through 5 stages (En1, En2, En3, En4, and En5, respectively) to obtain the multiscale feature
representations, respectively. Here, the multiscale feature maps output after 5 stages of
encoder are expressed as Xi

A and Xi
B, i means the ith layer, and i ∈ {1, 2, 3, 4, 5}. Their

sizes were 1/4, 1/4, 1/8, 1/16, and 1/32 of the original size, respectively, and the channels
were 64, 256, 512, 1024, and 2048. The Xi

A and Xi
B obtained from each level were fused to

output the corresponding fi through a simple but effective CAC module, and the specific
output sizes of each stage are shown in Table 1. Owing to local correlation and translational
invariance, traditional CNNs can effectively model local fine-grained information using
prior information [29].



Appl. Sci. 2023, 13, 6167 6 of 19

Figure 3. The structure of the encoder.

Table 1. Encoder output feature size for each stage.

- i Output Size f

Encoder 1 64 × 64 × 64 64 × 64 × 64
2 256 × 64 × 64 128 × 64 × 64
3 512 × 32 × 32 256 × 32 × 32
4 1024 × 16 × 16 512 × 16 × 16
5 2048 × 8 × 8 1024 × 8 × 8

3.3. Decoder

As shown in Figure 4, the work in this paper adopted a triple-branch structure in the
decoder for the first time, where the left and right branches represent the feature decoding
process of T2 and T1, respectively, and the middle branch represents the feature fusion of
T2 and T1.

(1) Left and right branches: The left and right branches of the decoder each included
five stages. In the former four stages, each one consisted of an MFE module and a con-
catenation operation. The last stage was composed of three parts, namely the MFE, 1× 1
convolution, and the upsampling operation. Taking the left branch as an example, the
feature X5

B generated from the last stage of the encoder was put into the MFE module to
produce a feature, represented by Y5

B. In addition, to better integrate the multilevel features
and fuse the local features with multiscale contextual information, a skip connection was
built, located between the encoder and decoder, that is, for X5

B and Y5
B after upsampling to

perform concatenation operation along the channel dimension, and we denote the obtained
features by D5

B. The concrete process of the first 4 stages is shown as follows:

Yi
B = MFE

(
Xi

B

)
. (1)

Di
B = Concat

(
Xi−1

B , Upsample
(

Yi
B

))
, i = 5, 4, 3, 2. (2)

In the last stage, D2
B went through an MFE, after which the output features underwent

a 1× 1 convolution for channel dimension reduction; finally, the feature map size was
recovered to be in accordance with the raw image employing a bilinear interpolation
upsampling operation.
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Figure 4. The structure of the decoder.

(2) Middle branch: Similarly, the middle branch was divided into 5 stages, the first 4 of
which were the same, each of which contained an MFE, TA, and a concatenation operation.
The last stage was the same as the left and right branches. In the first four stages, taking
the first stage as an example, the two-branch fusion feature f5 generated by CAC from the
encoder last stage passed through an MFE block, and the feature was represented by D5

F.
Together with the output Y5

A and Y5
B of the same stage of the left and right branches, they

were first upsampled and then sent to a TA block to fuse three-branch features. Finally,
the f4 from the encoder performed a concatenation operation with the three-branch fused
features through a skip connection for the purpose of combining local and more global
information. The first 4 stages of the process are specified as follows:

Di
F = MFE( fi), (3)
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Di
F = TA

(
Upsample

(
Yi

A

)
, Upsample

(
Yi

B

)
, Upsample

(
Di

F

))
, (4)

Di = Concat
(

fi−1, Di
F

)
, i = 5, 4, 3, 2. (5)

The feature maps’ sizes from every stage in the decoder are shown in Table 2.

Table 2. Decoder output feature size for each stage.

i Y i
A/Y i

B Di
A/Di

B Di
F Di

Decoder 1 32 × 64 × 64 1× 256× 256 32 × 64 × 64 1× 256× 256
2 32 × 64 × 64 96 × 64 × 64 32 × 64 × 64 96 × 64 × 64
3 32 × 32 × 32 288× 64× 64 32 × 64 × 64 160× 64× 64
4 32 × 16 × 16 544× 32× 32 32 × 32 × 32 288× 32× 32
5 32 × 8 × 8 1056× 16× 16 32 × 16 × 16 544× 16× 16

3.4. MFE

Motivated by [23], we employed an MFE module at each layer of the decoder, as
displayed in Figure 5. The MFE added a branch on the basis of the original RFB [22] module
to enlarge the receptive field even more and added an asymmetric convolution layer [30]
on top of the RFB-s to extract more discriminative features and enhance the robustness of
the model without increasing the computational effort. On the side, a channel attention
mechanism (CAM) [25] was added. In the MFE, firstly, a 1× 1 convolution was chosen to
shorten the channels to 32 to speed up the inference, and the output features are indicated
by Fbi, where i ∈ {1, 2, 3, 4, 5}. Next, for the second, third, and fourth branches, the original
features were fed into three convolutional layers, successively, once again after the 1× 1
convolution in the first layer, with convolutional kernel sizes of 1× (2i− 1), (2i− 1)× 1,
and (2i− 1)× (2i− 1), after which the features extracted from the corresponding branch
were output. After obtaining the features of the five branches, the first four branches were
concatenated, whereafter, there was a 3× 3 convolution operation. The Fb was obtained
by summing the features of the fifth branch, multiplying the Fb by the attention weights
obtained by the CAM, and then summing them again, after an activation function to obtain
the final MFE output. The overall process of the MFE is shown in the following equations:

Fb1 = Conv(X), (6)

Fbi = Conv3
i

(
Conv2

i

(
Conv1

i (Conv(X))
))

, (7)

Fb5 = Conv(X), (8)

Fb = Conv3×3

(
Concat

(
4

∑
i=1

Fbi

))
+ Fb5, (9)

Y = ReLU(Fb ∗ CAM(Fb) + Fb), (10)

where Fbi is the output feature of each branch, and Y is the final output of the MFE.
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Figure 5. The structure of the MFE.

3.5. Feature Fusion Module

In CD tasks, there are different forms of bitemporal feature fusion; Fang et al. [14]
used simple channel concatenation in the decoder, and Lan et al. [31] studied difference
maps using pixel-wise subtraction. As for the decoder, channel concatenation is commonly
used for fusing features at the same layer of the encoder and decoder. However, simple
channel concatenation, subtraction, and element-wise summation do not effectively explore
the relationship between bitemporal images and do not achieve the interaction between
channels well. In view of this, this paper adopted different feature fusion approaches in the
encoder and decoder stages.

For the encoder phase, we first concatenated the bitemporal features along the channel
dimension, and then the concatenated features underwent a CNN block, which mainly
contained a 1× 1 convolution, BN, and ReLU. The CNN block here could significantly
strengthen the nonlinear representation of the network, in addition to reducing the di-
mensions of the features and realizing the mutual information effect between channels for
fusion with the same-layer features in the decoder.

For the purpose of fully exploiting the relationship between the bitemporal features,
a new module TA was introduced in the decoder, as shown in Figure 6. The left, right,
and middle are the features of each layer of the decoder after the MFE, where the left
is the left branch, which corresponds to the T2 image branch of the encoder, the right
is the right branch, which corresponds to the T1 image branch of the encoder, and the
middle corresponds to the T1 and T2 fusion feature branch of the encoder. Particularly,
we used the left and right branch features to enhance the fusion features of the middle
branch. The specific operations were as follows: Firstly, the left and right moved through a
spatial attention module (SAM) [25], respectively, and the two output attention maps were
then multiplied by the original middle branch for adaptive feature refinement. Secondly,
the two obtained outputs were channel concatenated, and the obtained outputs were
finally combined with the original middle fusion features through a summation operation,
followed immediately by a 3× 3 convolution for the fusion features to avoid the aliasing
effect introduced by element-wise summation.
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Figure 6. The structure of the TA.

4. Experiments

To confirm the superiority of this method, we executed experiments on the BCDD [32],
LEVIR-CD [10], and SYSU-CD [33] datasets, and a sequence of comparative experiments
was designed to compare this model with some classical models from recent years. To be
fair, the experimental settings were conducted according to the original article.

4.1. Datasets

The BCDD dataset was collected in New Zealand and covered Christchurch. It contains
two high-resolution remote sensing images with a registration error of 1.6 pixels. The
imaging dates were 2012 and 2016, respectively, the resolution is 0.3 m/pixel, and the size
is 32,507 × 15,354 pixels. To make the training more convenient, we cropped the images
into non-overlapping 256 × 256 image pairs, for a total of 7434 pairs, and divided them
randomly in the ratio of 8:1:1 into a training set, validation set, and testing set.

The LEVIR-CD dataset originated from the Beihang LEVIR team, and the imaging
locations were 20 different areas in several cities in Texas, USA. The imaging time varied
from 2002 to 2018. Over 31,000 individual instances of change were fully labeled in 637
image pairs of 1024 × 1024 pixels and a resolution of 0.5 m, among which the change
in land use types such as urban expansion was more significant. For the convenience of
training, we cropped the image into small nonoverlapping blocks of 256 × 256 pixels, and
the dataset was randomly partitioned, with 7120 image pairs as the training set, 2048 image
pairs as the validation set, and 1024 image pairs as the testing set.

The SYSU-CD dataset includes 20,000 pairs of 0.5 m aerial images collected in Hong
Kong in 2007 and 2014. The primary change types in the dataset comprised suburban
sprawl, new urban construction, pre-construction groundwork, road expansion, vegetation
changes, and marine construction. In this experiment, we partitioned the whole dataset
into a training set, a validation set, and a testing set in the proportion of 6:2:2.

Table 3 shows the sizes of the three datasets used.

Table 3. Detailed information of the three datasets.

Datasets Resolution Size Number of Image Pairs
Train Val Test

BCDD 0.3 m/pixel 256 × 256 5948 743 743
LEVIR-CD 0.5 m/pixel 256 × 256 7120 1024 2048
SYSU-CD 0.5 m/pixel 256 × 256 12,000 4000 4000

4.2. Implementation Details

For this experiment, pytorch was used as the training framework. For the convergence
acceleration of the model, Res2Net-50 [27] was pretrained on the ImageNet [28] dataset to
initialize the parameters of DETDNet. The training batch size was set to 16, the optimizer



Appl. Sci. 2023, 13, 6167 11 of 19

was Adam, the initial learning rate was set to 0.001, and the model was iterated for 100
epochs, with the learning rate decaying by 0.5 for every eight epochs. The specific hardware
configuration was an NVIDIA TITAN RTX (24 GB) GPU.

4.3. Evaluation Metrics

Considering that the remote sensing CD task can be seen as a binary classification task,
the precision, recall, F1 score, intersection over union (IoU), and overall accuracy (OA) were
selected as the evaluation metrics to quantitatively validate the efficiency of the algorithm
presented in this article. These evaluation metrics are always used to measure binary
classification models in machine learning. The expressions of these evaluation metrics are
listed below:

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1 =
2

Recall−1 + Precision−1 , (13)

IoU =
TP

TP + FN + FP
, (14)

OA =
TP + TN

TP + TN + FN + FP
. (15)

TP denotes the sum total of the changed pixels predicted to be changed, FP denotes the
total number of unchanged pixels predicted to be changed, TN denotes the total number of
unchanged pixels predicted to be unchanged, and FN denotes the total number of changed
pixels predicted to be unchanged.

4.4. Performance Comparison

To prove the superiority of the method put forward in this article, DETDNet was
compared with some advanced methods in current CD tasks, including FC-EF [7], FC-
Siam-conc [7], FC-Siam-diff [7], CDNet [34], STANet [10], BiT [20], SNUNet [14], and
ChangeFormer [21]. To be fair, we conducted comparative experiments in the same en-
vironment, that is, the same software environment, hardware environment, and dataset
processing methods.

4.4.1. Comparative Experiments on the BCDD Dataset

We display the quantitative experimental results of various algorithms on the BCDD
dataset in Table 4. The results in the table reveal that our algorithm achieved 93.84%, 91.59%,
92.70%, 86.40%, and 99.32% for the precision, recall, F1 score, IoU, and OA, respectively,
which were higher than all the other methods and 3.3%, 5.56%, and 0.2% over the second-
best method on the main metrics of the F1 score, IoU, and OA, respectively. The highest
precision and recall also indicate that our model is more robust compared to the other
methods. The above results proved the method in this article surpasses these comparative
methods. Figure 7 illustrates the visualization results of the comparative experiments
performed on the BCDD dataset. For easier observation, the TP, TN, FP, and FN are
marked in the figure with white, black, red, and green, respectively. It is obvious that our
model can avoid the FP and FN more effectively than other methods. The first and third
rows show that the comparison methods had poorer detection accuracy for the change
edges, leading to boundary misses or misdetections, thus making the boundary more blurry,
while our method detected clearer boundaries, probably due to our TA module, which can
efficiently extract the spatial relationships between bitemporal features. As viewed from
the second and fourth rows, the influence of the land cover and color around the building
in the bitemporal images caused the comparison methods to easily detect the non-changing
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areas as changing areas. By contrast, the proposed method in this paper circumvented this
drawback. This is mainly due to the MFA module. By increasing the receptive field, the
MFA module can obtain more global feature relationships and enhance the extraction of
semantic information, thus reducing the influence of the pseudo-changes on the CD results.
Moreover, due to the use of the dilated convolution and strip convolution, our method is
superior to the second-best model in terms of the number of parameters.

Table 4. Comparison results on the BCDD Dataset.

Model Params.(M) Flops(G) Precision Recall F1 IoU OA

FC-EF 1.29 2.92 82.28 70.66 76.03 61.33 97.92
FC-Siam-conc 1.93 4.55 40.09 73.84 51.97 35.11 93.63
FC-Siam-diff 1.75 3.99 38.82 71.80 50.40 33.69 93.40
CDNet 1.36 21.52 92.16 83.18 87.44 77.68 98.88
STANet 16.93 6.58 91.25 86.18 88.64 79.61 98.97
BiT 3.55 10.6 86.07 85.61 85.84 75.19 98.68
SNUNet(48) 28.34 97.87 88.35 87.80 88.07 78.69 98.89
ChangeFormer 267.90 129.27 93.44 85.70 89.40 80.84 99.12

DETDNet 56.33 18.08 93.84 91.59 92.70 86.40 99.32

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 7. Visualization results of several CD methods on the BCDD dataset. (a) T1 images. (b) T2
images. (c) Ground truth. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet.
(i) BIT-CD. (j) SNUNet. (k) ChangeFormer. (l) DETDNet.

4.4.2. Comparative Experiments on the LEVIR-CD Dataset

The quantitative results of the comparison experiments conducted on another public
dataset LEVIR-CD are exhibited in Table 5. As Table 5 shows, our algorithm was signif-
icantly better than the rest of the algorithms in the main metrics of performance, the F1
score, IoU, and OA, and was 0.82%, 1.37%, and 0.06% better than the second best algorithm,
respectively. Figure 8 depicts the visualization results of the comparison experiments. As
the spectral information of the images taken at different times may be different, it may
cause misdetections or missing detections; as shown in the first line, with respect to the
changed area at the bottom right corner, because of the influence of the spectral information,
some other methods showed red and some showed green, while our method detected the
changed area more accurately. As seen in lines 2 and 7, our method detected both large
target regions and small change regions relatively accurately, due to the proposed idea of
combining the local features from the encoder as well as the more global features from the
decoder. In lines 3, 4, 5, and 6, the shadowed parts of the images caused the comparison
methods to easily detect non-changing regions as changing regions; however, our method
successfully avoided such pseudo-change.
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Table 5. Comparison results on the LEVIR-CD dataset.

Model Params.(M) Flops(G) Precision Recall F1 IoU OA

FC-EF 1.29 2.92 82.27 66.28 73.41 58.00 97.55
FC-Siam-conc 1.93 4.55 86.81 67.66 76.05 61.36 97.83
FC-Siam-diff 1.75 3.99 86.55 74.38 80.00 66.68 98.11
CDNet 1.36 21.52 88.38 85.08 86.70 76.52 98.67
STANet 16.93 6.58 80.99 91.21 85.79 75.12 98.46
BiT 3.55 10.6 91.95 88.57 90.23 82.19 99.02
SNUNet(48) 28.34 97.87 91.66 88.48 90.04 81.89 99.00
ChangeFormer 267.90 129.27 91.53 88.86 90.17 82.10 99.01

DETDNet 56.33 18.08 89.82 92.19 90.99 83.47 99.07

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 8. Visualization results of several CD methods on the LEVIR-CD dataset. (a) T1 images. (b) T2
images. (c) Ground truth. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet.
(i) BIT-CD. (j) SNUNet. (k) ChangeFormer. (l) DETDNet.

4.4.3. Comparative Experiments on the SYSU-CD Dataset

The quantitative results of all kinds of comparison methods with DETDNet performed
on the SYSU-CD dataset are exhibited in Table 6. As displayed in Table 5, our model
outperformed the second highest model in the F1 score, IoU, and OA by 1.41%, 1.98%, and
0.71%, respectively. As for the visualization results, they are presented in Figure 9. The
main changes in rows 1, 2, 3, 4, and 6 were the building expansions. It can be seen that
whether it was the new buildings around the vegetation in rows 1 and 2, the expansion
of the seaside buildings in row 3, or the building expansions around the highway in rows
4 and 6, our model was better able to handle the change boundaries and obtain more
accurate boundaries. For the change area in the middle of row 2 and the color change
of the building roof in row 4, our model recognized the pseudo-change due to the color
better. For the change type of vegetation in rows 2 and 5, we can see that our model also
had better prediction results. From a comprehensive point of view, since the scenes in the
SYSU-CD dataset were relatively complex, there may be various types of changes in the
single image, which makes it more difficult to detect, and our model was comparatively
better at extracting the features of the different changes and arriving at a more accurate
change map.
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Table 6. Comparison results on the SYSU-CD dataset.

Model Params.(M) Flops(G) Precision Recall F1 IoU OA

FC-EF 1.29 2.92 75.97 70.80 73.29 57.85 87.83
FC-Siam-conc 1.93 4.55 76.41 76.17 76.29 61.67 88.83
FC-Siam-diff 1.75 3.99 88.05 55.29 67.92 51.43 87.68
CDNet 1.36 21.52 81.09 78.38 79.72 66.27 90.59
STANet 16.93 6.58 83.31 74.00 78.38 64.45 90.37
BiT 3.55 10.6 82.36 74.30 78.12 64.10 90.18
SNUNet(48) 28.34 97.87 79.04 76.71 77.86 63.75 89.71
ChangeFormer 267.90 129.27 84.99 70.93 77.33 63.04 90.19

DETDNet 56.33 18.08 83.05 79.29 81.13 68.25 91.30

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 9. Visualization results of several CD methods on the SYSU-CD dataset. (a) T1 images. (b) T2
images. (c) Ground truth. (d) FC-EF. (e) FC-Siam-conc. (f) FC-Siam-diff. (g) CDNet. (h) STANet.
(i) BIT-CD. (j) SNUNet. (k) ChangeFormer. (l) DETDNet.

4.5. Ablation Experiments

We conducted ablation experiments mainly on the BCDD and LEVIR-CD datasets to
determine the improvement in each part of the model, which were mainly divided into the
following four aspects.

4.5.1. Effectiveness of the Pretraining

Before training, we first initialized the weight parameters using Res2Net-50 [27]
pretrained on the ImageNet [28] dataset, with the pretrained model provided by Res2Net-
50 [27]. To demonstrate the necessity of pretraining, the ablation experiment was conducted
on the BCDD dataset. Moreover, the results are tabulated in Table 7, where × indicates
no pre-trained and

√
indicates pre-trained. From the visualization results in Figure 10,

it is noticeable that the metrics were significantly lower without pretraining than with
pretraining, based on which the necessity of pretraining is confirmed.

Table 7. The effect of pretraining.

Pretrained Precision Recall F1 IoU OA

× 90.27 86.83 88.52 79.40 98.94√
93.84 91.59 92.70 86.40 99.32
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Figure 10. Visualization results of the impact of pretraining.

4.5.2. The Selection of the Feature Fusion Method

As described above, different feature fusion methods were used between the branches
within the encoder and decoder, where the encoder used the CAC to fuse the dual-branch
features, and the decoder used the TA to aggregate the triple-branch features. To confirm
the adaptability of the two fusion methods in the encoder and decoder, this paper tried to
use the TA in the encoder and the CAC in the decoder, based on which ablation experiments
were implemented on the BCDD dataset. Table 8 includes the results, which shows that the
effect of using the TA in the encoder was somewhat lower than that of the original fusion
mode in the F1 score, IoU, and the OA. In addition, we changed the TA in the decoder to the
CAC, and Table 9 lists the results, whose performance was also reduced as opposed to the
original TA fusion method. In the encoder stage, using the CAC can simply and effectively
fuse the dual-temporal features, while using the TA module will cause the redundancy
of features. In the decoder stage, on account of the integration of local and multiscale
contextual features, the features are relatively more complex, and for the fusion of the left
and right branches and the middle branch, using the TA can extract the change features
more accurately.

Table 8. Impact of the feature fusion method in the encoder.

Feature Fusion Method Precision Recall F1 IoU OA

TA 93.58 91.33 92.44 85.95 99.30
CAC 93.84 91.59 92.70 86.40 99.32

Table 9. Impact of the feature fusion method in the decoder.

Feature Fusion Method Precision Recall F1 IoU OA

CAC 92.95 92.04 92.49 86.03 99.30
TA 93.84 91.59 92.70 86.40 99.32
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4.5.3. Impact of the MFE

The model in this paper used a modified RFB module, which we referred to as an
MFE. According to [30], the MFE has a stronger feature representation, and the model is
more robust compared to the original RFB [24] and RFB-s [24]. For this reason, the related
ablation experimental results rendered on the LEVIR-CD dataset are provided in Table 10.
The setup of the specific ablation experiments was that the MFE module in the decoder was
replaced by an RFB and RFB-s, respectively, which are also used for extracting multiscale
contextual features. The metrics of the MFE module were remarkably higher than those of
RFB and RFB-s, except for the recall, which was slightly lower than those of RFB and RFB-s.

Table 10. Impact of the MFE.

Type of RFB Precision Recall F1 IoU OA

RFB 89.17 92.36 90.73 83.04 99.03
RFB-s 89.70 91.81 90.74 83.06 99.04
MFE 93.84 91.59 92.70 86.40 99.32

4.5.4. The Importance of Each Branch of the MFE

We performed a variety of experiments on the BCDD to determine the implications
of each branch in the MFE on the model as a whole. The MFE contained a total of five
branches, and in the experimental setup, four of them were kept unchanged and branches
0, 1, 2, and 3 were removed in turn. This operation was executed to demonstrate the
importance of extracting multiscale contextual features. The resulting data in Table 11
imply that the model yielded better performance than the rest of cases when the MFE
was used. Moreover, Figure 11 shows the trend of the F1 score at various settings in the
training process.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

F1

epoch

 1,2,3
 0,2,3
 0,1,3
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Figure 11. Visualization results for the importance of each branch in the MFE.
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Table 11. Importance of each branch of the MFE.

Branch of MFE Precision Recall F1 IoU OA

1, 2, 3 93.98 89.27 91.57 84.45 99.23
0, 2, 3 93.24 90.74 91.97 85.14 99.26
0, 1, 3 92.87 91.74 92.30 85.70 99.28
0, 1, 2 93.81 91.00 92.38 85.85 99.30
MFE 93.84 91.59 92.70 86.40 99.32

5. Conclusions

The model in this paper is designed to focus on remote sensing image change detection.
The model uses a dual-branch structure in the encoder to extract local features, a triple-
branch structure in the decoder to extract more global contextual information, and a TA
module to effectively fuse the left and right branches with the middle branch. We validated
the performance of the DETDNet on the SYSU-CD, LEVIR-CD, and BCDD datasets. In
the three datasets, our model reached the optimal value in the F1 score, OA, and IoU.
Among them, in the BCDD dataset, our F1 score, OA, and IoU were 3.3%, 0.2%, and
5.56% higher than the second best method, respectively. In the LEVIR-CD dataset, our
model outperformed the next best method by 0.82%, 0.06%, and 1.37%, respectively. In
the SYSU-CD dataset, our model was 1.41%, 0.71%, and 1.98% higher than the second best
method, respectively. The BCDD dataset mainly contains large sparse buildings, and the
LEVIR-CD contains small dense buildings. However, both contain pseudo-changes, and
the data volume is relatively small compared to the SYSU-CD. These two datasets test
the model’s ability to learn and explore potential relationships with a small amount of
data. The SYSU-CD has a large amount of data but not high labeling accuracy, which tests
the model’s generalization ability. In addition to this, we conducted four sets of ablation
experiments to prove the significance of each component in the model. Although the
receptive field was increased by the MFA module, the maximum receptive field was 23 after
calculation. Therefore, it can be seen that the global features cannot be fully obtained in the
shallow layers. Based on this, our subsequent work will focus on using the Transformer or
MLP to obtain the global features to achieve a higher performance.
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The following abbreviations are used in this manuscript:

CNN convolutional neural network
RS remote sensing
CD change detection
FCNNs fully convolutional neural networks
FC-EF fully convolutional early fusion
FC-Siam-conc fully convolutional siamese concatenation
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FC-Siam-diff fully convolutional siamese difference
STANet spatial–temporal attention-based network
BiT bitemporal image Transformer
SNUNet a combination of siamese network and NestedUNet
ChangeFormer a Transformer-based siamese network architecture for change detection
ReLU rectified linear unit
DETDNet a new fusion network with dual-branch encoder and triple-branch decoder
MFE multiscale feature extraction
TA triple-branch aggregation
CAC concatenation and 1× 1 convolution
SAM spatial attention module
CAM channel attention module
IoU intersection over union
OA overall accuracy
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