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Abstract: The primary premise of autonomous railway inspection using unmanned aerial vehicles
is achieving autonomous flight along the railway. In our previous work, fitted centerline-based
unmanned aerial vehicle (UAV) navigation is proven to be an effective method to guide UAV
autonomous flying. However, the empirical parameters utilized in the fitting procedure lacked a
theoretical basis and the fitted curves were also not coherent nor smooth. To address these problems,
this paper proposes a skeleton detection method, called the dynamic-weight parallel instance and
skeleton network, to directly extract the centerlines that can be viewed as skeletons. This multi-task
branch network for skeleton detection and instance segmentation can be trained end to end. Our
method reformulates a fused loss function with dynamic weights to control the dominant branch.
During training, the sum of the weights always remains constant and the branch with a higher weight
changes from instance to skeleton gradually. Experiments show that our model yields 93.98% mean
average precision (mAP) for instance segmentation, a 51.9% F-measure score (F-score) for skeleton
detection, and 60.32% weighted mean metrics for the entire network based on our own railway
skeleton and instance dataset which comprises 3235 labeled overhead-view images taken in various
environments. Our method can achieve more accurate railway skeletons and is useful to guide the
autonomous flight of a UAV in railway inspection.

Keywords: UAV railway inspection; railway detection; instance segmentation; skeleton detection;
dynamic weight

1. Introduction

The operating mileage of China’s railways has reached 160,000 km, and how to ensure
the health of track infrastructure and the safety of the train operation environment is a
very complex task. Due to technical limitations, the current safety-inspection work for rail
transit still relies mainly on manual labor. However, the complex and dangerous terrain
environment can make manual inspection operations difficult. A mainstream alternative
solution is to utilize autonomous patrol and inspection using unmanned aerial vehicles
(UAVs), which is both safer and more cost-effective. To accomplish this, it is necessary to
ensure that the UAVs can fly along the railway autonomously.

Related research and applications are still in the early stages of development, and
there is no mature theoretical method to achieve the autonomous GPS-independent flight
of UAVs along railways. Among the studies that have been conducted, some auxiliary
sensors are utilized to guide the autonomous flight when satellite navigation is not avail-
able. Magnetic sensors are used to determine the relative position between the UAV and
transmission lines in [1]. Infrared markers are leveraged to estimate the relative position of
the UAV in [2]. Binocular visual sensors are used to realize the 3D autonomous perception
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of power lines in [3]. These methods rely on auxiliary sensors and are not suitable for our
research. We have conducted several relevant studies using vision-based methods to detect
the railways [4–6] and have proven their effectiveness in guiding UAVs’ flight through
experiments. There is still much room for improvement in our previous work

Railway detection is challenging for three main reasons. First, the structure of railways
is complex, and includes the track, sleeper, ballast, railroad switch, and other structures.
Second, the appearance of railways can vary depending on changes in weather and lighting
conditions. Finally, railway lines have large aspect ratios, which can cause affine distortion
when viewed from various angles [4].

To solve these issues, conventional methods of railway detection mainly use hand-
crafted features, including color, gradient, structure tensor, strip filter, and ridge shapes [7,8].
Heuristic algorithms are commonly used to segment railway targets, such as the Hough
transform [9], K-means filter [10], steerable filter [11], and Kalman filter [10]. Morphological
operators [12], visual saliency [13], and Markov random fields [14,15] are also used, in some
studies, to determine the location and extract the shape of rail surface defects. However,
using handcrafted features in conventional methods always needs a human to decide
which kind of features is most suitable and needs a human to adjust the parameters. With
the rise in deep learning, railway target detection has been designed as an end-to-end
training task. A faster region-based convolutional neural network (R-CNN) is utilized for
objective location in [14,16]. A deep convolution neural network (DCNN) is utilized for
material classification in [17], for fasteners defect detection in [18–20] and for surface defect
detection in [16]. A generative adversarial network (GAN) is utilized for defect detection
in [21].

The basic research of this paper proposes a discretization-filtering-reconstruct (DFR)
method [4] to fit a polynomial curve that represents the centerline of the railway, using
the segmentation result of a lightweight CNN that includes a split-recursion-merge (SRM)
module. While guiding a UAV’s autonomous flight based on the fitted centerlines is proven
effective, this method still has some drawbacks. The fitting procedure relies on several
empirical parameters, including the number of splitted bins used to segment the mask, the
threshold for the association between nodes representing the discrete trapezoidal blocks,
the length of filter lines, and the number of filter strong nodes. They are determined through
human experience and fixed in advance, thus lacking a theoretical basis. In addition , the
fitted curves are not coherent and smooth, resulting in oscillation during the UAV’s flight.
To avoid these problems, we propose obtaining the centerline of the railway directly using
an end-to-end method.

Whether the railway in the image is straight or curved, the structure of the railway
remains symmetrical. Skeleton is a descriptor that can reveal the symmetry of an object [22].
Therefore, the centerline of the railway, which is needed to guide the UAV’s autonomous
flight, can be viewed as the skeleton of railway. Through an end-to-end skeleton-detection
neural network, the uncertainty caused by the human-determined parameters mentioned
above can be reduced. However, extracting the features of the railway skeleton is not an
easy task, as objects with a similar shape to the skeleton may be misidentified due to the
diversity of the railway’s environment. To exclude the skeletons of other useless objects, an
end-to-end instance-segmentation neural network is added in parallel to detect the target
railway. This parallel network is utilized to extract the features of the useful region, which
contains the correct skeleton.

Based on the ideas presented above, this paper proposes a novel method called the
dynamic-weight parallel instance and skeleton network (DWPIS). The DWPIS network
is composed of an instance-segmentation branch based on SOLOv2 [23] and a skeleton-
detection branch based on our previous work, AdaLSN [24]. The two branches are com-
bined using a fused loss function with dynamic weight. The purpose of this work is
illustrated in Figure 1 and the contributions of this paper are summarized as follows:

• Given the constant shape and structure of the railways, their centerline can be viewed
as a skeleton to guide UAVs’ autonomous flight. This paper extracts the skeleton
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directly through an end-to-end skeleton-detection neural network and locates the
target through an instance-segmentation neural network, rather than computing and
fitting the centerline using detection results.

• For the instance-segmentation branch, this paper changes the backbone to the ELAN-
based [25] backbone as in YOLOv7 [26], and adds the attention module SimAM [27]
after each level of features in the backbone. Experimental results show that the
detection accuracy of the instance segmentation is improved.

• For the skeleton-detection branch, this paper changes the loss function to Dice loss [28]
due to the serious imbalance between skeleton pixels and background. Furthermore,
a threshold function is added after the sigmoid function in the inference process to
enhance the skeleton results.

• This paper designs a fused loss function to adjust the weight of the two parallel
branches during training, where the sum of the weights for the two parts remains one.
The weight of the loss for the instance-segmentation branch decreases from a large
value to quickly extract the necessary features. Meanwhile, the weight of the loss for
the skeleton-detection branch gradually increases, to become dominant.

Figure 1. Our task: (Top) UAVs rely on vision-baesd detection methods to obtain the centerline of
railways and guide the UAV’s autonomous flight. (Bottom) Use of end-to-end method to replace the
operations of computing and fitting, which rely on empirical parameters.

The rest of this paper is organized as follows. In Section 2, the work related to
the instance-segmentation and skeleton-detection methods is outlined. In Section 3, the
architecture of the proposed DWPIS is presented, including the two parallel branches and
the novel fused loss function with dynamic weight. In Section 4, the experiments and
analysis are discussed. In Section 5, the conclusion is presented.

2. Related Work

Our network has two branches for separate instance segmentation and skeleton detec-
tion. Existing works on instance segmentation have yielded excellent results in terms of
both segmentation accuracy and inference speed. Research on skeleton detection in images
with simple backgrounds has also made some progress.



Appl. Sci. 2023, 13, 6133 4 of 18

2.1. Instance Segmentation

Instance segmentation is the combination of two tasks, semantic segmentation and
object detection, and requires the classification of pixels and location of different instances.
It includes two types of methods, two-stages methods and on-stage methods [29].

The two-stages methods can be further divided into two categories, top-down methods
based on detection and bottom-up methods based on semantic segmentation. Top-down
methods first locate the bounding box of an instance using object detection, and then
perform semantic segmentation for each detection box. One such method, Mask RCNN [30],
extends Faster-RCNN by adding a branch for predicting an object mask in parallel with the
existing branch for bounding-box recognition. Bottom-up methods first perform semantic
segmentation at the pixel level, and then distinguish different instances using clustering,
metric learning, or other methods. In [31], masks for all objects are obtained through
semantic segmentation and training is performed using a discriminative loss function,
which makes it easy to cluster the image into instances.

The one-stage instance-segmentation methods include anchor-based methods inspired
by YOLO [32] and RetinaNet [33], and anchor-free methods inspired by FCOS [34]. In
anchor-based methods, the main idea is to classify and regress candidate target regions
called anchors, produced by sliding windows. YOLACT [35] generates a dictionary of
prototype masks and predicts per-instance linear combination coefficients. YOLACT++ [36]
optimizes the prediction head and adds a novel, fast mask re-scoring branch. SOLO [29]
reformulates the instance segmentation as two sub-tasks: category prediction and instance-
mask generation problems. SOLOv2 [23] uses the matrix non-maximum suppression (NMS)
technique and object mask generation is decoupled into a mask kernel prediction and mask
feature learning. The main idea behind anchor-free methods is to transform them into
keypoint-based methods by locating the keypoint, or into region-based methods by locating
the center of an object and predicting the contours of the object. PolarMask [37] predicts the
contour of an instance through instance-center classification and dense distance regression
in a polar coordinate.

As one-stage methods usually have a quicker inference speed than two-stage methods,
they are more suitable for real-time scenarios involving guiding the autonomous flight of
UAVs. While the segmentation accuracy of one-stage methods for small targets may be less
satisfactory, the railways in overhead-view images captured by UAVs are not considered
small objects. Therefore, in this paper, we propose using SOLOv2 as the base architecture
for the instance-segmentation branch, considering both accuracy and speed.

2.2. Skeleton Detection

The skeleton is a structure-based object descriptor that reveals local symmetry as well
as connectivity between object parts [38,39]. Skeleton detection has been used in many
applications, including object recognition and retrieval, pose estimation, hand-gesture
recognition, shape matching, scene text detection, and road detection in aerial scenes [22].
Among them, the most common and popular use is detecting and locating key points of
the human body to recognise different body movements effectively.

A pioneer work of skeleton-detection methods, the edge-detection method HED [40]
turns pixel-wise edge classification into image-to-image prediction. The side-output resid-
ual network (SRN) [41] leverages the side-output residual units to build short connections
between adjacent side-output branches for matching object symmetry at different scales.
For the problem that the scales of object skeletons may dramatically vary among objects
and object parts, Hi-Fi [42] introduces a novel hierarchical feature-integration mechanism
to capture high-level features from deeper layers and low-level details from shallower
layers, which essentially establishes dense side-output branches. To cope with object parts
of large widths, Ref. [22] proposes a “skeleton context flux” representation, which encodes
the relative position of skeletal pixels to semantically meaningful entities.

Our previous work [43] proposes to formulate the pixel-wise binary classification tasks
as linear reconstruction problems within a linear span network architecture (LSN) consisting
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of three components: feature linear span, resolution alignment, and subspace linear span.
Each component contains several linear-span units implemented by a concatenation layer,
a convolutional layer and a slice layer to minimize the reconstruction error. Building
on top of an LSN, our improved research, adaptive linear-span network (AdaLSN) [24],
defines a mixed unit-pyramid search space. A genetic architecture search is applied to
jointly optimize unit-level operations and pyramid-level connections for adaptive feature-
space expansion.

Compared to the state of the art, AdaLSN with sufficient feature-space expansion
achieves significantly higher accuracy by utilizing complementary feature extraction and
architecture optimization. Considering the serious imbalance between positive and nega-
tive samples in railway-skeleton images, Dice loss function [28] is more suitable for our
research. Therefore, in this paper, we propose using our previous work, AdaLSN, with a
Dice loss function as the base architecture for the skeleton-detction branch.

3. Dynamic-Weight Parallel Instance and Skeleton Network

The central idea of our network is changing the dominant of the two branches, the
instance-segmentation branch and skeleton-detection branch, through a fused loss function
with dynamic weight during training, to locate the targets and extract the skeletons more
accurately. The architecture of the network is illustrated in Figure 2.

Figure 2. Architecture of our network.

3.1. Instance-Segmentation Branch

The target of the instance-segmentation branch in our work is to determine the location
of the railway. This paper uses SOLOv2 [23] as the base architecture for this part, which
converts the location prediction task into a classification task. In SOLOv2, the image is
divided into S× S cells, resulting in S2 location classes, and each instance can be assigned
to one of them as its location category.

The backbone of SOLOv2 used to extract the feature is the traditional residual neural
network (ResNet), which requires deep architectures, making it computationally expensive.
This paper uses a more advanced backbone mainly composed of ELAN [25], which is
similar to YOLOv7 [26], as shown in Figure 3. ELAN, a layer aggregation architecture with
efficient gradient propagation paths, is mainly composed of VoVNet [44] combined with
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CSPNet [45]. It optimizes the gradient length of the overall network with the structure of a
stack in a computational block [25].

Figure 3. Backbone of our network.

After the backbone, this paper adds the attention module SimAM [27] at each level
of the feature map to divert attention to the most important regions and disregard the
irrelevant parts. It is a type of channel-spatial-attention module [46] and a significant
advantage of it is that it does not introduce additional parameters.

To assign objects of varying sizes to different levels of feature maps, SOLOv2 employs
a feature pyramid network (FPN) [47] as the neck of the framework. SOLOv2 has two
heads: the kernel branch which predicts the semantic category and mask kernel, and the
feature branch which predicts the mask feature. Therefore, the training loss function is
defined as follows:

Lins = Lcate + λLmask (1)

where Lins is for the whole instance-segmentation network, Lcate is for semantic-category
classification, and Lmask is for mask prediction.

3.2. Skeleton-Detection Branch

The target of our skeleton-detection branch is to extract the skeleton of the railway.
This paper uses our previous work AdaLSN [24] as the base architecture for this branch.
AdaLSN consists of two components, the backbone and the linear span pyramid (LSP). The
LSP is constructed by attaching the linear span unit (LSU) to the convolutional layer of the
backbone in five stages, which can be viewed as a side-out branch. The key innovation in
AdaLSN is the search for four classes of architecture encoding, including the connection
between the backbone and LSUs, the inner edges and operators in each LSU, the connection
between LSUs in the LSP, and the connection between loss and the LSU. The focus of this
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paper is not on searching for the best network architecture through a genetic algorithm;
thus, one fixed architecture is utilized.

AdaLSN uses Inception-v3 [48] as the best backbone. In this paper, a new backbone
composed of ELAN is used, which is the same as the backbone of the instance-segmentation
branch, to connect the two parallel branches.

This paper uses a Dice loss layer [28] instead of the binary cross-entropy loss, which is
utilized in the original AdaLSN architecture and may result in a sizeable loss at the start
of our training process. Dice is suitable for situations where there is a serious imbalance
between positive and negative samples, as is the case in our skeleton-detection task. The
skeleton pixels, which are positive samples, only represent a small fraction of the whole
image compared to the background pixels, which are negative samples. Therefore, the
Dice loss is much more appropriate for our mission. The training loss function is defined
as follows:

Lunit =
5

∑
i=1

Li (2a)

Lsklt = Lunit + L f use (2b)

where Lunit is the sum of loss of every LSU; Li is the loss of each LSU; Lsklt is the loss for
the whole skeleton-detection network; and L f use is the loss of the fused LSU, whose input
is the output from all the LSUs.

During the inference process, the original method in AdaLSN limits the fused output
of the LSP to the range of 0 to 1 using the sigmoid function, but it changes the shape of
results significantly. To obtain better skeleton results against complex backgrounds, this
paper designs an extension threshold function to be added after the sigmoid function,
defined as:

pth =

{
1, i f psig >= θ

0, i f psig < θ
(3)

where pth is the value of each pixel after our threshold function, psig is the value of each
pixel after the sigmoid function, and θ is the threshold filtering the pixels. All the pixels
with a value less than θ are changed to zero, and the others are changed to one.

3.3. Architecture of DWPIS

Previous skeleton-detection methods commonly use datasets in which the target
occupies most of the image and there are no other objects in the simple background.
However, our target object, a railway, is located in a complex environment in most of
images to be evaluated, including other objects of a similar shape. This increases the
difficulty of detection and the error rate. Additionally, the height of a UAV is not fixed due
to the different inspection-mission requirements. As the UAV flies higher, the railways in
the image become smaller and the background becomes more complex.

To address the aforementioned problems, this paper proposes the novel dynamic-
weight parallel instance and skeleton network. This network is divided into two parallel
branches, one for instance segmentation and another for skeleton detection separately.
They use the same backbone and attention module to extract features from input images
first. Then, before a fused loss function merges the two branches, the loss of each respective
branch is obtained. The detailed network, including training, inference and post-process, is
shown in Figure 4.
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Figure 4. Detailed network including training, inference and post-process.

At the beginning of training, the network primarily relies on the instance-segmentation
branch to extract useful target features, which guides the network to quickly determine
the features of the correct location. At the same time, the skeleton-detection branch is
optimized mainly through the former. As training progresses, the instance-segmentation
branch should achieve good-enough results after only a few epochs and the focus of the
network should gradually shift to the skeleton-detection branch. Since the training epochs
required for skeleton detection are much more than that for instance segmentation, the
skeleton-detection branch maintains dominance for a long time after the result of the
instance-segmentation branch is stabilized.

In order to achieve the above training strategy, this paper reformulates a fused loss
function with dynamic weight, which is defined as:

ω =
1

1 + e−
ε−α

β

(4a)

L = (1−ω)Lins + ωLsklt (4b)

where ω is the weight for the loss of the skeleton-detection branch, ε is the current training
epoch, parameter α represents the epoch where the weights of the two branches are both 0.5,
parameter β determines the rate of weight changes, and L is the total loss for our network.
As the function demonstrates, the sum of the weights for the two branches always remains
at one. As the training epoch increases, the weight of the instance-segmentation branch
decreases gradually while the weight of the skeleton-detection branch increases.
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4. Experiments and Analysis
4.1. Experimental Setting

Datasets. A total of 3235 overhead-view images of railways were collected in Ma’anshan,
Nanjing, Qinghai–Tibet Railway and our laboratory. These images were divided into
2277 images for the training dataset, 655 images for the validation dataset, and 303 images
for the test dataset at a ratio of 7:2:1. Figure 5 shows some examples.

Figure 5. Examples of our dataset. (a): Original images. (b): Instance labels. (c): Skeleton labels.

Implementation details. Our network was implemented using PyTorch and was
run on three NVIDIA TITAN RTX GPUs (24 GB RAM). For training, this paper used
the stochastic gradient descent (SGD) optimizer with an initial learning rate of 0.01, a
momentum of 0.9, and a weight decay of 0.0001. The final model was trained for 360 epochs
and the models for ablation experiments were trained for 36 epochs. Pre-processing
operations included resizing, random flipping, normalization and padding. After inference,
this paper performed erosion as the post-processing method to remove the noise points or
lines for skeleton detection.

Evaluation protocol. Average precision (AP), average recall (AR) and mean average
precision (mAP) were utilized as evaluation metrics for instance segmentation. For skeleton
detection, the F-measure score (F-score) was used as the evaluation metric. A weighted-
mean metric Wmean was designed for our dynamic-weight parallel instance and skeleton
network, which consisted of mAP for the instance-segmentation branch and F-score for the
skeleton-detection branch, defined as:

Wmean = γmAP + (1− γ)Fscore (5)

where γ is the weight value of 0.2 for mAP.

4.2. Main Result

Our network achieved 93.98% mAP for instance segmentation, 51.9% F-score for
skeleton detection and 60.32% Wmean for the whole task. The evaluation metrics are shown
in Table 1 and some classic examples for detection masks are shown in Figure 6.

Table 1. Evaluation metrics results of our network.

Network AP AP50 AP75 APS APM APL mAP F-Score Wmean

Ours 93.6 98.3 96.3 - 86.5 95.2 93.98 51.9 60.32
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Figure 6. Examples of results of our network. (A1,A2) Single railway, multiple railways, straight
railways and curved railways. (B1–B3) Different flying heights of UAVs. (C1–C3) Obscured railway.
(D1–D4) Different lighting conditions.

The model performs well for images with a single railway or multiple railways, as well
as straight railways or curved railways, as indicated by Figure 6(A1,A2). The UAVs need to
fly at different heights to carry out the tasks, so the model must be suitable for various scales
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of railways in the images. As shown in Figure 6(B1–B3), the model can always accurately
identify the railways and skeletons when the flying height changes from low to high. In
certain environments, the railway may be shaded by trees or other objects, which increases
the difficulty of the task. As shown in Figure 6(C1,C2), the railways and skeletons are fully
detected even though the railway is partly shaded by sparse trees. However, in Figure 6(C3),
the detected results are truncated by a tree because it is so dense that it completely obscures
the railway. In order to operate during different times of the day and in various weather
conditions, the UAVs must be able to detect the skeleton of a railway under different lighting
conditions. As demonstrated in Figure 6(D1–D4), the results of instance segmentation and
skeleton detection are always right, whether the light is strong or dim.

Compared to the original SOLOv2 with ResNet-50 backbone, our changes to the
backbone and attention module result in a 3.58% increase in mAP for instance segmentation.
Compared to the original AdaLSN with a fixed architecture and Inception-v3 backbone,
our novel network achieves a 2.2% improvement in skeleton detection.

4.3. Ablation Experiments

This paper investigates and compares the following five aspects in our methods:
Threshold function. To improve the process of inference using a model that only

requires a few epochs of training, a threshold function is added after the original sigmoid
function to simplify the features. We compare the inference results with and without a
threshold function, in which the threshold is 1 − 10−1, 1 − 10−3, 1–10−5 and 1 − 10−7. As
shown in Figure 7, the inference achieves significant improvement through the addition
of a threshold function. The inference results are good enough when the threshold value
increases to 1− 10−7 which is ultimately chosen as our threshold. As expected, the skeleton
of each railway becomes more obvious and the F-score is much higher than the inference
result without our threshold function, as shown in Table 2.

Figure 7. Comparison of the results of with and without our threshold function during the inference
process. The first row: input images. The second row: results without our threshold function. The
other rows: results with our threshold function and the thresholds are 1 − 10−1, 1 − 10−3, 1 − 10−5,
and 1 − 10−7, respectively.
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Table 2. Comparison of with and without threshold function.

Inference mAP

Sigmoid function 1.18
Sigmoid function + threshold function 51.0

Backbone. According to previous research, the best backbone for SOLOv2 is RseNet,
and Inception-v3 is the best for AdaLSN. To further compare the impact of the backbone,
this paper trains SOLOv2 (only for the instance-segmentation branch), AdaLSN with a
fixed architecture (only for the skeleton-detection branch), and our dynamic-weight parallel
instance and skeleton network with different backbones, including ELAN-based backbone,
Inception-v3, ResNet-50 and ResNet-101.

Table 3 shows the evaluation metrics for only the instance-segmentation branch.
As demonstrated, the network using the ELAN-based backbone achieves a higher mAP
compared to the networks that use other backbones. The network achieves a 3.56% mAP
improvement over ResNet-50, indicating that the ELAN-based architecture is the optimal
choice among them for the instance-segmentation branch.

Table 3. Comparison of backbone and attention module for instance-segmentation network.

Network AP AP50 AP75 APS APM APL mAP

Inception-v3 90.6 96.3 92.2 - 79.7 93.3 90.42
ResNet-50 87.9 97.0 89.9 - 72.1 91.7 87.72

ResNet-100 85.4 95.4 89.3 - 69.1 89.4 85.72
ELAN-based 91.2 97.2 92.3 - 82.4 93.3 91.28

ELAN+SimAM 91.3 97.0 93.2 - 81.4 93.6 91.3

As shown in Table 4, the ELAN-based backbone does not achieve the best F-score
compared to the networks using other backbones, for only the skeleton-detection branch.
However, the main target of changing the backbone is to improve the detection results of
the instance-segmentation branch. Therefore, this paper pays more attention to the metrics
of the instance-segmentation network and our parallel network.

Table 4. Comparison of backbone and attention module for skeleton-detection network.

Network F-Score

Inception-v3 48.8
ResNet-50 35.8

ResNet-100 37.0
ELAN-based 48.2

ELAN+SimAM 47.9

The evaluation metrics for our novel network are shown in Table 5. The Wmean of
the ELAN-based backbone network is 0.06 smaller than that of the Inception-v3 backbone
network, which is mainly due to the smaller AP. However, as shown in Table 3, the mAP of
the ELAN-based backbone network is larger. The different results may because the weight
of the instance-segmentation branch is always less than one in our network. Therefore, this
paper still uses the ELAN-based backbone for more epochs of the training.
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Table 5. Comparison of backbone and attention module for our network.

Network AP AP50 AP75 APS APM APL F-Score Wmean

Inception-v3 91.2 97.3 93.1 - 81.0 93.6 50.8 58.89
ResNet-50 86.6 96.4 90.2 - 70.8 90.5 45.8 54.02

ResNet-100 86.9 96.1 90.2 - 69.3 91.1 46.1 54.22
ELAN-based 90.8 96.9 92.7 - 81.3 93.0 50.8 58.83

ELAN+SimAM 90.9 96.9 93.1 - 81.0 93.3 51.0 59.01

Attention module. This paper compares the effect of adding SimAM to the network
using an ELAN-based backbone. For only always instance-segmentation network, the mAP
is slightly larger when SimAM is added, as shown in Table 3. As expected, adding SimAM
also improves our novel network with the instance-segmentation branch and skeleton-
detection branch, as shown in Table 4. However, it performs poorly for the network for
skeleton detection, as shown in Table 5.

Loss function parameter. This paper designs a novel fused loss function to adjust the
dynamic weight of the two branches during training. To increase the weight of the skeleton-
detection branch as the loss of the instance-segmentation branch gradually stabilizes, the
sigmoid function is chosen as the base. The sum of the weights for the two branches is
always kept at one. This paper adds two parameters to adjust the function: alpha, which
determines when the weight is 0.5, and beta, which determines the rate of weight increases.

Through experiments, the segmentation results are already satisfactory after training
for 36 epochs. Therefore, this paper adjusts both parameters to be related to this epoch
number: α is changed to be 36/α′, and β is changed to be 36/β′. The results of the
experiments for finding the best parameters are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. Comparison of different parameters of our loss function. (a) Loss function curves of
varied α′ parameters with fixed β′. (b) Evaluation metrics of networks with the loss functions in (a).
(c) Loss-function curves of different β′ parameters with fixed α′. (d) Evaluation metrics of networks
with the loss functions in (c).
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This paper varies β′ from 1 to 18 while keeping α′ fixed at 1, and the curves for each
value are shown in Figure 8c. When β′ is equal to one, the overall rate of weight increases
changes the slowest during training. A new mean metric was calculated by assigning
the weights of 0.35 to AP and AR, and 0.3 to F-score. It is mainly because the instance-
segmentation branch is more important at the beginning of training. As shown in Figure 8d,
the best result is obtained when the β′ is set to one.

The value of α′ was changed from 0.5 to 1 while keeping β′ fixed at its best value, and
the curves for each value are shown in Figure 8a. Decreasing alpha′ means the weight of
the skeleton-detection branch is lower during the same training epoch. The mean metrics
is calculated in the same way as evaluating β′. As shown in Figure 8b, the best value for
α′ is 0.9.

Parallel network. The main idea behind our network is to add a parallel instance-
segmentation branch to remove the skeleton of the wrong target, on the base of the skeleton-
detection network. This paper compares the results of our novel network to the skeleton-
detection network. As shown in Table 6, our network achieves a 3.1% improvement in
F-score compared to the skeleton detection network with same backbone and attention
model. It is a 2.2% improvement compared to the fixed AdaLSN with the original backbone.
As expected, the results of the skeleton-detection network show skeletons of objects that
are not railways, which are not present in our novel parallel network shown in Figure 9.

Table 6. Comparison of with and without instance branch.

Network F-Score

Fixed AdaLSN (only skeleton) 48.8
Ours (only skeleton) 47.9
Ours (two branches) 51.0

Figure 9. Comparison of the results of our network with and without instance-segmentation branch.
The first row: input images. The second row: results of our network without instance-segmentation
branch, in which the dashed ellipses represent the misidentified or undetected skeletons. The third
row: results of our network with instance-segmentation branch.

4.4. Analysis

Experimental results show that our DWPIS with two branches can obtain stronger
railway skeletons than the base architecture of the skeleton-detection network. Upon careful
analysis, these enhancements come from three main sources: the instance-segmentation
branch, fused loss function, and inference function.

Firstly, the instance segmentation locates the railway target. Through training the
instance-segmentation branch, the network extracts the useful features of the railways
containing the skeleton and the parameters of the shared backbone are optimized.
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Secondly, the fused loss function with dynamic weight decided, using training-epoch
changes, the dominance of the training. Through controlling the dominant branch, the
network is mainly trained for instance segmentation first and then mainly for skeleton
detection for a long time. For the skeleton-detection branch, the Dice loss function is more
suitable for the serious imbalance between positive and negative samples and increases the
convergence speed of training.

Finally, the threshold function, the subject of the skeleton-detection branch in the
inference procedure, optimizes the skeleton results. By adding a threshold function after
the original sigmoid function, better results can be obtained by filtering noise after fewer
training epochs.

5. Conclusions

In this work, which focuses on the task of detecting the centerline of a railway to guide
UAV autonomous flight, this paper introduced the dynamic-weight parallel instance and
skeleton network, which is an end-to-end multi-task branch method.

• This paper proposed a novel network with two parallel branches, including an instance-
segmentation branch and a skeleton-detection branch. The instance-segmentation branch
is to determine the location of the railway, which is improved in the backbone and
attention module. The skeleton-detection branch extracts the skeleton of the railway
and is improved in the loss function and inference process.

• This paper designed a fused loss function with dynamically changing weights dur-
ing the training process to change the dominant task. The weight of the instance-
segmentation branch decreases from initially being large to extract the correct location.
In contrast, the weight of the skeleton-detection branch increases from a very small
value to being extremely close to one to focus on skeleton features.

This paper compares the evaluation metrics of the following architectures: (1) the
different backbones of the instance-segmentation network, skeleton-detection network and
two-branches network, (2) with and without an attention module, (3) different parameters
of fused loss function with dynamic weight, (4) with and without a threshold function in
the inference procedure, and (5) with and without the instance-segmentation branch.

Overall, experiments based on our own railway datasets taken in various places and
times demonstrate that our network performs well in different environments. However, the
skeleton results may be truncated when there is a dense occlusion in the field of view, which
will influence the smoothness of the UAV’s autonomous flight. Apart from this, the speed
of the inference of our network may not meet the stringent requirements of real-time flight
of lightweight UAVs. Considering the obscured railway and the complexity of network,
there is still much room for improvement in both accuracy and speed in future work. To
solve the issue of the truncated skeleton, future work can focus on two aspects: connecting
the truncated parts utilizing the structure features of the skeleton in the post-process; and
obtaining a complete skeleton directly through optimizing the network. To increase the
speed of inference, the two branches can be merged in the bottleneck to decrease the
complexity of network in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV unmanned aerial vehicle
GPS global positioning system
CNN convolutional neural network
GAN generative adversarial network
FPN feature pyramid network
LSN linear span network
LSP linear span pyramid
LSU linear span unit
RAM random access memory
SGD stochastic gradient descent
AP average precision
AP50 AP at IoU = 0.50
AP75 AP at IoU = 0.75
APS AP for small objects
APM AP for medium objects
APL AP for large objects
AR average recall
mAP mean average precision
F-score F-measure score
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