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Abstract: The DIY approach promotes small-scale digital manufacturing for the production of
customized, fast moving consumer goods, including powder detergent. In this context, a machine
was developed to manufacture a customized detergent according to the needs of the clients indicated
on a digital platform connected to the machine. The detergent is produced by a mixing process of the
formulation components carried out in a 3D mixer. Analysing the mixing performance of the process
is essential to obtain a quality product. In this study, the mixing process of the powder detergent was
modelled using the discrete element method. After validating it with experimental test, this model
was utilized to study the mixing performance considering the allowable mass fraction range of every
formulation component and a mixer speed of 45 rpm, and the dataset generated from this study was
employed along with a machine learning algorithm to obtain a model to predict the mixing index.
In this sense, twenty-five different combinations of the defined components were simulated and a
mixing index of 0.98–0.99 was obtained in a time of 60 s, revealing that all the combinations were
completely mixed. In addition, the developed model was validated with results obtained from the
DEM model. The model predicts the mixing index in advance and with accuracy.

Keywords: detergent powder; mixing performance; discrete element method; machine learning

1. Introduction

The customization of products is a growing trend, as revealed by studies such as [1],
mainly due to the combination of the DIY approach and the use of new digital technologies.
In this context, the concept of small-scale digital manufacturing has been researched in the
DIY4U European project to be applied in the manufacturing of customized fast moving
consumer goods, particularly powder and liquid detergents. A machine and a digital plat-
form were developed, so that the machine manufactures a customized detergent according
to the needs that the clients indicate on the digital platform connected to the machine.
This machine is modular and contains tanks with the liquid and powder components,
and all the modules needed to manufacture the formulation from the components. The
manufacturing of powder detergent is performed according to the following steps: an
empty cup is placed in the machine, a certain amount of every formulation component is
poured into the cup, the lid is placed on it, then the closed cup is positioned in the mixer,
which mixes the components to obtain the mixture by replicating the Turbula® (Willy A.
Bachofen AG, Muttenz, Switzerland) movement, and finally the machine provides the cup
with the customized detergent.

In a powder mixing process, a homogenous mixture is a requirement to obtain a
quality product. As it is a process of manufacturing customized detergent, the amount of
the components can be different for each mixing process that the machine makes, so the
mixing performance must be analysed to assess the quality of each final product. For this
reason, it is intended to include a Digital Twin in the digital platform that is able to predict,
in real time and before ordering the fabrication to the machine, the mixing performance
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of the mixing process considering the initial components and the operation parameters
(mixing time and mixer speed). To achieve this objective, a model of the powder mixing
process can be obtained that allows us to analyse the mixing performance of the final
mixture, and result data extracted from this model can be used to predict the quality mixing
in real time without experimental test.

One of the methods widely used to model the behaviour of a particle flow is the
discrete element method (DEM), a numerical method developed for mining applications
initially as in [1], and whose use has spread to other sectors, such as agriculture [2], food [3]
or pharmacy [4], where the study of the behaviour of granular materials subjected to
different processes is of great interest. There are studies that have employed DEM to model
an operation process, and after calibrating the model with experimental results, use this
model to analyse the effect of some parameters on the process efficiency [5,6].

The mixing process is one of the most used processes in industries handling powders,
where to achieve a homogenous mixing is of great importance for making a quality product.
By this reason, several types of mixers have been developed, among which is the 3D
mixer, based on the Turbula® movement, that has been used in the DIY4U project. An
experimental analysis of the powder behaviour in a Turbula® mixer has been carried out
in [7]. On the other hand, several works [8,9] have analysed the mixing performance of
several mixers, as well as the influence of various process parameters on it, by using the
DEM simulation [10–12]. Therefore, the DEM method was identified as the best option to
model the mixing process of the powder detergent and to analyse its mixing performance.

The study of the variables of a process can help to assess and optimize the performance
or efficiency of the process [13,14]. In order to analyse certain variables of a process and to
make predictions about it based on data collected from tests and sensors, machine learning
methods were used to interpret and learn the patterns in the data structure. Machine
learning is seeing a significant growth and is being adopted in widespread applications
across a broad array of industries and fields.

By the application of supervised machine learning algorithms to an input dataset,
models used to predict new datasets not included in the initial dataset can be built, as seen
in [15]. Among these algorithms, the regression ones are frequently utilized to predict
the value of an output variable as a function of the values of an input variable group,
as well as to study the effect between all the variables. In this work, the DEM method
has been used to model the mixing process of the powder detergent, which has been
validated through experimental test. After that, this model has been employed to study the
mixing performance of the process and the effect of the initial quantity of the formulation
components and the operation parameters (mixing time and speed mixer) on it. Moreover,
an input dataset of the process has been generated from the DEM model considering the
whole range of every input variable. This input dataset has been used to obtain a model
by the application of a multivariate polynomial regression algorithm that allowed us to
predict the mixing index of the powder mixing process in real time without performing
simulations or experimental tests, and to analyse the effect of the input variables on the
mixing index of the process.

2. Computational Model

The mixing process of powder detergent is carried out in a 3D mixer, shown in Figure 1,
that replicates the Turbula® movement with a constant speed of 45 rpm. The components
utilized to obtain the formulation are surfactant particles, sodium sulphate, sodium carbon-
ate, coloured speckle, and liquid nonionic surfactant. Initially, every component is poured
into the cup individually, except surfactant particles and liquid nonionic that are premixed
before being poured. The cup has a capacity of 565 mL, and it was defined as having a
filling grade of 70%. The properties of formulation components are shown in Table 1.
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Table 1. Properties of formulation components.

Component Particle Size Median (µm) Bulk Density (kg/m3)

Surfactant Particle 443 830
Sodium Sulphate 207 1550

Sodium Carbonate 655 1150
Coloured Speckle 1000 800

Liquid Nonionic Surfactant - 800 1

1 Density of the liquid component.

The mixing process has been modelled by the DEM method, which is typically used
to study the behaviour of individual particles when interacting with each other and bound-
aries. The particle’s motion is governed by the equation of motion and the contact forces
that act on them due to the interactions that occur with other particles and boundaries [6,16].
These contact forces consist of normal force and tangential force, and they are calculated
according to the contact model used in the DEM simulation. In this work, the hysteretic
linear spring model was selected to calculate the normal force, the linear spring coulomb
limit to calculate the tangential force, and a constant adhesive force model to take into
account the adhesion due to liquid bridge forces. The gravity action was also taken into
account. Rocky DEM 4.4.3 software was used to perform the computational simulation.

From the geometry of the 3D mixer, only the parts that affect the mixing process were
included in the DEM model. To model the powder components, spherical particles were
used, and the liquid component was modelled as a liquid film added to the particles, and
the liquid amount added to each particle can change when particles interact between them.
Due to the particle size of the different components, the modelling of the mixture was
expected to generate a high number of particles with a high computational cost. Thus,
the Same Statistic Weight (SSW) method has been considered, according to [17], by which
a scale factor is applied to the particle size of all the components, achieving a reduction
in the particle number to be modelled but keeping the initial shape of the particle size
distribution. Table 2 indicates the particle size of every component used in the DEM model,
as well as the percentage by mass according to a standard formulation. The mechanical
properties regarding interactions between particles, and between particles and boundaries,
are presented in Table 3. The DEM model at the initial stage of the mixing process is shown
in Figure 2, where a certain colour is assigned to every component. Initially, the powder
components were totally segregated, and it was considered that the liquid component mass
was equally distributed between particles of surfactant component.
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Table 2. Input parameters for DEM model.

Component Percentage by Mass (%) Particle Size (mm)

Surfactant Particle 37.8 2.215
Sodium Sulphate 14.0 1.035

Sodium Carbonate 43.4 3.275
Coloured Speckle 0.7 5.0

Liquid Nonionic Surfactant 4.2 -

Table 3. Mechanical properties from [18].

Parameter Value

Particle–particle static friction 0.6
Particle–boundary static friction 0.4

Restitution coefficient 0.4
Rolling resistance 0.001
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Figure 2. DEM model of the mixing process.

The Turbula® movement is a three-dimensional movement based on the Schatz six-
revolute mechanism [19], which has been employed to mixing powders. To replicate this
movement, which was analysed in [20,21], an FEM model from the mixer geometry was
created, and the parameterized position of every part during a cycle of movement was
obtained by a rigid dynamics analysis. These position data were imported to the DEM
software and applied to the DEM model. The movement described by the mixer model in
each cycle is shown in Figure 3, representing the position of it every 45◦.

Moreover, after introducing the mixing time, the DEM model simulates the mixing
process up to the indicated time, and later it allows us to obtain the mixing performance of
the process, defined as the output parameter, depending on the input parameters, which
are time and components mass fraction.

In this study, the created DEM model was used to generate the dataset to estimate
the mixing performance based on machine learning. This dataset contains a set of design
points, where every point is defined by a certain value for every input parameter, and the
corresponding value of the output parameter obtained from the DEM model.

To create the set of design points, the whole range of mass fraction of every component
was considered. For that, a design of experiments (DOE) set was defined by the Central
composite design (CCD), which is a five-level fractional factorial design that is suitable
for calibrating quadratic response models. Using the CCD method, 25 design points were
defined which are listed in Table 4.
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Table 4. DOE points. Percentage by mass (%) of input parameters.

Design
Point

Surfactant
Particle

Sodium
Carbonate

Sodium
Sulphate

Coloured
Speckle

Liquid
Nonionic
Surfactant

1 25.0 0.9 72.1 1.0 1.0
2 25.0 0.9 68.7 1.0 4.4
3 25.0 0.9 73.1 0.0 1.0
4 25.0 0.9 69.7 0.0 4.4
5 25.0 36.7 36.3 1.0 1.0
6 25.0 36.7 32.9 1.0 4.4
7 25.0 36.7 37.3 0.0 1.0
8 25.0 36.7 33.9 0.0 4.4
9 40.0 0.9 57.1 1.0 1.0
10 40.0 0.9 53.7 1.0 4.4
11 40.0 0.9 58.1 0.0 1.0
12 40.0 0.9 54.7 0.0 4.4
13 40.0 36.7 21.3 1.0 1.0
14 40.0 36.7 17.9 1.0 4.4
15 40.0 36.7 22.3 0.0 1.0
16 40.0 36.7 18.9 0.0 4.4
17 32.5 18.8 45.5 0.5 2.7
18 25.0 18.8 53.0 0.5 2.7
19 40.0 18.8 38.0 0.5 2.7
20 32.5 0.9 63.4 0.5 2.7
21 32.5 36.7 27.6 0.5 2.7
22 32.5 18.8 46.0 0.0 2.7
23 32.5 18.8 45.0 1.0 2.7
24 32.5 18.8 47.2 0.5 1.0
25 32.5 18.8 43.8 0.5 4.4

3. Machine Learning Based Methodology

A machine learning (ML) algorithm based on multivariate polynomial regression
(MPR) analysis was adopted to identify the relationship between variables and allowed the
prediction of the mixing index.

The MPR used to estimate the coefficient values for different variables in the mixing
process was derived from a Second Order Multiple Polynomial Regression expressed as:

y = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + ε (1)

where β1 and β2 are called as linear effect parameters, β11 and β22 are called as quadratic
effect parameters, β0 is the bias, and ε is the error in the normal distribution.

According to [22], the Regression Function is given in Equation (2):

E(y) = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 (2)

The representation of the polynomial regression in a matrix form is given in (3):

Y = βX + ε (3)

The estimated parameters can be computed as in Equation (4):

β̂ =
(
X′X

)−1X′Y (4)

And the Computed Regression Equation is represented in (5):

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂11x2
1 + β̂22x2

2 (5)
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In order to assess the accuracy of the predicted values obtained by the regression-based
ML model, the most used traditional metrics can be adopted [23]. MAPE (mean absolute
percentage error), MAE (mean absolute error), RMSE (root mean square error), and R2

(coefficient of determination) metrics were calculated as in Equations (6)–(9):

MAPE =
100
n ∑ n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (6)

MAE =
1
n∑ n

i=1|yi − ŷi| (7)

RMSE =

√
1
n∑ n

i=1(yi − ŷi)
2 (8)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi −

−
y i

)2 ;
−
y i =

1
n∑ n

i=1yi (9)

where yi is the actual value, ŷi is the predicted value, and n is the number of data points.
Figure 4 shows the flowchart of the methodology defined to predict the mixing index

of the mixing process. The DEM model created is used to obtain the dataset. According
the 25 design points listed in Table 4 and considering a time every 5 s from 5 to 60 s, a
dataset of 300 data points was created. Each data point is composed by values of the
inputs and the output. For the predictive model, the inputs are time and mass fraction
of surfactant, carbonate, speckle and nonionic, and the output is the mixing index. The
sulphate mass fraction is not considered an input because it depends on the total amount
of the other components.
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The dataset is divided into 2 parts. A total of 280 data points are used to train and test
the predictive model. The other 20 data points are used to perform an independent valida-
tion of the model. In this process of training and validation, the accuracy of the predictive
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model results is assessed by calculating the error metrics indicated in Equations (6)–(9).
Finally, the predictive model is obtained and allows us to predict the mixing index for any
allowable combination of the components.

4. Results

The results show the validation of the DEM model compared with experimental results
from a mixing test. In addition, the study of the effect of the initial component mass fraction
and mixing time on the mixing performance is presented. The dataset acquired from this
study was used to obtain a predictive model of the mixing index of the process that is
also presented.

4.1. DEM Model Validation

To validate the DEM model, a mixing test with a 3D mixer was carried out and
the mixture obtained from the test was used to determine the repose angle. The same
procedure was simulated by the DEM model, and the numerical results were compared
with the experimental ones. From a qualitative point of view, the mixing homogeneity was
compared, and from a quantitative point of view, the repose angle.

The methodology consisted of filling the cup with the component mass fraction
according to the formulation shown in Table 2, closing the cup with a lid, placing it in a
3D mixer and running for 60 s. In Figure 5 a screenshot taken during the mixing test is
observed. Figure 6 shows the cup filled with the components totally segregated before the
test, and the cup with the components mixed after the test.
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Once the mixing process was finished, a sample from the mixture was taken to deter-
mine the repose angle by the fixed funnel method according to [24]. Figure 7 presents a
comparison between the powder piles obtained from test and DEM simulation. From a
visual perspective, it is observed that a high grade of mixing has been obtained in both cases.
The repose angle test was repeated twice and both times the result was 32◦, while a repose
angle of 31.98◦ was obtained from the DEM simulation, as indicated in Table 5. Therefore,
a great agreement between results from the experimental test and DEM simulation is
observed.
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Table 5. Comparison of repose angle between numerical simulation and experimental test.

Repose Angle Value

Numerical simulation 31.98◦

Experimental test 32.00◦

Relative error 0.063%

4.2. Mixing Performance Analysis

After validating the DEM model with experimental results, it was used to analyse the
mixing quality as a function of mass fraction components and mixing time. To assess the
homogeneity of the powder multicomponent mixture, a mixing index based on the pooled
variance of the whole system according to the study developed in [25] was used, whose
criteria is expressed in the following equation:

M =
σ2

0 − σ2

σ2
0 − σ2

r
(10)

where M is the mixing index, σ2 is the unbiased sample variance of the concentration in
a multicomponent mixture, σ2

r is the variance for multicomponent mixtures in the com-
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pletely mixed state, and σ2
0 is the variance for multicomponent mixtures in the completely

segregated state. All these variances are calculated by DEM simulation for a defined
input dataset. The M index can take values between 0, completely segregated, and 1,
completely mixed.

Every design point was simulated using the DEM model for a total mixing time of 60 s.
The evolution of the mixture in the cup from the initial to the final instant of the process for
the first design point is shown in Figure 8, where each represented instant matches with
the end of a cycle of the mixer. A uniform mixing of particles is observed at 60 s from a
visual point of view.
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As time was defined as one of the input parameters, the M index output was obtained
from DEM simulation every 5 s up to 60 s for all the design points, shown in Table 6.

Table 6. M index output for each design point at t = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 s.

Design
Point

Time (s)

5 10 15 20 25 30 35 40 45 50 55 60

1 0.776 0.870 0.885 0.918 0.968 0.976 0.979 0.988 0.989 0.992 0.991 0.992
2 0.780 0.892 0.885 0.953 0.970 0.985 0.978 0.989 0.989 0.987 0.989 0.991
3 0.788 0.871 0.879 0.916 0.968 0.975 0.976 0.984 0.988 0.989 0.991 0.989
4 0.716 0.868 0.857 0.943 0.965 0.976 0.967 0.987 0.987 0.985 0.987 0.991
5 0.853 0.909 0.929 0.946 0.973 0.978 0.980 0.981 0.976 0.986 0.983 0.986
6 0.833 0.912 0.912 0.964 0.975 0.977 0.981 0.985 0.983 0.984 0.984 0.992
7 0.843 0.905 0.925 0.952 0.972 0.975 0.979 0.986 0.979 0.988 0.984 0.986
8 0.829 0.911 0.909 0.960 0.971 0.980 0.977 0.985 0.979 0.986 0.985 0.992
9 0.721 0.854 0.886 0.914 0.964 0.974 0.970 0.983 0.982 0.984 0.985 0.988

10 0.695 0.862 0.876 0.934 0.941 0.970 0.973 0.981 0.982 0.988 0.983 0.990
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Table 6. Cont.

Design
Point

Time (s)

5 10 15 20 25 30 35 40 45 50 55 60

11 0.721 0.852 0.886 0.926 0.968 0.976 0.976 0.985 0.979 0.987 0.988 0.987
12 0.684 0.853 0.862 0.936 0.950 0.972 0.970 0.986 0.984 0.984 0.983 0.989
13 0.742 0.855 0.899 0.935 0.964 0.970 0.964 0.979 0.974 0.988 0.986 0.990
14 0.684 0.853 0.862 0.936 0.950 0.972 0.970 0.986 0.984 0.984 0.983 0.989
15 0.750 0.847 0.895 0.926 0.969 0.971 0.963 0.981 0.969 0.986 0.985 0.989
16 0.705 0.845 0.870 0.928 0.957 0.964 0.971 0.977 0.978 0.987 0.988 0.994
17 0.785 0.897 0.906 0.940 0.966 0.975 0.979 0.983 0.987 0.984 0.983 0.989
18 0.794 0.907 0.908 0.951 0.972 0.982 0.980 0.985 0.987 0.986 0.985 0.987
19 0.762 0.887 0.898 0.941 0.971 0.970 0.976 0.979 0.983 0.985 0.986 0.990
20 0.727 0.868 0.895 0.933 0.955 0.974 0.981 0.984 0.990 0.987 0.988 0.988
21 0.798 0.884 0.894 0.941 0.970 0.974 0.980 0.983 0.981 0.987 0.991 0.991
22 0.798 0.884 0.894 0.941 0.970 0.974 0.980 0.983 0.981 0.987 0.991 0.991
23 0.836 0.893 0.912 0.949 0.971 0.976 0.980 0.982 0.987 0.984 0.985 0.988
24 0.799 0.893 0.914 0.935 0.968 0.974 0.976 0.983 0.982 0.985 0.985 0.988
25 0.783 0.892 0.902 0.954 0.965 0.977 0.973 0.986 0.984 0.986 0.985 0.991

Figure 9 shows the variation of the M index with respect to time and the component
mass fraction of surfactant, carbonate, speckle, and nonionic, where it was observed that
the value of M index increases with time until it stabilizes at a value close to 1 in all
cases analysed.
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4.3. Predictive Model

The dataset of the powder mixing process obtained by the DEM model considering a
defined range of every input variable, which are time and mass fraction of surfactant parti-
cles, sodium sulphate, sodium carbonate, coloured speckle, and liquid nonionic surfactant,
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was used to obtain a model that predicts the M index quickly and accurately from certain
input values included in the ranges defined for them. For this purpose, a multivariate
polynomial regression algorithm was used, which was trained and tested with 280 data
points. After that, we validated the achieved model by means of an independent test dataset
with 20 data points not used for training. The obtained model consists of the vector of
coefficients used in the mathematical function, and is expressed in the following equation:

M = 0.79399–0.18742xsur f actant + 0.09510xcarbonate + 0.54466xspeckle + 0.20182xnonionic +
0.01063xtime + 0.15038x2

sur f actant − 0.19728x2
carbonate − 28.44069x2

speckle − 4.90740x2
nonionic −

0.00012x2
time

(11)

where M is the mixing index, xsurfactant is the mass fraction of surfactant particle, xcarbonate
is the mass fraction of sodium carbonate, xsulphate is the mass fraction of sodium sulphate,
xspeckle is the mass fraction of coloured speckle, xnonionic is the mass fraction of liquid nonionic
surfactant, and xtime is the time in seconds.

The error metrics obtained to evaluate the training and validation of the model are
presented in Table 7.

Table 7. Error metrics.

Metric MAPE (%) MAE RMSE R2

Training 1.873 0.017 0.024 0.848
Validation 1.503 0.014 0.017 0.9072

5. Conclusions

In this work, the mixing process carried out by a 3D mixer for manufacturing a powder
detergent was simulated using a DEM model, which was validated with experimental
test. This computational model was used to study the mixing performance of the process
considering mixing time and allowable mass fraction of components, at a mixer speed of
45 rpm. It was observed that a mixing index close to 1 was obtained in less than 60 s for all
the combinations simulated, meaning that they were all completely mixed.

In addition, the proposed methodology based on DEM and ML to obtain a model
which predicts the mixing index of the mixing process was developed. The DEM model
was used to generate the dataset needed and a polynomial regression algorithm was used
to obtain the model. It was demonstrated that the model predicts the mixing index of any
allowable formulation with accuracy and in advance without requiring experimental test or
numerical simulation. This method can also be used to optimize the mixing time necessary
to obtain a uniform mixing of a defined formulation.
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Nomenclature

DIY Do it yourself
DEM Discrete element method
FEM Finite element method
ML Machine learning
MPR Multivariate polynomial regression
βi Linear effect parameter
βii Quadratic effect parameter
ε Error in the normal distribution
MAPE Mean absolute percentage error
MAE Mean absolute error
RMSE Root mean square error
R2 Coefficient of determination
yi Actual value
ŷi Predicted value
n Number of data points
M Mixing index
σ2 Unbiased sample variance of the concentration in a multicomponent mixture
σ2

0 Variance for multicomponent mixtures in the completely segregated state
σ2

r Variance for multicomponent mixtures in the completely mixed state
CCD Central composite design
DOE Design of experiments
xsurfactant Surfactant mass fraction
xcarbonate Carbonate mass fraction
xsulphate Sulphate mass fraction
xspeckle Speckle mass fraction
xnonionic Nonionic mass fraction
xtime Time, s
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