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Abstract: An edge computing offloading strategy was proposed with the goal of addressing the issue
of low edge computing efficiency and service quality in the multi-service and multi-user intersections
of networked vehicles. This strategy took into account all relevant factors, including the matching of
users and service nodes, offloading ratio, bandwidth and computing power resource allocation, and
system energy consumption. It is mainly divided into 2 tasks: (1) Service node selection: A fuzzy
logic-based service node selection algorithm (SNFLC) is proposed. The linear equation for node
performance value is determined through fuzzy reasoning by specifying three performance indexes
as input. Gradient descent method is used to find the optimal value of the objective function, and
the Lyapunov criterion coefficient is introduced to improve the stability of the algorithm. (2) Offload
ratio and resource allocation are solved: The coupling between offload ratio and bandwidth resource
allocation is confirmed by relaxing integer variables because the optimization goal problem is a NP
problem, and the issue is divided into two sub-problems. At the same time, a low-complexity alternate
iteration resource allocation algorithm (LC-IRA) is proposed to solve the bandwidth resource and
computational power resource allocation. According to simulation results, the performance of genetic
ant colony algorithm (G_ACA), non orthogonal multiple access technology (NOMA) and LC-IRA
are improved by 26.5%, 31.37%, and 45.52%, respectively, compared with the random unloading
allocation (RUA) and average distribution (AD).

Keywords: edge computing; fuzzy logic reasoning; Lyapunov; resource allocation

1. Introduction

As a key technology to promote the development of the fifth generation (5G) network,
mobile edge computing (MEC) extends computing, communication, and storage facilities
to the edge of the network [1]. By offering low-latency local computing resources, it can
facilitate novel mobile applications (augmented reality, virtual reality, autonomous driv-
ing, etc.). In order to offer users effective services, new 5/6G applications also depend on
computational offloading technology. There are many useful technologies and methods
that have been developed as a result of extensive research in both industry and academics
on computational offloading techniques in MEC networks [2]. Edge computing has de-
veloped into a promising computing platform supporting computationally intensive and
delay-sensitive mobile applications, and it is also widely used in the field of connected
vehicles. The development of the intelligent connected vehicle (ICV) requires the sharing
and collaboration of cars, roads, internet, and the cloud, and deployment of the car net-
working platform, roadside units (RSUs) and roadside infrastructure, terminal sensors, etc.
In addition, it needs to realize the car and car, car and road, and car and people interactions
in all kinds of application scenarios. For example, the vehicle density on the roadside
infrastructure of crossroads is complex and needs to consider many factors, especially the
multi-edge service and multi-user scenarios.

However, due to the limited coverage of edge computing resources and services, there
are still some key problems to be properly solved, especially the edge resource allocation.
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In this context, mobile users are permitted to delegate work to service nodes, and the MEC
server chooses which users will receive data and computing power resources. It is also
necessary to consider whether the allocation problem is coupled with the requirements of a
user write-offload ratio or a quality of service. Therefore, one of the main challenges is how
to distribute resources wisely and choose the best service nodes for networked vehicles.

Edge computing can complete data processing tasks independently and quickly in
the field, and edge computing can process data independently in the local area, so as
to meet the high real-time requirements in the field of traffic. In a specific scenario, the
communication link adapts to the change because the topological structure of different
internet of vehicles scenarios varies. This change is too great for the fixed transmission
rate model that is currently in use. There is also a lack of collaboration between vehicles
and service nodes, which results in low utilization of edge computing resources. For this
reason, the research on task unloading of on-board edge computing should address the
following challenges: (1) Adaptive unloading strategies combined with traffic density are
not taken into account when analyzing the uneven distribution of road hotspots brought
on by changes in traffic density. (2) To increase the resource utilization of edge nodes, the
multi-objective optimization issue in on-board edge computing must consider the selection
of service nodes, the reasonable allocation of bandwidth, and computing resources. This
paper studies the issue of computing task offloading in the intersection scene under the
inter-office voucher (IOV) environment so as to solve the problems mentioned as before.

As a result, this paper studies the vehicle computing task unloading problem in
the intersection scenario; carefully considers the matching between users and service
nodes, unloading ratio, bandwidth, and computing resource allocation; and establishes
the optimization target of minimizing system energy consumption. The proper matching
between users and service nodes can reduce many unnecessary expenses for subsequent
uninstallation. At the same time, the bandwidth resource in communication is taken as
a variable to verify the coupling between this variable and the unloading ratio. Finally,
a related algorithm to minimize system energy consumption is proposed, and based on
Matlab, and the design and simulation of the networked vehicle system scene are carried
out to verify the effectiveness of the proposed algorithm and strategy.

2. Related Work

With its ability to be used in both edge and end applications and its features of
low latency and high reliability, mobile edge computing is a widely adopted computing
paradigm. MEC’s core principle is the local processing of mobile application data at the
network edge, close to the end user, or performing computation tasks (using, for example,
a wireless network controller, a long term evolution (LTE) macro station, a small cell micro
base station, etc.). As a result, the end-to-end delay is reduced and the resource scarcity of
mobile devices is lessened. The MEC ecosystem still faces a number of significant issues
that have not yet been adequately addressed as an emerging computing paradigm, and
task offloading is just one of the difficulties in these areas. In order to achieve the best
operational performance of the application and make efficient use of MEC resources, it
is crucial to choose the appropriate task to offload to the appropriate MEC server at the
appropriate moment [3].

Reference [4] proposed the network slicing and load balancing algorithm (VECSlicLB).
The algorithm virtualizes the data plane of edge nodes by using the network slicing function.
VECSlicLB algorithm is based on the decoupling of the control plane and the data plane to
realize load balancing among edge nodes and improve resource utilization of edge nodes.
A heuristic algorithm called Horae is suggested in the literature [5] when scheduling jobs
for various users with precedence and geographic restrictions. However, it is simple for this
heuristic method to enter a local optimum. Its shortcomings will shortly be made clear if it
is used for multi-objective optimization in challenging situations such as those related to
the internet of vehicles (IOV). In order to reduce the overall delay of all tasks, studies have
been conducted on joint resource allocation and other optimization variables, including
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joint server allocation, transmission power allocation between users and MEC servers,
MEC server computing resource allocation, time allocation, and channel allocation [6]. The
fractional search method is optimized for computing resource allocation, but the authors
do not take into account a coupling relationship between the offloading ratio and these
resource allocations, and directly idealize it as a separate variable [7–11]. In reference [12],
an effective low-complexity heuristic algorithm is proposed for a multi-user MEC supported
wireless communication system to maximize the number of offloading tasks for all uses in
uplink communication while maintaining the computing resources of MEC at an acceptable
level. The proposed resource allocation strategy cannot ensure the rationality of the
allocation, and this algorithm is established to increase the number of user tasks that are
offloaded. Nevertheless, this algorithm offers a nearly optimal solution with little time
overhead. With regard to the matching issue, the literature [13] considers the incentives
for using the idle computing resources of vehicles as the edge nodes, and attempts to
establish a differential pricing model based on different resource states. A gradient-based
iterative resource allocation method (GRAIA) is developed. The issue of matching users and
vehicles is then considered. An enhanced hierarchical clustering algorithm (HDBSACAN)
is suggested in reference [14]. To locate suitable service vehicles for use as task vehicles
and to increase task unloading effectiveness, an evaluation expression for nearby service
vehicles is proposed. The literature [15] takes into account computing and communication
resource allocation in conjunction with communication efficiency, combining delay and
energy consumption to reduce overall network overhead. The issue is broken down into
three smaller issues that are each solved separately using mathematical techniques, but
this approach is very computationally complicated. In order to investigate the resource
allocation issue in the internet of things (IoT) and significantly enhance the performance of
wireless communication, the literature [16] also considers the energy cost and processing
delay of wireless transmission and computation. However, this research also disregards the
possibility of a coupling between the offloading ratio and resources. A joint user selection
and resource allocation algorithm is suggested in the literature [17] to optimize user energy
efficiency, which is calculated as the relationship between user throughput and energy
usage. The user’s offloading of selection and uplink transmission power are included in the
formulation of the energy efficiency maximization issue as a mixed integer score nonlinear
optimization problem [18]. The problem is transformed into an equivalent subtractive
convex optimization problem through the relaxation transformation method, and the
corresponding optimal solutions of user selection and power allocation are provided [19].

The complex connected vehicle scenario at the intersection is examined in this paper.
Researchers thoroughly evaluate the matching between users and service nodes, offloading
ratio, bandwidth, and computing power resource allocation, and propose the optimization
target of reducing system energy consumption. There are mainly two innovations: on the
one hand, the innovation of dynamic matching between vehicles and service nodes; on
the other hand, the innovation of the vehicle task unloading problem. The appropriate
matching between users and service nodes can cut down many unnecessary costs for
subsequent offloading [20].

3. Optimization of Vehicle Edge System Model
3.1. System Model

As shown in Figure 1, the intersection scene is built up with vehicle sets V =(v1, v2, . . . , vN)
and RSU and R =(R1, R2, . . . , RJ), and the time is discrete into a single observable time
t = (1, 2, . . . , τ) slot with the length of ∆ = t

τ . The RSU configuration interval is brief in
the intersection situation. Only one MEC server is needed for vehicle job calculation and
processing in order to prevent resource waste. The tasks carried by each vehicle can be
simplified into a binary form Taskvi =

{
Svi, Tmax

vi
}

, i ∈ (1, N), which respectively describes
the vehicle task data size and the maximum allowable delay. Some duties must be delegated
to an edge server with high processing capacity due to the vehicle’s limited computing
capabilities, so the task computation uses a binary representation. If tasks are unloaded
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simultaneously onto the MEC server while there is heavy traffic flow at the intersection,
the machine will become overloaded and eventually fail. Therefore, the task queue model
is created based on the randomness of tasks. Tasks in the system are randomly generated
and delivered to a specific RSU. After the storage period, the tasks are migrated to the MEC
server for calculation. The task queue length on any RSU is Qj(τ)(j ∈ J), and it is updated
according to the following equation:

Qj(τ + 1) = max(Qj(τ)−Wj(τ), 0) + Uj(τ) (1)
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Wj(τ) is a task that has been migrated, while Uj(τ) indicates that the task has been
received. It is set so that when the RSU task buffer exceeds the threshold Qmax, the vehicle
is no longer permitted to place tasks.

(1) Local Computation

The vehicle itself has a certain amount of computing resources, but because there are
only so many of them, it can only handle a certain amount of computational work. Then,
the number of CPU cycles allocated for the local computing task can be described as:

Cyclevi =

√√√√ Γlocal
vi

Φ(1− η)Slocal
vi

(2)

where the computing capability of the Γlocal
vi vehicle is vi, Φ represents the effective constant

of the capacitor switch of the vehicle, Slocal
vi = (1− aτ

vi)Svi is the number of tasks that the
vehicle needs to compute locally, and aτ

vi refers to the unloading scale factor. The following
summarizes the local execution duration and energy usage:

Tlocal
vi =

(1− η)Slocal
vi

Cyclevi
(3)

Elocal
vi = k(Γlocal

vi )
2
(1− aτ

vi)Svi (4)

k depends on the energy coefficient of the chip structure.

(2) Unloading calculation

During the uninstall process, the delay is divided into uplink transmission delay,
waiting delay, and calculation delay (the transmission time between the MEC server and
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the RSU and the task result sending time are ignored). According to the relationship
between the limit data transmission rate and bandwidth in a noisy channel (Shannon’s
theorem), the transmission rate between the vehicle and the RSU is defined as:

run
vi,j = Bvi log2(1 +

pun
vi,jHvi,j

O2 ) (5)

where, Bvi represents the bandwidth resource allocated by the system to the vehicle vi,
pun

vi,j represents the channel transmission power, Hvi,j(τ) is the standard channel vector
between the vehicle and the RSU, and O represents the white Gaussian noise. The trans-

mission delay generated by the unloading process is expressed as Tun
vi,j =

ηSun
vi

run
vi,j(τ)

, energy

consumption generated Eun
vi,j = pun

vi,j ∗ Tun
vi,j, Sun

vi,j = aτ
viSvi represents the number of tasks

unloaded by the vehicle vi to the RSU j, and pun
vi,j is the transmission power. When tasks

are assigned to the RSU, they are migrated to the MEC server following the queue in serial
processing mode. The waiting time is:

Twait
vi,j (τ) =

Qj(τ)−Qj(τ − 1)
Γmec

(6)

(Γmec is the computing capacity of the MEC server). After the migration to the MEC server, the

computation time and energy consumption are expressed as Tcal
vi,j =

Sun
vi

Γmec
, Ecal

mec = v ∗ (Pvi)
3.

Pvi is the computation power allocated by the MEC server to the task of the vehicle.

3.2. Optimization Model

The vehicle task is configured so that it cannot be fully locally computed or fully
unloaded while still meeting the user’s requirements for service quality. To put it another
way, the scale factor is dynamically adjusted to accommodate the task’s dynamic unloading,
and the numerical relation is 0 < aτ

vi < 1. At the same time, in order to reduce the
energy consumption of the system, before the load task processing, the vehicle in the
system is matched to the appropriate service node, the matching vector is introduced
V j

i = [V j
1 , V j

2 , . . . , V j
N ](τ), and the element V j

N is the vehicle i selection to unload part of the
task to the node j.

The total system energy consumption includes the local computing energy consump-
tion, transmission energy consumption, and computing energy consumption, which can
be expressed as e = Elocal

vi + Eun
vi,j + Ecal

mec. In short, an optimization model is developed to
minimize the system’s overall energy usage, as illustrated below.

P1 min
{V j

i ,aτ
vi ,Pvi ,Bvi}

e

s.t
max

{
Tlocal

vi , Tun
vi,j + Twait

vi,j (τ) + Tcal
vi,j

}
≤ Tmax

vi (7a)

Qj(τ) ≤ Qmax ,∀j ∈ J (7b)

Bvi > 0, ∀vi ∈ N (7c)
N
∑

vi=1
Bvi ≤ Bmax (7d)

0 < aτ
vi < 1 (7e)

Pvi > 0, ∀vi ∈ N (7f)
vN
∑

vi=1
Pvi ≤ Pmax (7g)

η= {0, 1} (7h)

(7)
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Constraint (a) ensures that the task processing time stays within the maximum al-
lowable delay; constraint (b) ensures load balancing, and the backlog of each node cannot
exceed the maximum threshold Qmax. Constraints (c), (d), (f), and (g) stipulate that the
bandwidth and computing power allocated by the server to the user cannot surpass its
own maximum threshold Bmax, Pmax. Constraint (e) guarantees the requirements of the
unloading ratio on the premise of satisfying the quality of service; constraint (h) represents
two unloading instructions.

4. Edge Computing Offloading Method in Internet of Vehicles

Due to the complex topology of the connected vehicles scenario, the same vehicle
may appear in the service scope of multiple RSUs at the same time. The system’s vehicles
and RSU must be correctly matched in order to prevent network congestion brought on
by multiple users connecting to the same RSU at once. In addition, radio resources are
shared via virtualization among users with different resource needs due to MEC’s strong
computing and storage capabilities. After completing system matching, the server provides
bandwidth and computing power resources for users. Therefore, this section will be divided
into two stages to achieve the final system optimization.

Definition 1. Edge service node selection: The fuzzy logic system is established, and the vehicle-
related performance metrics are input to evaluate each service node. Finally, the evaluation result
vector is output, and the finest service node is located at the location of the vector’s maximum value.
(Definitions 1 and Definitions 2 are sourced from reference [1]).

Definition 2. Offload ratio and resource allocation: Following system matching, the optimization
goals are accomplished by modifying the unloading ratio and judicious distribution of resources
(power and bandwidth).

4.1. Edge Service Node Selection

Fuzzy control is an intelligent control method based on fuzzy set theory, fuzzy lan-
guage variables, and fuzzy logic reasoning. It is an intelligent control algorithm that
imitates human fuzzy reasoning and decision-making process in behavior. In fuzzy control,
the experience of operators or experts are composed of fuzzy rules, and then the real-time
signals from sensors are fuzziness; the fuzziness signals are used as the input of the fuzzy
rules to complete fuzzy inference, and the output obtained after inference is added to the
actuator. Fuzzy inference systems include both Mamdani and Sugeno models, both of
which are used to achieve decision processing in complex systems. The latter has high
complexity but little performance improvement, making it not the best choice for fuzzy
inference. Therefore, a service node selection algorithm based on the fuzzy logic control
principle (SNFLC) is suggested in this part, and its structure is shown in Figure 2.
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Load ratio (LR) determines whether it has enough room to store vehicle tasks. By
introducing the three indicators, task mobility (TM) depicts the node’s task-forwarding
effectiveness, continuous connectivity probability (CCP) gauges the node’s dependability,
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and performance of the service node (PSN) is determined, as shown in Figure 3. It is
important to note that the network architecture of the internet of vehicles is constantly
evolving. The topology structure is assumed to be constant throughout each time slot
segment in order to efficiently complete the duties that come after.
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(1) LR

Load ratio describes the load balance of RSU at a certain time slot τ. The load ratio at
any node is defined by the task queue length Q(τ) and cache capacity threshold Qmax of
the time slot τ. The expression (8) shows that the smaller the load ratio is, the larger the
remaining storage space is, and the more likely it is to successfully store vehicle tasks.

LRj(τ) =
Qj(τ)

Qmax
(8)

(2) TM

Vehicle tasks arrive at the service node in the form of data packets, and task mobility
is a metric to measure the task processing rate of the node. The larger the mobility rate,
the faster the task can be migrated to the MEC server for processing. The task arrival rate
can be represented by using the sliding exponential average algorithm to mimic the packet
arrival rate Arrive(τ).

Arrive(τ) =
dQ(τ)(1−e−∆/℘)

∆
+ e−∆/℘Arrive(τ − 1) (9)

where ℘ is a constant, reflecting the correlation between the arrival rate of the task before
and after and the time. Usually, the value of e−∆/℘ is 0.1, which is used to represent the
instantaneous rate. dQ(τ) = Q(τ)−Q(τ − 1) indicates the number of tasks that reach the
node in a time slot τ. Service(τ) is the node forwarding service rate, so the task migration
rate can be expressed as the ratio of the two.

Tranj(τ) = Arrive(τ)/Service(τ) (10)

(3) CCP

The benchmark used to assess the node’s dependability is the constant connection
probability between the vehicle and the node. The higher the probability is, the longer
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the connection will not be forced to terminate the task due to the signal terminal, and the
connection will always exist until the end of the task processing. The Poisson distribution
with density as ` is satisfied by the system’s car distribution. On a road with as area denoted
as A, the number of vehicles is a Poisson random variable. Therefore, the probability of
having N vehicle on this road section is:

f (N, A) =
`AN

e`AN!
, N ≥ 0 (11)

pj
vi = 1− (1−Kj

vi)(1−Kj
vi(•)) (12)

Kj
vi is the connection probability of the vehicle i directly connecting to the RSU j, and

Kj
vi(•) is the continuous connection probability of the vehicle directly connecting to the

RSU (namely, the connectivity stability of the two). On the contrary, the probability that the
vehicle fails to connect to the RSU or fails to continuously connect after establishing the
connection are 1−Kj

vi and 1−Kj
vi(•), respectively. A vehicle’s likelihood of connecting

to the RSU is unaffected by whether another vehicle is connected to the RSU due to the
strong transceiver power of the RSU, meaning that the connection establishment process
is entirely rational. Therefore, the probability that the vehicle is directly connected to the
RSU is:

In a certain time slot τ, the vehicles connected with the RSU in the system are called
the effective vehicle set N1, which can be known from the law of full probability:

Con(N1 = f ) =
∝

∑
F= f

Con(N = F)Con(N1 = f |N = F) (13)

Since the probability that the randomly selected vehicles in N are directly connected
to the RSU is identical and independently and identically distributed, the probability of f

vehicle in N1 follows the binomial distribution Con(N1 = f |N = F) =
(

F
f

)
q f (1− q)F− f

to obtain the following formula:

Con(N1 = f ) =
∞
∑

F= f

(`A)F

e`A F!

(
F
f

)
q f (1− q)F− f

=
(
∫ A

0 `pj
vidx) f

e
∫ A

0 `pj
vidx F!

(14)

where, q = 1
A
∫ A

0 pj
vidx represents the probability that a vehicle in N belongs to the N1 set.

As for the above three performance indicators, it is difficult to determine which node
can be used as a service node or an unloading node based solely on the size of a single
item. As a result, the Mamdani system has been created, and the fuzzy values of the three
indicators are input to the system’s fuzzy logic to determine the final output target node.

4.1.1. Fuzzy Variables

The entire system only makes basic disclosures—such as speed, direction, and location—
while RSU and MEC servers make task queue disclosures to safeguard user privacy. The
SNFLC algorithm aims to select a reliable server node RSU by integrating three performance
indicators. In order to eliminate dimensional influence, the three indicators are normalized
according to Equation (15) (that is, the domain of the three parameters are all (0, 1)), which
can be used as the input of the algorithm [21].

Normal(var) =
Value(var)−min(var)
max(var)−min(var)

(var ∈ {LR, TM, CCP}) (15)
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where, Value(var) represents the actual variable performance value of a service node,
max(var), min(var) are, respectively, the maximum and minimum allowed theoretically
for this performance, and the three normalized performance indexes are denoted as
LR, TM, CCP.

There are three types of commonly used fuzzy membership functions: triangular
function, trapezoidal function and Gaussian function. The membership degree of triangular
fuzzy function increases first and then decreases. It is suitable for describing well-defined
nearby units. Where the definition is clear, the membership degree is the largest, but it
allows a point to have the largest membership degree. The trapezoidal function is first
raised and maintained for a period of time before decreasing, and its maximum membership
can maintain its characteristic of maintaining a period to fit more real scenes. At the same
time, when the maximum membership remains short enough, it is equal to triangular
blur. Gaussian blur is the result of weighted average, which is more objective in theory. A
Gaussian function is used to describe the membership degree of each fuzzy variable.

G(var) =
1

e
[Normal(var)−α]2

2β2

(16)

α, β are an adjustable parameters used to correct the shape and offset point of the
membership function. Meanwhile, in order to convert the normalized clear input features
into fuzzy language variables, this study uses three fuzzy membership functions to fuzzify
the clarity value of each feature. LR = {small, medium, large}, TM = {low, middle, high},
and CCP = {poor, general, good}, as shown in Figure 4.
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4.1.2. Fuzzy Rules

The fuzzy set is composed of overlapping parts of each language variable [22]. In
contrast, each language variable’s clear value is a member of the fuzzy set of each lan-
guage variable, with varying degrees of participation. An IF-THEN rule is developed to
represent the nature of this relationship and the various impacts of each parameter on
node performance:

Rules n : IF LR(τ) is A1n and TM(τ) is A2n and CCP(τ) is A3n

THEN F(τ) = Rn(τ) = χ0n(τ) + χ1n(τ) ∗ A1n + χ2n(τ) ∗ A2n + χ3n(τ) ∗ A3n



Appl. Sci. 2023, 13, 6079 10 of 20

where A1n, A2n, A3n are the corresponding language variable values of the three variables
in the Nth rule; R(τ) is the fuzzy output value of this rule, and its mathematical relation-
ship can be described as a linear polynomial function of three performance parameters.
χ0n(τ) is a constant term with value 1, representing the coefficient of each parameter,
so as to determine the relative influence degree of each feature and meet the following
relationship [23]:

3

∑
�=1

χ�n(τ)= 1, 0.0001 ≤ χ�n(τ) < 1 (17)

To ensure the minimum fairness, any item parameter cannot be zero, that is, every
characteristic plays a part in assessing node performance. Theoretically, the fuzzy system
has 3 inputs, and each input variable has 3 language values, and, at most, a 33 rule can be
established, as shown in Table 1.

Table 1. Fuzzy rule table.

RULE
IF

THEN
LR(τ) TM(τ) CCP(τ)

1 small low none R1(τ)

2 small middle none R2(τ)

. . . . . . . . . . . . . . .

33 large high good R33 (τ)

The coefficients in the linear equation describing the outcome of the rules are further
determined by the fact that not all rules are reasonable. The trial-and-error method is
not the best option in this work because of the large number of tasks and poor efficiency
involved, while the empirical method has too many subjective factors, making it impossible
to ensure the validity of the results. Therefore, the gradient descent method is used to
obtain the objective and reasonable coefficients by adjusting the coefficients of the above
linear polynomial functions. Its performance indicator function is defined as follows:

Θ(τ) =
(LR(τ)− 1)2

+ (TM(τ)− 1)2
+ (CCP(τ)− 1)2

2
(18)

In order to improve the stability of the algorithm, a set of forward coefficients
{ε1, ε2, ε3}(ε1, ε2, ε3 ∈ [0, 1]) that meet Lyapunov criterion are adopted, and the above
functions are adjusted accordingly to obtain the modified coefficients, as shown in the
following equations:

χ1n(τ + 1) = χ1n(τ)− ε1
∂Θ(τ)

∂χ1n(τ)

= χ1n(τ)− ε1 × (LR(τ)− 1)× χ1n(τ)×
[

Gτ(LR)−Θ(τ)

χ2
2n(τ)+χ2

3n(τ)

]2
× γn(τ)

(19)

χ2n(τ + 1) = χ2n(τ)− ε2
∂Θ(τ)

∂χ2n(τ)

= χ2n(τ)− ε2 × (TM(τ)− 1)× χ2n(τ)×
[

Gτ(LR)−Θ(τ)

χ2
1n(τ)+χ2

3n(τ)

]2
× γn(τ)

(20)

χ3n(τ + 1) = χ3n(τ)− ε1
∂Θ(τ)

∂χ3n(τ)

= χ3n(τ)− ε3 × (CCP(τ)− 1)× χ3n(τ)×
[

Gτ(LR)−Θ(τ)

χ2
1n(τ)+χ2

2n(τ)

]2
× γn(τ)

(21)
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where, γn(τ) is called the fuzzy basis function, and the specific expression is given in the
following section. As seen from the diagram above, the system can identify a collection of
appropriate dynamic adjustment performance coefficients {ε1, ε2, ε3}.

Set up the Lyapunov function:

EΘ(τ) =
1
2
(E2

LR(τ) + E2
TM(τ)

+ E2
CCP(τ)) (22)

Introduce error variables:

err = EΘ(τ+1) − EΘ(τ)

= 1
2

LR,TM,CCP
∑
∇

(E2
∇(τ+1) − E2

∇(τ))

= 1
2

LR,TM,CCP
∑
∇

(E2
∇(τ+1) + err2

∇(τ) − E2
∇(τ))

(23)

err2
LR(τ) =

∂ELR(τ)

∂χ1n(τ)
· ∆χ1n(τ) =

∂ELR(τ)

∂χ1n(τ)
· (−ε1 · ELR(τ) ·

∂ELR(τ)

∂χ1n(τ)
)

It can be concluded err2
TM(τ)

, err2
CCP(τ)

, from the above equation err = 1
2

LR,TM,CCP
∑
∇

3
∑
�=1

3
∑

ε=1

(E∇(τ) ·
∂E∇(τ)
∂χ�n(τ)

)2(
∂E∇(τ)
∂χ�n(τ)

· ε2 − 2ε) that the convergence of the algorithm can be guaranteed
only when err < 0. Therefore, the value interval of the forward coefficient of the Lyapunov
criterion is as follows:

0 < ε < ε′, ε′ =


1, (

∂E∇(τ)
∂χ�n(τ)

)
2
> 1

2

(
∂E∇(τ)
∂χ�n(τ)

)
2
, (

∂E∇(τ)
∂χ�n(τ)

)
2
≤ 1

2

(24)

4.1.3. Solution of Fuzzy

The output results obtained by the fuzzy inference system are still fuzzy values.
Defuzzing is required to transform them into readable and obvious values. According to
the above fuzzy rules, the weighted average method is adopted, and the evaluation value
of any RSU for the vehicle of the time slot τ is:

ψ
j
i (τ) =

9
∑

n=1
G(var)Rn(τ)

9
∑

n=1
Rn(τ)

=
9

∑
n=1

G(var)γn(τ) (25)

For each user vehicle, the result vector [ψ1
i (τ), ψ2

i (τ), . . . , ψ
j
i (τ)] is finally generated as

ψ
j
i (τ), to represent the performance evaluation value of the node j by user i through evalu-

ating the nearby service nodes. The best service node is the maximum value max(ψj
i (τ)) in

vector. For the system, the final output is a vector [V j
1 , V j

2 , . . . , V j
N ](τ) is made up of the best

service nodes of all vehicles. The Algorithm 1 is shown as follows:
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Algorithm 1: Service Node Selection Algorithm Based on Fuzzy Logic (SNFLC)
1: Enter vehicle information and RSU information
2: Output: vehicle optimal service node vector [V j

1 , V j
2 , . . . , V j

N ](τ)
3: Initialize t= 0, and the number of vehicles
4: Each cycle ∆
5: ∆ + τ → t
6: The service node releases information to all vehicles, and the vehicles broadcast requests to the
system
7: for vi ∈ vN do :
8: The vehicle evaluates the performance of each service node according to the system
information (LR, TM, CCP).
9: Use fuzzy inference system to output the evaluation result vector [ψ1

i (τ), ψ2
i (τ), . . . , ψ

j
i (τ)]

10: Select the maximum value of the element in the vector max(ψj
i (τ))

11: End
12: Output the best service node vector [V j

1 , V j
2 , . . . , V j

N ](τ), V j
N = max(ψj

i (τ))

4.2. Uninstallation Ratio and Resource Allocation

The analysis of optimization objective function P1 shows that constraint (8) is an
integer variable, and other constraints are non-convex, so problem P1 is an NP problem that
is difficult to solve directly [24]. Firstly, the problem is simplified. The integer constraint in
the optimization objective is the key to the complexity of the problem. Here, it is relaxed
into a continuous variable [25], that is, the discrete variable η= {0, 1} is transformed into a
continuous variable 0 ≤ η ≤ 1. The restriction on task queue backlog can be disregarded
here since it was considered in the prior service node selection [25]. Constraint (1) can

be equivalent to

{
Tlocal

vi ≤ Tmax
vi

Tun
vi,j + Twait

vi,j (τ) + Tcal
vi,j ≤ Tmax

vi
. Combining the above expressions,

Equations (19) and (20) can be obtained as follows:

Tlocal
vi =

(1−η)Slocal
vi

Cyclevi

=
(1−η)(1−aτ

vi)Svi√
Γlocal

vi
Φ(1−η)(1−aτ

vi)Svi

= (1− aτ
vi)

3
2

√
ΦSvi
Γlocal

vi
≤ Tmax

vi

(26)

Tun
vi,j + Twait

vi,j (τ) + Tcal
vi,j

=
ηSun

vi
run

vi,j(τ)
+

Qj(τ)−Qj(τ−1)
Γmec

+
Sun

vi
f mec
vi

=
aτ

viSvi

Bvi log2(1+
pun

vi,jHvi,j

O2 )

+
Qj(τ)−Qj(τ−1)

Γmec
+

aτ
viSvi
Γmec

≤ Tmax
vi

= 1

Bvi log2(1+
pun

vi,jHvi,j

O2 )

≤ Tmax
vi

aτ
viSvi
− Qj(τ)−Qj(τ−1)+1

Γmec

(27)

By relaxing Equation (19) and substituting it into Equation (28), we obtain:

1
Bvi
≤

 (1− aτ
vi)

3
2

√
ΦSvi
Γlocal

vi

aτ
viSvi

−
Qj(τ)−Qj(τ − 1)+1

Γmec

 log2(1 +
pun

vi,jHvi,j

O2 ) (28)

It can be seen from (18) that bandwidth resource is a variable related to unloading
proportion, so the constraint on time of constraint (1) in problem P1 can be integrated
into the bandwidth resource constraint, and the expression Bvi = ηBvi, Pmec

vi = ηPmec
vi of
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bandwidth and power resource is restated at the same time. The final problem P1 is restated
as P2.

P2 min
{aτ

vi ,Pvi ,Bvi}
e

s.t
N
∑

vi=1
Bvi ≤ Bmax

vN
∑

vi=1
Pvi ≤ Pmax

0 < aτ
vi < 1

(29)

The two variables are first decoupled in the revised problem P2 because the objective
function and constraint conditions cause the bandwidth resources and unloading ratio
to be mutually coupled. LC-IRA is proposed. For example, Algorithm 2 decomposed
problem P2 into two sub-problems to reach an alternate optimization solution: (1) Given aτ

vi,
solved resource allocation strategy (bandwidth and power) based on alternating direction
multiplier method (ADMM); (2) Given Pvi, Bvi, solve the unloading ratio aτ

vi. Problem P2.1
can be defined as:

P2.1 min
{Pvi ,Bvi}

e

s.t
(30)

The s.t constraint is equivalent to P2. Considering the independence between bandwidth
resource allocation and power resource allocation, the following assumptions are proposed:

Assumption 1: Under the given unloading ratio, there exists an optimal solution
B∗vi, P∗vi in problem P2.1, which meets Equation (31).

B∗vi = min(
pun

vi,j

(
plocal

vi
aτ
viCyclevi

+ 1
Γmec −

plocal
vi

Cyclevi
) log2(1+

pun
vi,jHvi,j

O2 )

, Bmax)

P∗vi = min(Γmec(
pun

vi,j

log2(1+
pun

vi,jHvi,j

O2 )

+
aτ

vi plocal
vi −plocal

vi
aτ

viCyclevi
), Pmax)

(31)

Evidence: When the offloading ratio aτ
vi is known, the constraint on bandwidth alloca-

tion Bvi is no longer coupled, and the calculation power allocation Pvi is independent of the
former. The following is an example of how broadband resources can be optimized:

min
Bvi

plocal
vi Svi

Cyclevi
+ aτ

viSvi(
pun

vi,j

Bvi log2(1+
pun

vi,jHvi,j

O2 )

+ Pvi
Γmec
− plocal

vi
Cyclevi

)

s.t
(32)

The s.t constraint is equivalent to P2. In this case, the objective function is convex
with respect to Bvi, and the constraint ct.1 is also linear. B∗vi can be solved based on the
basic convex optimization algorithm. In the same way, P∗vi can be obtained, as shown in
Equation (32) above.

Then, the augmented Lagrange function is established:

ňµ(Pvi, Bvi, λ1, λ2) = e− [(λ1, Pmax −
vN
∑

vi=1
Pvi)+(λ2, Bmax −

N
∑

vi=1
Bvi) ]

+ µ
2

[
‖Pmax −

vN
∑

vi=1
Pvi‖2 + ŞBmax −

N
∑

vi=1
BviŞ

2
] (33)

where λ = {λ1, λ2} is the Lagrange multiplier and µ is the penalty parameter greater than 0.
By introducing the concept of inertia strategy, the iteration expression of each parameter is
redefined as follows:

P̂τ
vi = Pτ

vi + δ(Pτ
vi − P̂τ−1

vi ), i = 1, 2 . . . , N, δ ∈ [0, 1) (34)



Appl. Sci. 2023, 13, 6079 14 of 20

B̂τ
vi = Bτ

vi + δ(Bτ
vi − B̂τ−1

vi ), i = 1, 2 . . . , N (35)

Pτ+1
vi = argmin

{
ňµ(Pτ+1

[1,vi−1], Pτ
vi, Pτ

[vi+1,vN], Bτ
vi, λτ

1) +
1
2

ŞPvi − P̂τ
viŞ

2
}

(36)

Bτ+1
vi = argmin

{
ňµ(Pτ

vi, Bτ+1
[1,vi−1], Bτ

vi, Bτ
[vi+1,vN], λτ

2) +
1
2

ŞBvi − B̂τ
viŞ

2
}

(37)

λτ+ 1
2 = ňτ − ξ1µ(Pmax −

vN

∑
vi=1

Pvi + Bmax −
N

∑
vi=1

Bvi) (38)

λτ+1 = ňτ+ 1
2 − ξ2µ(Pmax −

vN

∑
vi=1

Pvi + Bmax −
N

∑
vi=1

Bvi) (39)

P̂τ
vi is the improved inertia step, which improves the calculation accuracy numerically.

δ is the acceleration coefficient to improve the convergence speed of the algorithm, and
ξ = {ξ1, ξ2} represents the error. The smaller the error value, the higher the convergence
accuracy of the algorithm.

Issue P2.2 can be described as the issue of offloading ratio:

P2.2 min
aτ

vi

plocal
vi Svi

Cyclevi
+ aτ

viSvi(
pun

vi,j

Bvi log2(1+
pun

vi,jHvi,j

O2 )

+ Pvi
Γmec
− plocal

vi
Cyclevi

)

s.t 1

B∗vi log2(1+
pun

vi,jHvi,j

O2 )

− Qj(τ)−Qj(τ−1)+1
Γmec

√ SviΓlocal
vi

Φ ≤ (1−aτ
vi)

3
2

aτ
vi

(40)

In this case, the optimization objective is a linear function of the offload ratio aτ
vi.

However, the positive and negative coefficients of aτ
vi are unknown, so this function can be

described as a linear function, y(aτ
vi) = ±Gaτ

vi +
plocal

vi Svi
Cyclevi

, which can be solved by ordinary
linear equation solving methods with constraints.

Algorithm 2: A Low-Complexity Alternate Iteration Resource Allocation Algorithm (LC-IRA)

1: Initialization: The service node selects the vector, Pvi, Bvi, λ1, λ2, δ, µ > 0, τ = 0, and sets the
minimum error value of iteration number index = 0, ξmin as the convergence target of the
algorithm.
2: Repeat
3: Update Pτ+1

vi , according to Equation (26).
4: Update Bτ+1

vi , according to Equation (27).

5: Update λτ+ 1
2 , according to Equation (28).

6: Update λτ+1, according to Formula (29).

7: Update ξ
τ+ 1

2
1 ← (Pmax −

vN
∑

vi=1
Pvi) + (Bmax −

N
∑

vi=1
Bvi)

8: Update ξτ+1
2 ← λτ+ 1

2 − λτ

9: Update ξτ+1 ←
√

Şξ
τ+ 1

2
1 Ş2 + Şξτ+1

2 Ş2 .
10: To compare the ξτ+1 ≤ ξmin
11: index ← index + 1
12: Until the algorithm converges
13. Solve problem P2.2 by using the linear equation solution method to obtain the optimal
unloading proportion a∗vi
14: Output P∗vi, B∗vi, a∗vi

After a fuzzy model, the optimization goal, and concrete calculation processing, each
vehicle’s service node output evaluation values define the assessment points of maximum



Appl. Sci. 2023, 13, 6079 15 of 20

value, which are the best edge service nodes. The vehicle chooses the discharge to the node
on the task, and, by adjusting the proportion of unloading, reasonable resource allocation,
in order to achieve the optimization target of reducing system energy consumption.

5. Simulation Experiment
5.1. Simulation Experiment Environment

In this paper, Matlab is used to verify the algorithm of unloading edge computing
tasks, including modeling application scenarios, and supporting various work on vehicle
edge workflow, including model accuracy calibration, testing, etc. This experiment is
based on Matlab 2019a for the Windows10 operating system. The scenario is set to an
urban road intersection, the area is A= 1000 m × 1000 m, there are J = 4 RSU, each
of which connects to one MEC server, the computing capability of the server is set to
Γmec = 8 GHz, and the maximum bandwidth and power resources of the server are set
to Bmax = 2.5/Mbit, Pmax = 5.8/kw. The vehicle has a certain computing capability
Γlocal

vi = 3 GHz, ∀i ∈ N, and the number of vehicle tasks and the maximum allowable delay
are evenly distributed in [50, 820]/Kb and [10, 50]/s. Finally, the minimum error threshold
ξmin = 0.001 is specified in order to confirm the algorithm’s convergence.

Several other benchmark schemes are presented in order to assess the effectiveness of
the suggested algorithm more accurately.

(1) Service node selection

HDBSACAN: In reference [14], an improved hierarchical clustering algorithm (HDB-
SACAN) is proposed. Considering four performance indexes, an evaluation expression for
surrounding service vehicles is proposed in order to find suitable service vehicles for task
vehicles and improve task unloading efficiency.

Random selection (RS): As the intersection is special, the same vehicle can be in the
communication range of multiple RSUs at the same time, and the vehicle randomly selects
one of them as the service node.

F-SNFLC: In the fuzzy logic selection algorithm proposed in this paper, a fixed value
is set for the coefficient of the output linear equation of the logic rule F(τ).

(2) Resource allocation strategy algorithm

Average distribution (AD): Bandwidth Bmax and power Pmax are equally distributed
to each vehicle. Task uninstallation ratio aτ

vi = 0.5.
Random unloading allocation (RUA): A random seed function rand is introduced to

calculate the optimization objective so that the unloading ratio and resource allocation are
randomly generated.

Genetic ant colony algorithm (G-ACA): the literature [21] considers a delay and energy
consumption research uninstall strategy, and the algorithm integrates the benefits of the two
basic algorithms. The improved shortcoming of the single algorithm easily falls into a local
optimal solution, but it is insufficient, and the researchers will only use the algorithm in
the single objective optimization scenario. Its performance in multi-objective optimization
scenario is unknown.

Nonorthogonal multiple access (NOMA): according to the literature [2], the federation
server allocation and power allocation, along with computing the allocation of resources,
time distribution, and channel allocation, can minimize the total delay of all tasks. However,
the authors did not take into consideration the unloading ratio and whether there is a
coupling relationship between the resource allocation, which could be directly related to
the ideal and displayed as a single variable.

5.2. Analysis of Experimental Results

When designing the fuzzy inference system, the researchers adjusted the Gaussian
α, β and modified the shape of the membership functions. Finally, a different service node
was selected in order to verify this deviation, and the vehicle average cost was set as the
evaluation criterion. The vehicle average cost is defined as the energy consumption and



Appl. Sci. 2023, 13, 6079 16 of 20

delay of accumulative and average cos t = 1
N

N
∑

i=1
(Elocal

vi + Eun
vi,j + Tlocal

vi + Tun
vi,j + Twait

vi,j ). The

node is not the best option if the vehicle pays a higher fee there. According to Figure 5, if
there is a difference between the two parameters, the Gaussian function will exhibit large
fluctuations. The membership function of a fuzzy system’s input variables can also produce
larger deviations. As shown in Figure 5, there is a gap between the two parameters, and
the Gaussian function will have large fluctuations. The membership function of the fuzzy
system input variables can produce larger deviation and evaluate the performance of the
node deviation, which is greater than α, β = 0.5. The more reasonable the parameters
are, the more closely a vehicle can be matched to a service node, which makes it easier to
allocate resources for subsequent work.
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Figure 6 illustrates the differences in the various service node selection algorithms, the
vehicle, and the final decision to use the CCP for Unicom. In other words, regardless of
the algorithm used to find the best service node for the vehicle, the node and the vehicle
must be able to establish a connection for Unicom to continue, and the probability of this
happening is relatively low. The average CCP of the system will decrease as the number
of vehicles rises, per the results, but the SNFLC-based algorithm suggested in this article
performs best overall among all algorithms, followed by HDBSACAN. When clustering
vehicles, the algorithm assigns a cluster head to each cluster, and, after computing duties
are finished, the cluster head manages all the vehicles in the cluster jointly. When there
are few vehicles, the results of the two algorithms are essentially the same, but as the
number of vehicles rises, the shortcomings of the latter algorithm gradually become more
obvious. This is because it is ignored that each vehicle is dynamically changing and that
the evaluation of node performance has its own value. F-SNFLC is the second. Because this
algorithm primarily establishes a fixed value in the fuzzy linear output equation that cannot
be adjusted adaptively to changes in the system environment, performance degrades over
time as the number of vehicles increases. N is the quantity of the car in Figure 6.

The convergence of the suggested resource distribution algorithm is confirmed, as
seen in Figure 7. The algorithm gradually converges at around 700 iterations, and the
average energy consumption gradually stabilizes, which is essentially consistent with the
system’s lowest energy consumption.
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Figure 6. Comparison of different node selection algorithms.
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The performance of the suggested algorithm is then evaluated in terms of system
energy usage in comparison to other algorithms. According to Figure 8, the system’s
energy consumption rises as the number of vehicles grows. The system load is significant
when there are more than 80 system cars. The performance of G-ACA is reduced in the
situation of multi-objective and large computation, and is even worse than the performance
of the algorithm NOMA. Due to its high computational complexity, the NOMA algorithm
performs less well than the LC-IRA algorithm suggested in this article. The efficiency
of G-ACA, NOMA, and LC-IRA algorithms increased by 26.5%, 31.37%, and 45.52% in
comparison to RUA and AD algorithms, respectively.
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Figure 8. Comparison of resource allocation algorithms.

Figure 9 illustrates how each algorithm performs in terms of edge resource usage
as the number of vehicles increases. With the increase in the number of vehicles, the
task demand increases, the edge resources are fully utilized, and the utilization rate is
improved. Due to the randomness of task unloading and resource allocation, RUA cannot
be guaranteed to provide satisfactory services for vehicles, resulting in a small willingness
to unload vehicles, which leads to the lowest utilization rate of edge resources. G-ACA is
overtaken by NOMA once there are more than 200 vehicles because when the algorithm
is used in multi-objective optimization scenarios, especially when the number of users
increases dramatically, the algorithm performance declines, and it is unable to provide
high-quality services for vehicles. The overall performance of LC is better than that of RUA,
but it is still unable to provide appropriate services for vehicles. In the future, when the
number of vehicles approaches 300, all of the vehicles can still share acceptable bandwidth
and computing resources.
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6. Conclusions

In this paper, a complex scenario of connected vehicle intersections is presented, along
with a multi-service, multi-user edge computing task offloading and resource allocation
approach with the aim of minimizing energy usage. The gradient descent technique is
used to solve the fuzzy output linear equation in order to objectively choose the edge
service nodes. The target problem is modeled as a mixed integer, high-complexity problem.
By introducing a slack variable to validate the coupling between the discharge ratio and
bandwidth resources; decoupling the problem into two sub-problems; using the ADMM
method to solve the problems; and computing the best distribution of the power resources,
the simulation results demonstrate that the algorithm is significantly less complex than
other approaches. Specific contributions are as follows:

(1) In the scenario of complex connected vehicles at intersections, the optimization
objective of minimizing system energy consumption is established by carefully considering
the matching between users and service nodes, the unloading ratio, the bandwidth, and
the resource allocation for computing power.

(2) A fuzzy logic-based service node selection method (SNFLC) is proposed consid-
ering the issue of matching users and service nodes. The linear equation describing the
node performance value is found through fuzzy reasoning by specifying three performance
indices as input. The equation’s coefficients are solved using the gradient descent technique,
and the Lyapunov criterion coefficient is added to increase the algorithm’s stability. Finally,
each node’s user evaluation number is output. The best service node is determined by the
point with the highest evaluation value, and the vehicle decides to unload the task to this
node.

(3) As the target problem is an NP problem, the coupling relationship between of-
floading ratio and bandwidth resource allocation is verified by relaxing integer variables,
and the problem is decoupled into two sub-problems. LC-IRA is proposed to realize the
resource allocation for bandwidth resource and computational power.

In the future, the authors will generalize the multi-unit task flow model under delay
and energy consumption constraints by considering the heterogeneity of multiple users
and the computing capacity ceiling for each user.
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