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Abstract: Electrical steels can be classified into two groups: grain-oriented (GO) and non-oriented
(NGO) electrical steel. NGO electrical steels are mainly considered as core materials for different
devices, such as electric motors, generators, and rotating machines. The magnetic properties and
texture evolution of NGO electrical steels depend on multiple factors (such as chemical content,
heat-treatment, and rolling process) making the development of new products a complex task. In this
review, studies on the magnetic properties of NGO electrical steels and the corresponding texture
evolution are summarized. The results indicate that further research is required for NGO electrical
steels to ensure high permeability and low core loss properties.
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1. Introduction

Electrical steels are widely used as core materials for a variety of electrical equipment,
such as transformers, generators, rotating machines, etc. Due to rapid development in
the manufacturing and automation sectors, applications for electrical steels are continu-
ously expanding [1].

Electrical steels are commonly classified as grain-oriented (GO) and non-oriented
(NGO) electrical steels. The main applications of GO electrical steel include transformer
cores, power reactors, hydro-generators, turbo-generators, etc. Conversely, the main
applications of NGO electrical steel include generator cores, electric motors, electrical
meters, etc.

In the case of NGO electrical steels, the core loss and the magnetic induction are critical
features that have been investigated in numerous studies [1]. In electric motor applications,
efficiency and torque are the most focused properties [2]. Core loss is directly related to
motor efficiency. The lower the core loss, the higher the motor efficiency [2]. Magnetic
induction is directly proportional to motor torque. Figure 1a shows that, in practice, it is
difficult to develop products with both high magnetic induction and low core loss.

Grain size, inclusions, precipitates, defects, and grain orientation of electrical steels
have a distinct effect on magnetic properties. These parameters are influenced by multiple
factors, such as steel composition, thermomechanical processing, and so on. Therefore,
a review of each factor‘s influence on the texture evolution of NGO electrical steels would
be a valuable contribution to the steelmaking community. Knowledge of these relationships
will help engineers control the texture and magnetic properties in NGO electrical steel
production processes.
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Figure 1. (a) Demands of core materials on an electric vehicle motor’s applications, re-
printed/adapted with permission from [2]; and (b) Magnetic flux density B against the magnetizing 
force H (B-H) curve with some critical points. 

2. Magnetic Properties 
As shown in Figure 1b, magnetization curves (B-H curves) are plotted by the values 

of magnetic flux density (B) against the field strength or magnetizing force (H). As the 
alternating current (AC) condition is continuously changing the direction of the magnet-
izing current through the coil in electrical steel applications, this alternating magnetic field 
can produce a magnetic hysteresis loop in the core material. Residual magnetism is the 
induction that is left in the material when it has already been magnetized. Coercivity force 
(or coercivity) is the magnetic field strength that is required to demagnetize the material 
when it has already been magnetized. When all the magnetic domains within the material 
have aligned with the external magnetic field, a saturation effect is observed. The slope of 
the B-H curve at any location is defined as the incremental permeability. Sometimes, per-
meability is measured from the origin to the target location. This slope is called apparent 
permeability. The area under the B-H curve is the hysteresis loss in each B-H cycle [3]. 

In studies addressing the magnetic properties of NGO electrical steels, core loss, co-
ercive field, permeability, and magnetic induction are the main properties that dictate the 
magnetic material behavior. The important properties of electrical steel differ for alternat-
ing current (AC) and direct current (DC). For AC applications, core loss is of major im-
portance, because the alternating nature of AC causes very rapid domain flipping, and 
thus hysteresis loss of the core loss becomes a larger component of the energy loss [1]. In 
contrast, permeability, coercive field, and magnetic induction properties are more im-
portant in applications under DC conditions. Hysteresis loss also occurs in applications 
under DC conditions; however, it is not the main influence on energy loss [1]. 

2.1. Magnetic Properties under AC Conditions 
As mentioned previously, core loss is one of the most important magnetic properties 

for application under AC conditions. Under AC conditions, some power is lost in the core 
of the device, transforming it to heat or noise. This energy loss is called core loss. It is 
commonly accepted that core loss can be separated into hysteresis loss ( ௛ܲ), anomalous 
loss ( ௔ܲ), and eddy current loss ( ௘ܲ).  

௧ܲ௢௧ ൌ ௔ܲ ൅ ௘ܲ ൅ ௛ܲ, (1) 

௛ܲ is the energy loss that occurs during every cycle that the material undergoes an 
applied field change. In practice, hysteresis loss depends on the grain size, inclusions, pre-
cipitates, the presence of defects, the orientation, and the applied frequency. 

Figure 1. (a) Demands of core materials on an electric vehicle motor’s applications, reprinted/adapted
with permission from [2]; and (b) Magnetic flux density B against the magnetizing force H (B-H)
curve with some critical points.

2. Magnetic Properties

As shown in Figure 1b, magnetization curves (B-H curves) are plotted by the values
of magnetic flux density (B) against the field strength or magnetizing force (H). As the
alternating current (AC) condition is continuously changing the direction of the magnetiz-
ing current through the coil in electrical steel applications, this alternating magnetic field
can produce a magnetic hysteresis loop in the core material. Residual magnetism is the
induction that is left in the material when it has already been magnetized. Coercivity force
(or coercivity) is the magnetic field strength that is required to demagnetize the material
when it has already been magnetized. When all the magnetic domains within the material
have aligned with the external magnetic field, a saturation effect is observed. The slope
of the B-H curve at any location is defined as the incremental permeability. Sometimes,
permeability is measured from the origin to the target location. This slope is called apparent
permeability. The area under the B-H curve is the hysteresis loss in each B-H cycle [3].

In studies addressing the magnetic properties of NGO electrical steels, core loss,
coercive field, permeability, and magnetic induction are the main properties that dictate
the magnetic material behavior. The important properties of electrical steel differ for
alternating current (AC) and direct current (DC). For AC applications, core loss is of major
importance, because the alternating nature of AC causes very rapid domain flipping, and
thus hysteresis loss of the core loss becomes a larger component of the energy loss [1]. In
contrast, permeability, coercive field, and magnetic induction properties are more important
in applications under DC conditions. Hysteresis loss also occurs in applications under DC
conditions; however, it is not the main influence on energy loss [1].

2.1. Magnetic Properties under AC Conditions

As mentioned previously, core loss is one of the most important magnetic properties
for application under AC conditions. Under AC conditions, some power is lost in the core
of the device, transforming it to heat or noise. This energy loss is called core loss. It is
commonly accepted that core loss can be separated into hysteresis loss (Ph), anomalous loss
(Pa), and eddy current loss (Pe).

Ptot = Pa + Pe + Ph, (1)

Ph is the energy loss that occurs during every cycle that the material undergoes
an applied field change. In practice, hysteresis loss depends on the grain size, inclusions,
precipitates, the presence of defects, the orientation, and the applied frequency.



Appl. Sci. 2023, 13, 6097 3 of 16

Pe represents the energy loss caused by the electrical current. This electrical current
is induced by a change in the magnetic field. Eddy current depends on the chemical
composition and geometry of the material. Pe is aided by increasing the material’s resistivity
which is controlled by higher contents of Si and Al and thinner steel laminations. As shown
in Figure 2, the use of thin laminations leads to a decrease in the eddy current loss for
applications in an electric motor.
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Figure 2. (a) Eddy current in the solid iron core. (b) Separating the iron core by thin laminations
that are parallel to the field (to reduce the eddy currents, insulation layers were coated between
laminations). In this figure, B is the magnetic field and I is the induced current. The direction of the
arrow indicates the flow of the magnetic field.

Pa is the energy loss present after the calculation of Pe and Ph (the eddy current and
the hysteresis loss, respectively). Owing that it represents part of the energy loss that is not
considered in the eddy current loss calculation in detail, the anomalous loss is also called
the excess eddy current loss or excess loss [4]. The energy losses of Pe, Pa, and Ph may be
expressed as follows [5]:

Pe =
π2B2

maxt2 f 2

6ρD
, (2)

Pa = c1

√
d

ρ
t2B2

max f 3/2 (3)

Ph =
f
D

∮
BdH (4)

where c1 is an experimentally determined constant, d is the material grain size, Bmax is the
peak magnetic induction, t is the lamination thickness, D is the material density, f is the
working frequency, and ρ is the material resistivity.

The Equation (3) about anomalous loss expression is not universally accepted.
G. Bertotti et al. [6] reported some different physical models on energy loss by express-
ing them in magnetic laminations under one- and two-dimensional fields. Other than
that, there are also some works which compute energy losses based on the applications.
A.J. Moses [7] reported an algorithm to estimate the iron loss of power transformers from
quantification of the contributions of the effect of joints, rotational and harmonic flux, stress,
interlaminar flux, and core geometry.

Taking into account the three energy losses that exert an influence on frequency, the
Ptot total energy loss may be obtained as follows [5]:

Ptot = ka f 3/2 + ke f 2 + kh f , (5)

where ke, ka, and kh are the parameters of the eddy current loss, the anomalous loss, and
the hysteresis loss, respectively. As expressed in Equation (4), Pe and Pa are influenced
most by the applied frequency. In practice, Pe has the largest contribution to Ptot when the
applied frequency is higher than 400 Hz, just like the e-mobility [5].
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There are new challenges presented by application under high frequency like e-mobility.
Other than the effect shown in Equation (4), a high frequency AC condition makes the
number of effects apparent. Those effects include but are not limited to skin effect, proximity
effect, and geometric effects. A. D. Podoltsev et al. [8] reported a numerical model for
calculation of eddy current losses under high frequency conditions. It computes the leakage
field, taking into consideration the effective magnetic permeability of the multiturn winding
as a heterogeneous medium.

Magnetic induction (B H) is another important magnetic property for application un-
der AC conditions. Magnetic induction of electrical steels at a given applied field critically
depends on the microstructure and the present crystallographic texture. Gomes et al. [9]
reported a general quantitative model for the dependence of the magnetic induction at
a given applied field as a function of the mean grain size, a texture-related parameter, and
the Si content of the material. This relation is expressed as follows [9]:

BH
(
d, A, Sieq

)
= p0 + p1 × A +

p2

D
+ p3 × Sieq, (6)

where A is the texture parameter, p0, p1, p2, and p3 are material parameters, d is the grain
size, Sieq is defined as (Si + 2 × Al) in wt.%.

2.2. Magnetic Properties under DC Conditions

For electrical steel, permeability is a measure of the resistance of a material in opposition
to the formation of a magnetic field, while coercivity is a measure of the ability for a ferro-
magnetic material to withstand an external magnetic field without becoming demagnetized.

Permeability is defined by the instantaneous slope of the B-H curve, and thus is sensitive
to induction [1]. For applications under low induction conditions (1 T), at 50 Hz, the grain size
of NGO electrical steels has a strong influence on the corresponding permeability [10,11]. Grain
growth during recrystallization affects the amount and distribution of desirable magnetic
textures. Under high induction conditions (1.5 T), the effect of texture on permeability and
magnetic flux density is more significant than that of grain size.

Furthermore, coercivity and permeability are inversely proportional [12,13]. It is
widely known that a larger grain size results in higher permeability and lower coercivity,
which is also the cause for a decrease in hysteresis loss. To elaborate, grain boundaries may
delay and impede the movement of the domain wall. However, a larger grain size also
leads to a larger domain size, which in turn increases the core loss, especially anomalous
loss [14]. Thus, an optimum grain size results in a minimum core loss. De Campos [15]
described the optimum grain size (GsOp) as follows:

GsOp = (
c2ρ

B2−qt2 f 1/2 )
2/3

, (7)

where c2 is an experimentally determined constant, B is the magnetic induction, ρ is
the resistivity, t is the sample thickness, and f is the operating frequency. Steinmetz
experimentally determined that q = 1.6 [16].

3. Effects of Si Content on NGO Electrical Steels

Silicon (Si) content of NGO electrical steels has a strong effect on magnetic proper-
ties [17]. Higher Si content increases the material resistivity, which leads to a decrease in
the eddy current loss. Furthermore, the addition of Si content also led to a decrease in
magnetocrystalline anisotropy [18].

Magnetocrystalline anisotropy is the property that defines when ferromagnetic material
takes more energy to magnetize in some directions than others. Decreasing magnetocrys-
talline anisotropy leads to higher permeability. Magneto-striction and saturation induction
are also lower when the Si content increases.
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However, it is also observed that steel brittleness increases when the Si content is
higher than 3 wt.%, which has a significant effect on cold deformability [19–21].

Shimanaka et al. [22] found that in NGO electrical steels, a higher optimum grain size
is obtained as the Si content increases. For instance, 1.85 wt.% Si steels have an optimum
grain size of approximately 100 µm, and 3.2 wt.% Si steels have an optimum grain size of
approximately 150 µm [23].

High Silicon Electrical Steel Ordering

Brittleness of high Si steels depends on the grain size, ordered phase structure, and
grain boundary impurities [24–26]. As shown in Figure 3a, when the Si content of the steel
increases, A2, B2, and D03 ordering are observed. A2, B2, and D03 are the Strukturbericht
symbols that designate different crystal ordering structures. These structures are best
explained by the superlattice structure, as presented in Figure 3b. In Fe-Si alloys, two types
of ordering phases were studied: B2 structure (Fe-Si) and D03 structure (Fe3Si ordering
type) are formed with a Si content of 5.3–11 wt.% [27]. A2 represents the simply α-Fe BCC
structure.
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Figure 3. (a) Section of the binary phase diagram of the Fe-Si alloy system [20]. (b) Superlattice
structures of A2, B2, and D03 structures in high Si electrical steels. A2 is disordered, allowing Fe and
Si to allocate in any available site. In B2 ordering, solid gray and black dots represent the sites where
Fe is present, whereas gradient and open dots represent the sites where Si is observed. In the D03

texture, open dots represent the sites where Si is located, while Fe were located on other sites [21].

X-ray diffraction (XRD) analysis has shown that D03 has a special superlattice peak,
which corresponds to {111} planes. B2 and D03 {100} planes share a {200} superlattice
peak [1,28]. Dislocations interfere with these orderings and cause a strengthening effect [29].
Superdislocation slip deformation may affect mechanical properties. This deformation
mechanism is also observed in B2 and D03 lattices in high Si electrical steels [30]. In some
studies, B2 and D03 ordering increased the magnetic properties. The growth of B2 leads to
a higher specific magnetization, while the growth of D03 leads to a low coercive force and
maximum permeability [31].

Rapid cooling at a critical cooling rate can suppress D03 ordering and reduce the size
of B2 ordering in Fe-Si alloys [32]. An exponential relationship between the Si content and
the critical cooling rate can be observed in Figure 4 where A1 to A5 are air quenched, B1
to B3 are oil quenched, C1 to C3 water quenched, and D1 to D4 are brine quenched. In
another study, 5–6 wt.% Si 2 mm thick strip samples were hot-rolled at 1200–900 ◦C and
cooled by air. The strip samples were then annealed at 850 ◦C for 1 h and cooled at different
cooling rates (as shown in Figure 5). As seen in this figure, the high cooling rate can reduce
the domain size of B2 phase and suppress the D03 phase [33]. In addition, deformation
decreases high Si ordering and reduces brittleness [34].
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4. Effects of Thermomechanical Processing

Thermomechanical processing (TMP) plays an important role in the final microstruc-
ture and magnetic properties of electrical steels [35–40]. TMP involves reheating, hot-rolling,
cold-rolling, and an intermediate and final annealing (recrystallization annealing) process,
which influence the inclusion distribution, microstructure, and texture, which in turn
influence the final magnetic properties.

The product’s final magnetic properties (after final annealing) are directly affected by the
texture distribution [41]. The texture of electrical steels is influenced by the following factors:
(1) steels chemical composition; (2) possible γ to α-phase transitions during cooling; (3) high
solidification cooling rates; (4) directional solidification; (5) recrystallization annealing after
the cold-rolling process; (6) deformation regime [42]; and (7) magnetic annealing [43].

Rolling temperature has a significant influence on texture and microstructure evolu-
tion [38]. The texture produced by hot-rolling also affects the texture and microstructure
evolution during the cold-rolling process [44]. Nuclei orientation and the growth rate
of these nuclei influence the recrystallization texture. There are two main theories that
describe texture development, one of which is the nucleation-oriented theory. This theory
assumes that nuclei that have a specific orientation grow rapidly. The fast growing nuclei
orientation affects recrystallization texture [40]. The second theory is a growth-oriented
theory, which assumes that there are some specific orientation relationships for which grain
boundaries migrate more rapidly [17].

Euler angles are the three rotations that align the <100> direction with the rolling
direction. The orientation distribution function (ODF) in Figure 6 shows the sections when
one Euler angle (Bunge notation) ϕ2 is at (a) 0◦ and (b) 45◦.
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The notation of texture {110}<001> represents the planes of the form {110} that are
parallel to the surface of the sheet, and directions of the form <001> that are parallel to
the rolling direction [45]. Rolling textures are often represented by “fibers” instead of
specific orientations.

During the thermomechanical processing of electrical steels, some specific textures
are observed: <111> //normal direction [ND] (γ-fiber), <100>// [ND] (θ-fiber), {hhl}
< h

l + 1 h
l + 2 h

l > (α*-fiber), <110> // rolling direction [RD] (α-fiber), and <100>// RD
(η-fiber). The orientation and fiber structures are shown in Figure 6 [46].

In electrical steels, α-fiber, α*-fiber, and γ-fiber are commonly formed during thermo-
mechanical processing [47]. This is caused by the oriented nucleation behavior at elongated
deformation bands. The γ-fiber and α-fiber deformation bands are formed by the rotation
mechanisms in the hot- and cold-rolling processes [35,47,48]. For electrical steels used
in rotating magnetic field (electric motors), λ-fiber is the ideal texture for good magnetic
properties because it has the best magnetization direction <001> in the plane of the sheet.
In this case, any {hkl} with <001> axes in the plane of the sheet is preferred. For magnetic
circuits, the best texture is η-fiber, since this makes it possible to orient the magnetic flux
along the <100> direction for almost its entire path.

The γ-fiber is not favorable for magnetic properties of electrical steels [49]. In conven-
tional steel processing, γ-fiber evolves preferentially after annealing [50]. The recrystalliza-
tion process occurs by consuming λ–fiber and α-fiber texture grains. This phenomenon is
caused by the difference in orientation-dependent stored strain energy, which provides
the activation energy for γ-fiber recrystallization [51,52]. Thus, it is difficult to weaken the
γ-fiber texture and strengthen the λ–fiber texture. However, a secondary recrystallization
step has proved helpful in controlling the γ-fiber texture in the annealing process, forming
a strong rotated cube texture [40,53,54].

Because γ-fiber texture grain tends to nucleate at the grain boundary [47,55], γ-fiber
texture formation is decreased by controlling the grain boundary nucleation environ-
ment [54]. Park et al. reduced the number of γ-fiber nuclei at the grain boundary by
increasing the grain size [56]. Cunha et al. decreased the stored stain energy of the γ-
fiber texture by two-stage cold-rolling [57]. Further, γ-fiber texture recrystallization is
controlled through the temper-rolling process [58,59]. The development of shear bands has
a significant influence on the formation of desirable recrystallization textures [60,61]. By
temper-rolling at a temperature where dynamic strain aging (DSA) occurs, the formation of
shear bands was increased [62]. If temper-rolling is performed above the DSA temperature,
this increases the stored strain energy [59].

Other than the rolling process, the slightly deformation regime (cutting clearance) also
has significant influence on the subsequent thermomechanical process. Higher cutting
clearance can lead to fine-grained microstructure and generate a higher core loss. The
anomalous loss is found to be the most sensitive energy loss to the cutting clearance [42].
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5. Effect of Other Elements
5.1. Influence of Mn and S Content

From the metallurgical processing of electrical steels, S and Mn are usually present in
the product. In some cases, Mn is one of the major components in the NGO electrical steel.
During the production process, S and Mn may form MnS inclusions that have significant
influence on the product properties.

The thermomechanical behavior of MnS precipitation has been thoroughly investi-
gated [63–65]. It is widely accepted that MnS particles in NGO electrical steels have a higher
likelihood of precipitating on the dislocations and grain boundaries [66,67]. MnS can also
form interdendritically during solidification. Here the solidification rate can influence the
size distribution of the MnS inclusions through the effects of the cooling rate on secondary
dendrite arm spacing [68].

The precipitation and coarsening of MnS particles not only influences the core loss,
but also affects magnetic aging in NGO electrical steels [69]. During heat treatment
processes, when the precipitate size is close to the size of the magnetic domain, it will
highly hinder the magnetic domain movement [70]. This may lead to an increase in
coercivity and hysteresis losses, which is called the pinning effect. When the size of the
precipitates is dimensionally similar to the thickness of the domain wall, the magnetic
domain movement may be delayed [71–73]. Due to the thickness of the domain wall,
only small inclusions have a significant effect on the magnetic properties. In practical
production, a high Mn/S level chemistry is sometimes used to avoid this pinning effect.
Driving the MnS level too low can easily form smaller MnS inclusions in a size range that
is exceptionally detrimental. By comparison, large oxides and sulfide precipitates have
very little influence on magnetics. In some cases, the fine inclusions that are nucleated in
the solid state are the deleterious ones.

Ren Q et al. [74] reported the application of rare-earth elements (REMs) on the coars-
ening of sulfides in NGO electrical steels. The cast slabs (1.0 wt.% Si, 0.42 wt.% Al,
0.005 wt.% C, 0.004 wt.% S, and 0.004 wt.% REMs) were hot-rolled to 2.6 mm, normalized at
approximately 900 ◦C for 3 min, cold-rolled to 0.3 mm, and finally continuous-annealed at
900 ◦C. A proper REMs addition can lead to an increase in the average grain size, decrease
of micro-sized inclusions, fine MnS, optimization of recrystallization textures, and better
magnetic properties.

Ca additions have also been used to decrease the number of small MnS particles.
A 3.2 wt.% Si + 0.4 wt.% Al steel was 1-stage cold-rolled to 0.5 mm, and finally annealed at
900 ◦C. The effects of Ca on the core loss are illustrated in Figure 7 [75].
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5.2. Influence of Al Content

High Al content in NGO electrical steels may suppress grain growth. A comparison of
the optical microstructures obtained is depicted in Figure 8. This grain growth suppression
is caused by the pinning effect of AlN and other inclusions. This pinning effect is influenced
by inclusion size. Furthermore, changes in annealing time or Al content resulted in no
significant effect on the textures obtained [1], which may also be attributed to the pinning
effect of inclusions.
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Figure 8. Optical microstructure of Fe-Al TD section samples with different Al content: (a) 0.53 wt.%
Al, (b) 1.86 wt.% Al, (c) 2.64 wt.% Al, (d) 4.68 wt.% Al, (e) 6.54 wt.% Al, and (f) 9.65 wt.% Al after
annealing at 1000 ◦C for 5 min [5].

When referring to magnetic properties, higher Al content may increase the Ph of the
total core loss because of the influence of the magnetic domain structures. On the other hand,
higher Al content may also decrease the Pa of the total core loss. The change in core loss has
been ascribed to an increase in resistivity and the complexity of domain structures [1].

In practical production, high Al additions are used because they can force large nitrides
to form during slab casting and reheating thereby rendering them inconsequential. AlN is
well known to aid in the formation of high hkl textures such as {111} for drawing steels by
pinning grains in a specific growth direction. Thus, some efforts to coarsen AlN particles
are employed to limit their influence. It is also imperative that N be tied up in order to
avoid magnetic aging [69]. However, it is extremely important that carbon is not tied up as
carbides, because these are extremely problematic for magnetic properties.

5.3. Influence of B Content

The influence of B content in NGO electrical steels is correlated to the Al and nitrogen
content. Lyudkovksy reported that over the composition range of 0.033–0.053 wt.% Al, the
addition of 0.0007–0.0038 wt.% B could lead to BN precipitation instead of AlN [76]. This
may increase the grain size and lead to an ideal texture. In the range of 0.0075–0.053 wt.% B
content for Fe-6.5 wt.% electrical steels, Kim observed that an increase of B content might also
have a grain-refining effect, and also improve bending strength and ductility at room temper-
ature [77]. The influence of B in Fe-1.35 wt.% electrical steels has also been studied [78], as
illustrated in Figure 9. As shown in Figure 9a, with the increase of B content up to 0.004 wt.%,
the grain size increased. When the B content is higher than 0.004 wt.%, the correlation is
inverted [70]. As shown in Figure 9b, the correlation between core loss, flux density, and B
content also changed at 0.004 wt.% B content. The best magnetic properties were achieved
with 0.004 wt.% B content, with core loss 3.616 W/kg and magnetic induction 1.792 T [70].
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Figure 9. Boron (B) effect on annealed cold-rolled steel sheets: (a) grain size, (b) flux density and
core loss [77].

The opposite effect (at a B content higher than 0.004 wt.%) in electrical steels may be
caused by boron segregation at austenite grain boundaries. This segregation decreases the
boundary energy and delays the γ→ α phase transformation in compositions that are not
fully ferritic. It also promotes a favorable texture during the recrystallization process [79,80].
Boron is unique and, in contrast with AlN, hurts drawing textures and in some cases may
be beneficial to magnetic properties. However, boron forms carbides which are difficult to
control in processing.

5.4. Influence of Ce and Nb Content

It is widely accepted that the deoxidization and desulfurization function of Ce may
coarsen inclusions, and thus lead to a decrease in the number of inclusions. Takashima et al.
stated that in NGO electrical steels, Ce and Al have a significant influence on grain size
during stress relieving annealing of NGO electrical steels [81]. Hou and Liao have observed
that Ce also affects the texture evolution of the material [23]. The relations between cerium
on the intensity of <100>//RD texture and <111>//ND texture are shown in Figure 10.
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Based on the electronegativity difference of Nb, Fe, and Si, Nb-rich precipitates will
destroy the ordered rearrangement between adjacent Fe and Si atoms in the matrix, thereby
inhibiting an ordered transformation in high silicon electrical steel. This will also cause
strong lattice distortion when Nb atoms enter the lattice of the Fe-Si matrix. As a result, the
addition of a small amount of Nb element can significantly improve the plasticity of high
silicon electrical steel [82,83].

5.5. Influence of Sb, Sn, and P Content

Sb, Sn, and P tend to segregate to grain boundaries. Sb may lead to a higher residual
induction and a lower coercive force [84]. Shimanaka et al. [85] reported that Sb may
improve the {100}<0vw> texture. Lyudkovsky [86] observed that Sb may promote {110}
and {100} texture at the expense of {111} and {211}. Vodopivec [84,87] demonstrated that Sb
significantly decreases {111} texture. There are two hypotheses that explain the beneficial
effect of Sb during the final recrystallization process. One states that the mobility of the
{111} grain boundaries decreases with Sb segregation [86]. The second theory asserts that
the formation of {111} nuclei are delayed in the recrystallization process by Sb [85].

Some studies have confirmed that Sn has a similar effect on the texture of the product
as Sb. During the recrystallization process, Sn segregates to the grain surface. This segre-
gation may selectively decrease the surface energy and the mobility of some grain bound-
aries [88,89]. Furthermore, both Sb and Sn have been shown to protect semi-processed steel
from internal oxidation during final annealing by the customer and improve the magnetic
properties of fully processed cold-rolled non-grain-oriented (FP CRNO) steel.

It has been reported that P additions impede {554}<225> texture [90] and {111}<112>
texture [91], and may also decrease the grain size before the cold-rolling process [90].
Other studies have also been conducted on the influence of different P contents in electri-
cal steels [90–93]. Samples with 0.099 wt.% P exhibited better magnetic properties than
0.013 wt.% P samples. P is often used to increase hardness for improved punchability and
is a major contributor to resistivity.

Furthermore, P additions also have an effect on electrical resistivity (ρ) and dynamic
viscosity (ν), in which the electrical resistivity will influence the eddy current loss and the
viscosity will influence the pouring and casting process of the electrical steel. Gui et al. [94]
reported that with P additions, the liquid viscosity and electrical resistivity were both
increased, as shown in Figure 11. Although the properties were measured at higher
temperatures, it indicates the effect of P in the alloy.
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6. Typical Chemistries and Processing Paths

Efforts to achieve better magnetic properties through the influence of chemistry and
processing paths for NGO electrical steels have been underway for many years.

De Dafe [58] studied the conventional processing path (thick slab casting, slab reheat-
ing, hot-rolling, cold-rolling, and final annealing) for NGO electrical steels (3.0 wt.% Si,
0.004 wt.% C, and 0.55 wt.% Mn). Samples were tested by hot-rolling at different tempera-
tures, cold-rolling by different strains, and finally annealed at 1020 ◦C. De Dafe [58] finally
reported that the best magnetic properties can be achieved by hot-rolling at 1000 ◦C and
cold-rolling with a 64.3% reduction. At the final thickness of 0.5 mm, the tested P15/60 (core
loss at a condition with induction 1.5 T and frequency 60 Hz) was less than 3.0 W/kg.

He S et al. [87] also reported the application of a CaO and CaF2 slag desulfurization
process in steelmaking to decrease the influence of S. The NGO electrical steel (3 wt.%
Si, 0.6 wt.% Al, C < 30 ppm, S < 50 ppm, N < 40 ppm), hot-rolled strips were normal-
ized at 900~1000 ◦C for 2~5 min. Then, they were cold-rolled 70–80% and annealed at
1000~1100 ◦C for 1~2 min. The P15/50 was reported to be less than 2.5 W/kg. Using 2-stage
annealing, core loss was further decreased. The material was first annealed at 850~1000 ◦C
for 1~3 min, and then annealed again at 1000~1100 ◦C for less than 1 min, with a reported
P15/50 of 2.30 W/kg.

With 1~1.3 wt.% Al, it is easier to get a larger grain size. This high Al is also helpful to
avoid the harmful influence from the elements Ti, Zr, Cr, and V. The normalized 2 mm thick-
ness strips were single stage cold-rolled to 0.5 mm. Then, they were annealed at 1050 ◦C
for a short time. The final average grain sizes were 110~140 µm, and the surface grain size
(surface to 80 µm depth) was greater than 30 µm. The final P15/50 was 2.5~2.37 W/kg, and
B30 was 1.68 T [84].

NGO electrical steels can also be produced by a twin-roll strip-casting process, provid-
ing opportunities to process steels with higher Si contents than conventional processing
allows. Some favorable textures can be generated in the as-cast condition [85,86]. Yonamine
studied the strip-casting process using the directionally solidified method. Therein, a large
initial columnar grain structure for 3 wt.% Si steels in the as-cast condition was observed,
along with a desirable {001}<0vw> texture for electric motors [88–91]. Because the ideal
texture in the as-cast condition is altered through the rolling and annealing processes,
texture control in thermomechanical processing is still of great importance. De Dafe [58]
studied the production of 2.75 wt.% Si NGO electrical steels by twin-roll strip-casting
process. After hot-rolling, strips were rapidly cooled to a temperature below 540 ◦C. Then,
they were cold-rolled to 0.45 mm, and finally annealed at 843 ◦C for 60 min. The resulting
P15/60 was 4.8 W/kg.

In the past few years, with the rapid development of electromobile market (high speed
motors), the importance of NGO electrical steel strength, heat conduction, and magnetic
properties under high frequencies (400–10,000 Hz) has increased. Many new works have
also been undertaken to achieve better magnetic properties under high frequency conditions.

Yu Lei et al. [83] reported the application of Nb to improve NGO electrical steel strength
without sacrificing magnetism. With lower temperature partial recrystallization annealing
to the 0.2 mm thick cold-rolled strip, a good strength without sacrificing magnetism
was reported. The B50 is 1.572 T, P1.0/400 is 33.26 W/kg, yield strength about 600 MPa.
This strength is attributed by multiple strengthening mechanisms including dislocation,
precipitation, and grain refinement strengthening.

Gervasyeva, I. V. et al. [95] studied strip thickness (0.20~0.35 mm) and cold-rolling
process (single rolling ~ double rolling) influence on texture distribution and magnetic
properties. As a result, the B50 is 1.62~1.64 T, P1.0/400 is 13.2~17.8 W/kg.

In the industrial production field, BAOSTEEL reported [96] to have ultra-thin NGO
electrical steel strip products for high speed motors. The thickness of these products
is 0.35–0.2 mm, for P1.0/400 13.0–21.0 W/kg, for P1.0/800 33.4–56.1, and yield strength
380–415 MPa.
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7. Conclusions

NGO electrical steels have been developed and researched for more than 100 years,
during which time a large number of reviews and books on such materials have been
published. In this work, factors that can influence the magnetic properties of NGO elec-
trical steels have been performed. Those magnetic properties are influenced not only by
composition but also by final texture, grain structure, inclusion distribution, and so on.

Modern NGO electrical steels have long had much better properties. Due to differences
regarding their application and markets, manufacturers are currently more interested in
the strength and magnetic properties under high frequency of NGO electrical steels. This
situation presents new challenges about texture control during the production process.

We already know that the texture distribution is influenced by steels chemical compo-
sition, phase transformation, solidification cooling rates, directional solidification, recrys-
tallization annealing, deformation regime, and so on. However, texture evolution control
during casting and heat treatment processes is complex, and the mechanisms involved
must continue to be addressed in future research, particularly for new manufacturing
processing pathways such as strip casting.
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Nomenclature

Ptot core loss
Pa anomalous loss
Pe eddy current loss
Ph hysteresis loss
c experimentally determined constant
d grain size
Bmax peak magnetic induction
t sample thickness
D material density
f working frequency
ρ material resistivity
ke parameters of eddy current loss
ka parameters of anomalous loss
kh parameters of hysteresis loss
B or BH magnetic induction
H magnetic field strength
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