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Abstract: A pot experiment was conducted to determine the impact of water availability on the dis-
criminatory status of nitrogen (N) in plants using hyperspectral imaging. Nitrogen deficiency causes
a significant decrease in chlorophyll concentration in plant leaves regardless of water availability.
Five different classification algorithms were used to discriminate between nitrogen concentrations in
plants at different levels of water availability. Several statistical parameters, including kappa and
overall classification accuracy for calibration and prediction, were used to determine the efficiency
and accuracy of the models. The Random Forest model had the highest overall accuracy of over
81% for sugar beet and over 78% for celery. Additionally, characteristic electromagnetic wavelengths
were identified in which reflectance correlated with nitrogen and water content in plants could be
recorded. It was also noted that the spectral resolution between the N and High Water (HW)/Low
Water (LW) treatments was lower in the short-wave infrared (SWIR) region than in the visible and
near-infrared (VNIR) region.
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1. Introduction

The influence of water and nitrogen fertilization is crucial for plants due to their
condition and the costs of plant production [1,2]. The use of nitrogen fertilizers in plant
production can cause environmental pollution and it can have a negative impact on soil [3,4].
This is mainly seen in the change in surface and groundwater chemistry and the reduction
in soil productivity [5]. On the other hand, nitrogen deficiencies adversely affect plant
production and thus reduce profits for farmers [6–8]. Properly selected doses of fertilizers
taking into account the needs of the plant in a given location, will ensure cost optimization
and increased plant comfort [9–11]. In addition, modern fertilization techniques combined
with new fertilizer products reduce the amount of harmful compounds introduced into
the environment [5].

Gathering information about the condition of plants and deficiencies of basic nutrients
is conducted using various methods and techniques. These methods can be divided into
invasive—leading to plant destruction [12], or non-invasive, where the sensor does not
have direct contact with the analyzed object or does not destroy it [13]. Invasive methods
are generally applied under laboratory conditions on a small number of plants. In the
case of remote sensing methods, the acquisition of information can in principle take place
continuously at different spatial scales. In the case of remote sensing data, this ranges from
a single leaf through a selected field to continental and global scales [14].

Conducting research in controlled laboratory conditions allows for the verification
of many initial hypotheses, which are then transferred to the field scale [15]. Analy-
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ses of the influence of various stress factors on plant growth and development can be
conducted using multi- and hyperspectral cameras [16–18]. One of the most frequently
studied stress-inducing factors affecting plant health is water deficiency [19–21]. Hyper-
spectral data analysis also enables the detection of stress caused by deficiencies in specific
macro-elements in the soil environment, for example, Mahajan et al. [22], Singh et al. [23]
and Jørgensen et al. [24] investigated the possibility of detecting stress associated with
fertilizer dosage in barley using visible and near-infrared (VNIR) hyperspectral data.
Hongyu et al. [25] used VNIR hyperspectral data to assess the content of NPK in tomatoes.
They achieved the best results (R2 above 0.9) for nitrogen prediction. Mahajan et al. [22]
used hyperspectral data in the range of 400–2500 nm to determine the possibility of detect-
ing the influence of NPS fertilization on rice.

Remote sensing methods for determining the content of individual nutrients in plants
are mainly based on: the discrimination of appropriate wavelengths of radiation based
on the reduction of input data dimensionality [22,25–28], the correlation between veg-
etation indices and the content of individual macro-elements [22,29–31], mathematical
modeling based on different input data [32,33], and data classification to discriminate
specific features [34,35].

Analysis of hyperspectral data provides ample opportunities for discovering relation-
ships between different stress factors for plants in the natural environment [36]. Research
conducted under controlled conditions facilitates the elimination of a large group of natu-
rally occurring factors and creates opportunities for selecting only those wavelengths in
which the stress-inducing factor has the greatest influence on reflectivity [37].

The aim of this study was to determine the effect of water availability on nitrogen
concentrations in sugar beet and celery leaves using hyperspectral data. The influence
of nitrogen fertilization under different water availability on chlorophyll content in the
leaves of these plants was examined, and the wavelengths of radiation in the VNIR and
short-wave infrared (SWIR) range that best correlate with nitrogen application in terms of
water availability in sugar beet and celery were determined.

2. Materials and Methods
2.1. Plant Materials

The pot experiment performed on two plant species: celery (Apium graveolens L., cv.
Neon) and sugar beet (Beta vulgaris L., cv. Tapir) was conducted between 3 March 2019
and 30 September 2019. The seeds of celery (produced by SEMO, CZE) and sugar beet
(produced by SESVanderHave, NED) were purchased commercially. Celery and sugar
beet were chosen because they are very popular crops within the European Lowlands,
moreover, they have different leaf morphology, which can condition the acquisition of
spectral data [38]. The seeds were sown in plastic pots containing peat moss. After seven
weeks, seedlings of similar sizes were transplanted into pots with a diameter of 20 cm
(one seedling per pot) containing sand as a growing medium. The plants were grown in
the greenhouse under natural sunlight supplemented with LED light using a photoperiod
of day/night set to 12/12 h, with the temperature ranging from 20 ◦C to 22 ◦C from March
through to June and also in September 2019. During the months of July and August, the
temperature ranged from 24 ◦C to 26 ◦C. In this experiment, three irrigation regimes were
used in combination with four N levels. Twelve pots of each water x N combination were
used. Nitrogen in the form of NH4NO3 was applied in four different doses (33%, 66%,
100%, and 133% of the N dose recommended for the cultivation of studied plants). The
recommended doses of N were 350 and 420 mg N per pot for sugar beet and celery plants,
respectively. Other macronutrients were applied in their recommended doses using a
commercial fertilizer Micro Plus (produced by Intermag, Olkusz, POL). The irrigation
regimes included: drought stress (LW; soil water content of 50% of field capacity), optimum
water supply (OW; soil water content of 100% of field capacity), and water overflow (HW;
soil water content of 120% of field capacity) [39–41]. Soil water content was controlled
using the Time Domain Reflectometry technique (TDR) at a surface horizon in the range of
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0–10 cm. All planted pots were irrigated with tap water after 60 days from seed emergence
The water and N treatments were applied from the sprouting stage onwards. Every pot
was poured with appropriate quantities of tap water or N solution every two days for
26 weeks. The water or N solution doses were calculated on alternate days for each pot
based on soil water content. The irrigation process was carried out in the morning at
8 o’clock. The spectral, leaf pigments, and nitrogen content were measured at the end of
the experiment once the plants reached their main development stages. The developmental
stages of sugar beet correspond to rosette growth (BBCH stage 28) and the developmental
stage of celery corresponds to when the celery roots begin to expand (BBCH stage 41). The
scheme of the experiment was presented in Figure 1.
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Figure 1. Flow chart of the analysis conducted during the experiment. The procedures presented are
described in the text.

2.2. Hyperspectral Image Acquisition

A laboratory hyperspectral imaging system(HIS) covering the spectral range of
400–1000 nm was used to acquire hyperspectral images of plant leaves. This system con-
sisted of two cameras fitted with spectrographs, and eight halogen lamps each integrated
with a camera. The first camera was responsible for VNIR data acquisition, while the
second recorded SWIR data. The image acquisition occurred by line scanning. The VNIR
images covering 269 spectral bands in the range of 400 nm to 1000 nm were obtained with
a spectral sampling interval of 2.8 nm using the VNIR camera with an ImSpector V10E
imaging spectrograph produced by SPECIM (FIN). The SWIR camera with an N25E 2/3”
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imaging spectrometer (Specim, Oulu, Finland) captured a total of 224 images from each
plant leaf, which corresponds to a specific wavelength inside a range of 1000–2500 nm. The
system used was briefly described by Siedliska et al. [42].

2.3. Chemical Analysis

After the acquisition of hyperspectral images, leaf samples were cut and transferred
to the laboratory for determination of chlorophyll concentration. The chlorophyll content
was estimated using a chemical method according to the procedure described by Wellburn
and Lichtenthaler [35]. Pigments were extracted with about 0.2 g fresh leaf by 25 mL
80% acetone for 24 h in the dark at room temperature. The absorbance of the extract was
measured at 663, 645, and 470 nm using a UV-VIS spectrophotometer (UV-5600, Metash,
Japan) to estimate the chlorophyll content. The total leaf nitrogen content was determined
using a Leco TruSpec apparatus (St. Joseph, MI, USA). Samples were burned at 950 ◦C,
the resulting analyte was analyzed on a TC thermoconductivity bridge, after converting
nitrogen oxides to N2 [43]. Analyses were performed in triplicate for each sample.

2.4. Hyperspectral Image Transformation and Spectral Data Extraction

The captured images were analyzed using software for hyperspectral image analysis
(Environment for Visualizing Images, ENVI, Irving, TX, USA). To eliminate the effects of
uneven illumination and dark current, black-and-white calibration was conducted on raw
images using Equation (1):

R =
Ir − Iw
Iw − Id

(1)

where R is the corrected reflectance image; Ir is the raw hyperspectral image; Iw and Id
represent the white reference image and the dark reference image, respectively [44]. The
dark reference image with 0% reflectance was collected when the lights were turned off
and the lens was covered with a black cover. Accordingly, the white reference image was
acquired from a white diffuse reflectance board with 99% reflectivity (Spectralon, Labsphere
Inc., North Sutton, NH, USA). In the next step, a thresholding method was applied to the
corrected images for the removal of the background and extraction of the region of interest
(the region corresponding to the flat leaf). The mean spectra of each image were extracted
from the leaf samples, by averaging the spectra of all the pixels in the corresponding
region of interest.

2.5. Spectral Data Preprocessing

Spectra, extracted from hyperspectral images, contained abnormalities such as noises,
uncertainties, variabilities, interactions, and unrecognized features, which disrupted the
modeling processes. To minimalize these effects, calibrated spectra obtained from the plant
leaves were transformed using baseline correction, in which the lowest value was subtracted
from all the remaining values in the spectrum. The values below 400 nm and above 2400 nm
remained noisy and were abandoned. In addition, values in the 1000–1200 nm range have
also been removed, as this range is in the marginal registration zones of both sensors.
Then, the second derivative Savitzky–Golay (SG) filter (second-order polynomial fitting
and nine-data-points window size) was applied [42,45]. In the process of SG smoothing,
the linear least squares method is used to fit a small set of consecutive data points to a
polynomial. The calculated central point of the fitted polynomial curve is taken as the new
smoothed data point. After this calculation, some data points at both ends of the spectrum
are lost in order to allow the filter to be fully contained within the available data [46].

To reduce the high dimensionality, enhance learning efficiency and improve the cal-
culation speed, only some of the wavelengths were selected from the full spectra. These
wavelengths bring out the most important information which could efficiently predict ni-
trogen deficiency in plants growing under different water conditions. In the current study,
the most informative wavelengths were determined using a Correlation-based Feature
Selection (CFS) algorithm with a greedy stepwise selection method. The data processing
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methods were implemented using the Unscramble X10.3 software (CAMO Software, Inc.,
Oslo, Norway, 133).

2.6. Statistical Analysis and Model Development

In this experiment, a factorial design with three factors wasused: plant species,
(two variants), the nitrogen supply (four levels), and moisture content (three levels). A total
of 216 plants (108 sugar beet and 108 celery plants) belonging to four studied variants were
used for the determination of the leaf nitrogen and leaf chlorophyll content. The average of
the studied groups was analyzed to evaluate differences among treatments by the analysis
of variance (ANOVA) at a significance level of 95% and the Tukey test (p < 0.05) using
Statistica software version 13 (StatSoft Inc., Tulsa, OK, USA).

In this study, five different multivariate classification algorithms were chosen for dis-
crimination between N content in plants growing under different water statuses. The stud-
ied models represent four different groups: Bayes (Backpropagation neural network—BNN),
functions (Support Vector Machine—SVM; Logistic—LOG; Multilayer Perceptron—MP),
trees (Random Forest—RF), and lazy (Instance-Based Learning with parameter k—Ibk).
Prior to the modeling, 144 leaf samples belonging to each of the variants were numbered
consecutively and divided into a calibration set and a validation set with a ratio of 75:25.
To determine the performance of the models the accuracy and the root mean square errors
of calibration and validation (RMSEC and RMSEV, respectively), were calculated for each
model. The best model was characterized by the highest values of overall accuracy and the
Kappa coefficient. For the best model, the class parameters, such as true positive rate, true
negative rate, precision, recall, and F1 scores were calculated.

3. Results and Discussion
3.1. Nitrogen and Water Stress Impact on Chlorophyll and N Content in Leaves

In order to investigate the effect of different N and water treatments on sugar beet
and celery plants, leaf total chlorophyll and leaf N contents were measured. Water stress
influences the N availability, movement, and uptake by the crop, which subsequently affects
the chlorophyll and nitrogen content in leaves. Water and N interaction has a significant
effect on N leaf content in sugar beet (Figure 2a) and celery (Figure 2b) plants. The variation
in leaf nitrogen concentration between plants growing under different N fertilization was
higher for celery plants than for sugar beet. Higher doses of N fertilization increased leaf
N content in LW and OW treatments. Excess water supply (HW) improved the nitrogen
accumulation in leaves of sugar beet, whereas the N content in celery leaves decreased,
except for the N133 variant. Under the OW condition, the leaf nitrogen content for celery
plants in the N33 treatment was as much as 50 % lower than N100, whereas for sugar
beet it was only 10% lower. It can be affirmed that the water deficit and the increase in
nitrogen levels caused a greater accumulation of nitrogen in the leaves. Previous studies
demonstrated that water deficit reduces the activity of nitrate reductase, which, combined
with high N content availability in the rhizosphere, favors its absorption by the roots and
accumulation in the plant leaves [47].

It could be noted that the exposed sugar beet (Figure 3a) and celery (Figure 3b) plants
to N deficiency (N33 and N 67 variants) caused a significant decrease in chlorophyll content
in the case of sugar beet, compared to the N100, for all studied water treatment. In the
case of celery, the difference is also visible, although much less pronounced. However,
a higher than optimum amount of N fertilizer (N133 variant) causes a slow increase
in chlorophyll content in celery plant leaves. The excessive N fertilization had a non-
significant influence on chlorophyll content in sugar beet. Water stress (water deficit and
excessive water stress) decreases the leaf chlorophyll concentration in both studied plants.
As a result of the reduction of the chlorophyll content in plant leaves caused by water
stress, photosynthesis decline which leads to stunting of the plants and yield reduction.
In the literature, conflicting results are reported on the effects of N availability on plant
pigment concentrations. Some authors reported that the water deficit led to a reduction
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in the leaf chlorophyll, which was in line with our findings [47]. However, according
to [48] the increase in the N level does not affect leaf chlorophyll content. The pigment
content in plant leaves is known as one of the factors that affects the curve of spectral
reflectance. Therefore, to develop stable, widely applicable, and highly robust prediction
models, the high variability of chlorophyll content between the variants of the experiments
are important and necessary.
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Figure 2. Leaf nitrogen content of sugar beet (a) and celery (b) plants in accordance with
four nitrogen supplies and three water treatments. Each bar represents the mean ± SD of 3 plants in
each group. According to two-way ANOVA and Tukey’s test, distinct uppercase letters indicate sta-
tistical differences among the different N supplies and the same water treatment. Distinct lowercase
letters indicate significant differences between the different water treatments and the same N supply.
For each graph values followed by the same letter are not significantly different (p > 0.05). LW: low
water supply, OW: optimum water supply, HW: high water supply.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

Figure 3. Leaf chlorophyll content of sugar beet (a) and celery (b) plants in accordance with four 

nitrogen supplies and three water treatments. Each bar represents the mean ± SD of 3 plants in each 

group. According to two-way ANOVA and Tukey’s test, distinct uppercase letters indicate statisti-

cal differences among the different N supplies and the same water treatment. Distinct lowercase 

letters indicate significant differences between the different water treatments and the same N sup-

ply. For each graph values followed by the same letter are not significantly different (p > 0.05). LW: 

low water supply, OW: optimum water supply, HW: high water supply. 

3.2. Spectra Feature 

The mean reflectance spectra curves of sugar beet and celery leaf samples with four 

levels of N treatments growing under different water conditions are shown in Figure 4. 

All studied variants (N and water treatments) are characterized by a similar profile of the 

spectral curves. It can be observed that water and N treatment influence leaf reflectance 

spectra in the whole spectral region for both studied plants. The most important parts of 

the spectra for discriminating between N stress among water treatment are located in the 

red and green regions from 525 to 640 nm. It can be observed that the increasing N doses 

reduced leaf spectral reflectance in this region. This variation was more pronounced for 

celery than for sugar beet, which may be related to the different internal structures of the 

leaf structure. 

Figure 3. Leaf chlorophyll content of sugar beet (a) and celery (b) plants in accordance with
four nitrogen supplies and three water treatments. Each bar represents the mean ± SD of 3 plants in
each group. According to two-way ANOVA and Tukey’s test, distinct uppercase letters indicate sta-
tistical differences among the different N supplies and the same water treatment. Distinct lowercase
letters indicate significant differences between the different water treatments and the same N supply.
For each graph values followed by the same letter are not significantly different (p > 0.05). LW: low
water supply, OW: optimum water supply, HW: high water supply.

3.2. Spectra Feature

The mean reflectance spectra curves of sugar beet and celery leaf samples with four
levels of N treatments growing under different water conditions are shown in Figure 4.
All studied variants (N and water treatments) are characterized by a similar profile of the
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spectral curves. It can be observed that water and N treatment influence leaf reflectance
spectra in the whole spectral region for both studied plants. The most important parts of
the spectra for discriminating between N stress among water treatment are located in the
red and green regions from 525 to 640 nm. It can be observed that the increasing N doses
reduced leaf spectral reflectance in this region. This variation was more pronounced for
celery than for sugar beet, which may be related to the different internal structures of the
leaf structure.
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Figure 4. Raw spectral data for celery and sugar beet plants treated with four nitrogen fertilization
doses and three water supply levels. LW: low water supply, OW: optimum water supply, HW: high
water supply.

The reflectance peak at around 550 nm is characteristic of green plants and can be cor-
related with chlorophyll concentration. Zhao et al. observed that about 40 days after plant
stress, chlorophyll content decreased by about 60%, resulting in an increase in reflectance
in the range of approximately 550 to 710 nm. In the SWIR region, two values (minima):
1410 nm and 1940 nm referred to water content were observed. The differences in leaf re-
flectance at the SWIR region among all N treatments became more apparent under the OW
treatment than the underwater stress (HW and LW). In the region, 1580 to 1850 nm plants
growth under N deficiency (N33 and N67) had a lower reflectance value than those with
optimal and higher N doses (N100 and N133). However, the spectral separability between
the N treatment and HW/LW treatment is lower in SWIR than VNIR region. The spectral
signatures obtained by our experimental setup concurred with these previous studies.

Figure 5 presents the relationship between the leaf chlorophyll concentration and fea-
tures from the second derivative of spectral data based on Pearson’s correlation coefficient.
It is featured with a correlation coefficient higher than 0.4 indicating a strong correlation
with the leaf nitrogen content. Overall, most of the features showing a strong correlation
are in the VNIR range. The highest negative correlations were observed in the regions
from 410–500 nm and 750–800 nm. In the region between 800 and 1000 nm, the correlation
curve becomes noisy. Some features with strong positive or negative correlations with the
leaf N content could be found in the SWIR region. The correlation coefficient decreased
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for variants with higher water availability (HW) compared to variants with low (LW) and
optimal (OW) water supply.
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supply, HW: high water supply.

3.3. Effective Wavelengths Selection

Commercial applications of the HIS technique demand data reduction to minimize the
processing time and maximize the robustness of the models. Therefore, the selection of an
appropriate optimal method for the identification of sensitive features is crucial, especially
for large input datasets. In our study, eleven characteristic wavelengths: 418, 434, 521, 644,
659, 740, 796, 994, 1338, 2245, and 2339 nm were selected from the full spectrum using the
CFS algorithm with a ‘first is best’ approach. The CFS algorithm evaluates feature subsets
based on a degree of dependence or predictability between wavelengths. This algorithm
was able to reduce the number of features from 467 to 11, which accounted for 2% of the full
number of wavelengths. The wavelengths in the regions of 400–500 nm and 600–750 nm
are associated with some of the leaf pigments that control the plant’s photosynthetic and
light-use efficiency. The wavelengths closest to 520 nm are sensitive to chlorophyll content,
which was indicated in the previous study [49]. The wavelength of 994 nm defined as the
water absorption peak corresponded to the second overtone, the O-H stretching vibrational
overtone of the water and carbohydrates [50]. Our results are similar to those found in
previous studies, which indicated that green, red, and NIR regions are the most sensitive
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to N stress. Wang et al. [51] selected five optimal wavelengths (520, 553, 673, 693, and
884 nm) for the discrimination of nitrogen fertilizer levels of a tea plant. Other authors
found that reflectance in red-edges centered at 740 nm were highly correlated with leaf N
content in sorghum and oat [52,53]. Although the possibility of application of the HIS to
detect N-stress or the N combination and water stress has been described by many authors,
only a few studies have considered the SWIR range. Bruning et al., [54] confirmed that the
incorporation of the SWIR wavelengths into the models improved the prediction accuracies
of both the water and nitrogen models. The wavebands in the SWIR region are associated
with weak harmonic and overtone absorptions from biochemical compounds such as lignin,
starch, and cellulose [55]. The N fertilization significantly affects the chemical compositions
of plant tissues, including lignin and cellulose content [56,57], thus wavelengths from the
SWIR region can also influence the results of discrimination in N treatment.

3.4. Model Performance

In order to discriminate between plants growing with different nitrogen fertilization
levels and under different water availability the five algorithms were tested. For these
models, the overall accuracy and kappa coefficient used as the evaluation indicator were
tabulated in Tables 1 and 2. The results showed that all studied models achieved overall
accuracies of 67–83% and kappa coefficients of 0.59–0.81. It can be stated that the water
supply level did not influence model accuracies.

Table 1. Overall accuracy and kappa coefficient of the models for classification of sugar beet plants
subjected to four leaf nitrogen supplies and three water treatments. LW: low water supply, OW:
optimum water supply, HW: high water supply.

Calibration Set Validation Set

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

HW

BNN 98 0.98 83 0.78
Logistic 66 0.54 78 0.70

RF 100 1 86 0.81
SVM 83 0.78 75 0.67
kNN 100 1 78 0.70

OW

BNN 96 0.95 78 0.70
Logistic 83 0.78 80 0.74

RF 100 1 83 0.78
SVM 0.85 0.80 80 0.74
kNN 100 1 78 0.70

LW

BNN 92 0.89 69 0.59
Logistic 81 0.75 72 0.63

RF 100 1 81 0.74
SVM 78 0.70 72 0.63
kNN 100 1 67 0.56

Among all models, the RF method resulted in the highest, whether overall accuracy or
kappa coefficient. The overall accuracies were greater than 81% and 78% for sugar beet and
celery plants, respectively. The kappa coefficient obtained for sugar beet and celery was
higher than 0.74 and 0.70, respectively. The potential of this algorithm for the prediction of
leaf N content was confirmed in previous studies [57,58].

The performance of the classification model depends on the ability to accurately
forecast the target classes of the unlabeled instances. To demonstrate the class-wise effec-
tiveness of the RF model, the TP rate, FP Rate, precision, recall, and F1 score are presented
in Tables 3 and 4, respectively. Among the two studied plants, the model performance was
a little bit better for HW and OW than for LW water treatments. The F1- score, which is
calculated as the harmonic mean of the model’s precision and recall, evaluates the accuracy
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of a model. In the case of both plants, both classes achieved a similar F1 score, ranging from
0.706 to 1.00 and from 0.706 to 0.941 for sugar beet and celery plants, respectively. A good
result was obtained for the detection of nitrogen deficiency. The F1 scores for N33 and N67
classes were higher than 0.73 and 0.70 for sugar beet and celery plants, respectively.

Table 2. Overall accuracy and kappa coefficient of the models for classification of celery plants
subjected to four leaf nitrogen supplies and three water treatments. LW: low water supply, OW:
optimum water supply, HW: high water supply.

Calibration Set Validation Set

Overall
Accuracy (%)

Kappa
Coefficient

Overall
Accuracy (%)

Kappa
Coefficient

HW

BNN 93 0.91 78 0.70
Logistic 86 0.81 75 0.67

RF 100 1 81 0.74
SVM 68 0.58 69 0.59
kNN 100 1 75 0.67

OW

BNN 97 0.96 72 0.63
Logistic 86 0.81 78 0.70

RF 100 1 81 0.74
SVM 86 0.81 75 0.67
kNN 100 1 67 0.56

LW

BNN 94 0.93 67 0.56
Logistic 88 0.84 72 0.63

RF 100 1 78 0.70
SVM 84 0.79 69 0.59
kNN 100 1 75 0.67

Table 3. Performance results of RF model obtained for classification of sugar beet plants subjected to
four nitrogen supply levels and three water treatment levels. LW: low water supply, OW: optimum
water supply, HW: high water supply.

Class TP Rate FP Rate Precision Recall F1-Score Accuracy

Su
ga

r
B

ee
tL

W

All 0.806 0.065 0.861 0.806 0.797
N33 0.667 0.000 1.000 0.667 0.800
N67 1.000 0.148 0.692 1.000 0.818 0.81

N100 0.556 0.000 1.000 0.556 0.714
N133 1.000 0.111 0.750 1.000 0.857

Su
ga

r
B

ee
tO

W

All 0.833 0.056 0.835 0.833 0.833
N33 1.000 0.000 1.000 1.000 1.000
N67 0.778 0.111 0.700 0.778 0.737 0.83

N100 0.889 0.037 0.889 0.889 0.889
N133 0.667 0.074 0.750 0.667 0.706

Su
ga

r
B

ee
tH

W

All 0.861 0.046 0.863 0.861 0.855
N33 1.000 0.074 0.818 1.000 0.900
N67 1.000 0.037 0.900 1.000 0.947 0.86

N100 0.667 0.037 0.857 0.667 0.750
N133 0.778 0.037 0.875 0.778 0.824
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Table 4. Performance results of RF model obtained for classification celery plants subjected to four
nitrogen supply levels and three water treatment levels. LW: low water supply, OW: optimum water
supply, HW: high water supply.

Class TP Rate FP Rate Precision Recall F1-Score Accuracy

C
el

er
y

LW

All 0.778 0.074 0.797 0.778 0.781
N33 0.778 0.000 1.000 0.778 0.875
N67 0.889 0.074 0.800 0.889 0.842 0.81

N100 0.677 0.074 0.750 0.667 0.706
N133 0.778 0.148 0.636 0.778 0.781

C
el

er
y

O
W

All 0.806 0.065 0.841 0.806 0.810
N33 0.667 0.000 1.000 0.667 0.800
N67 0.778 0.148 0.636 0.778 0.700 0.81

N100 0.889 0.000 1.000 0.889 0.941
N133 0.889 0.111 0.727 0.889 0.800

C
el

er
y

H
W

All 0.806 0.065 0.819 0.806 0.808
N33 0.778 0.000 1.000 0.778 0.875
N67 0.778 0.111 0.700 0.778 0.737 0.81

N100 0.778 0.074 0.778 0.778 0.778
N133 0.889 0.074 0.800 0.889 0.842

Numerous papers were dedicated to estimating the plant nitrogen status using multi-
or hyperspectral techniques for various research areas, crops, and growth stages [59–61].
Most of these studies focused on the estimation of nitrogen status based on quantita-
tive approaches, which analyze the relationships with the physiological crop parameters
and evaluate their performance in distinguishing the nitrogen levels [50,62,63]. This pa-
per is one of only a few studies dedicated to the classification of the plants’ nitrogen
status [64–66]. The model accuracies obtained in our work were higher than those obtained
by Culman et al. [67].

4. Conclusions

Water and nitrogen deficiency are two of the main limiting factors, which has a great
influence on plant condition and yield. In this study, hyperspectral and physiological
measurements were combined in an attempt to characterize the spectral response of celery
and sugar beet to varied nitrogen fertilization under different water availability conditions.
The use of remote sensing methods allows for non-invasive research, which increases
the possibilities of continuous monitoring of the plants growing conditions. Nitrogen
fertilization increased leaf N content in both low and optimal water statuses. Excess water
supply (high water) improved the nitrogen accumulation in sugar beet leaves, whereas the
N content in celery leaves decreased. Among the tested classifiers, the RF classifier showed
the best results in classifying nitrogen content at different water availabilities. In future
research, the impact of water availability on the content of other macro elements in plant
leaves will be examined.
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42. Siedliska, A.; Baranowski, P.; Pastuszka-Woźniak, J.; Zubik, M.; Krzyszczak, J. Identification of plant leaf phosphorus content at
different growth stages based on hyperspectral reflectance. BMC Plant Biol. 2021, 21, 28. [CrossRef]

43. Matejovic, I. Total nitrogen in plant material determinated by means of dry combustion: A possible alternative to determination
by Kjeldahl digestion. Commun. Soil Sci. Plant Anal. 1995, 26, 2217–2229. [CrossRef]

44. Abdlaty, R.; Doerwald-Munoz, L.; Farrell, T.J.; Hayward, J.E.; Fang, Q. Hyperspectral imaging assessment for radiotherapy
induced skin-erythema: Pilot study. Photodiagnosis Photodyn. Ther. 2021, 33, 102195. [CrossRef]

45. Li, Y.; Tan, X.; Zhang, W.; Jiao, Q.; Xu, Y.; Li, H.; Zou, Y.; Yang, L.; Fang, Y. Research and application of several key techniques in
hyperspectral image preprocessing. Front. Plant Sci. 2021, 12, 627865. [CrossRef]

46. King, R.L.; Ruffin, C.; LaMastus, F.E.; Shaw, D.R. The analysis of hyperspectral data using Savitzky-Golay filtering-practical issues.
2. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293),
Hamburg, Germany, 28 June–2 July 1999; Volume 1. pp. 398–400.

47. Zhang, Y.J.; Xie, Z.K.; Wang, Y.J.; Su, P.X.; An, L.P.; Gao, H. Effect of water stress on leaf photosynthesis, chlorophyll content, and
growth of oriental lily. Russ. J. Plant Physiol. 2011, 58, 844–850. [CrossRef]

48. Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Carotenoid pigments in kale are influenced by nitrogen concentration and form.
J. Sci. Food Agric. 2007, 87, 900–907. [CrossRef]

49. He, J.; Yang, W.; Qin, L.; Fan, D.-Y.; Chow, W.S. Photoinactivation of Photosystem II in wild-type and chlorophyll b-less barley
leaves: Which mechanism dominates depends on experimental circumstances. Photosynth. Res. 2015, 126, 399–407. [CrossRef]

50. Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral vegetation indices to assess
water and nitrogen status of sweet maize crop. Agronomy 2022, 12, 2181. [CrossRef]

https://doi.org/10.1080/01431160600735657
https://doi.org/10.3969/j.issn.1002-6819.2015.z1.025
https://doi.org/10.1016/S0169-7439(96)00050-0
https://doi.org/10.1007/s11947-016-1817-8
https://doi.org/10.1016/j.compag.2017.07.019
https://doi.org/10.1080/01431161.2019.1708505
https://doi.org/10.1590/1678-992x-2015-0477
https://doi.org/10.1080/00103624.2022.2071926
https://doi.org/10.1016/j.fcr.2023.108844
https://doi.org/10.1016/j.compag.2023.107652
https://doi.org/10.2135/cropsci1995.0011183X003500050023x
https://doi.org/10.1117/1.JRS.9.096033
https://doi.org/10.1016/S0034-4257(01)00299-1
https://doi.org/10.1007/s41348-017-0124-6
https://doi.org/10.31545/aagr/128296
https://doi.org/10.1111/ppl.13273
https://www.ncbi.nlm.nih.gov/pubmed/33179272
https://doi.org/10.1515/gps-2020-0067
https://doi.org/10.1016/j.plaphy.2019.08.020
https://doi.org/10.1186/s12870-020-02807-4
https://doi.org/10.1080/00103629509369441
https://doi.org/10.1016/j.pdpdt.2021.102195
https://doi.org/10.3389/fpls.2021.627865
https://doi.org/10.1134/S1021443711050268
https://doi.org/10.1002/jsfa.2807
https://doi.org/10.1007/s11120-015-0167-0
https://doi.org/10.3390/agronomy12092181


Appl. Sci. 2023, 13, 6072 14 of 14

51. Wang, Y.; Hu, X.; Hou, Z.; Ning, J.; Zhang, Z. Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on
hyperspectral imaging. J. Sci. Food Agric. 2018, 98, 4659–4664. [CrossRef]

52. Zhao, B.; Ma, B.-L.; Hu, Y.; Liu, J. Characterization of nitrogen and water status in oat leaves using optical sensing approach.
J. Sci. Food Agric. 2015, 95, 367–378. [CrossRef]

53. Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspec-
tral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391–403. [CrossRef]

54. Bruning, B.; Liu, H.; Brien, C.; Berger, B.; Lewis, M.; Garnett, T. The Development of Hyperspectral Distribution Maps to Predict
the Content and Distribution of Nitrogen and Water in Wheat (Triticum aestivum). Front. Plant Sci. 2019, 10, 1380. [CrossRef]

55. Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote
Sens. 2020, 12, 113. [CrossRef]

56. Liu, J.; Wu, N.; Wang, H.; Sun, J.; Peng, B.; Jiang, P.; Bai, E. Nitrogen addition affects chemical compositions of plant tissues, litter
and soil organic matter. Ecology 2016, 97, 1796–1806. [CrossRef] [PubMed]

57. Loozen, Y.; Rebel, K.T.; deJong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European
forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020,
247, 111933. [CrossRef]

58. Abdel- Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf
nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2013, 34, 712–728. [CrossRef]

59. Zhang, J.; Cheng, T.; Shi, L.; Wang, W.; Niu, Z.; Guo, W.; Ma, X. Combining spectral and texture features of UAV hyperspectral
images for leaf nitrogen content monitoring in winter wheat. Int. J. Remote Sens. 2022, 43, 2335–2356. [CrossRef]

60. Han, N.; Zhang, B.; Liu, Y.; Peng, Z.; Zhou, Q.; Wei, Z. Rapid Diagnosis of Nitrogen Nutrition Status in Summer Maize over Its
Life Cycle by a Multi-Index Synergy Model Using Ground Hyperspectral and UAV Multispectral Sensor Data. Atmosphere 2022,
13, 122. [CrossRef]

61. Yin, C.; Lv, X.; Zhang, L.; Ma, L.; Wang, H.; Zhang, L.; Zhang, Z. Hyperspectral UAV Images at Different Altitudes for Monitoring
the Leaf Nitrogen Content in Cotton Crops. Remote Sens. 2022, 14, 2576. [CrossRef]

62. Olson, M.B.; Crawford, M.M.; Vyn, T.J. Hyperspectral indices for predicting nitrogen use efficiency in maize hybrids. Remote Sens.
2022, 14, 1721. [CrossRef]

63. Fan, K.; Li, F.; Chen, X.; Li, Z.; Mulla, D.J. Nitrogen Balance Index Prediction of Winter Wheat by Canopy Hyperspectral
Transformation and Machine Learning. Remote Sens. 2022, 14, 3504. [CrossRef]

64. Benmouna, B.; Pourdarbani, R.; Sabzi, S.; Fernandez-Beltran, R.; García-Mateos, G.; Molina-Martínez, J.M. Comparison of Classic
Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment
in Tomato Leaves. Remote Sens. 2022, 14, 6366. [CrossRef]

65. de FátimadaSilva, F.; Luz, P.H.C.; Romualdo, L.M.; Marin, M.A.; Zúñiga, A.M.G.; Herling, V.R.; Bruno, O.M. A diagnostic tool for
magnesium nutrition in maize based on image analysis of different leaf sections. Crop Sci. 2014, 54, 738–745. [CrossRef]

66. Sun, Y.; Gao, J.; Wang, K.; Shen, Z.; Chen, L. Utilization of machine vision to monitor the dynamic responses of rice leaf
morphology and colour to nitrogen, phosphorus, and potassium deficiencies. J. Spectrosc. 2018, 2018, e1469314. [CrossRef]

67. Culman, M.A.; Gomez, J.A.; Talavera, J.; Quiroz, L.A.; Tobon, L.E.; Aranda, J.M.; Garreta, L.E.; Bayona, C.J.A. A novel application
for identification of nutrient deficiencies in oil palm using the internet of things. In Proceedings of the 2017 5th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), San Francisco, CA, USA, 6–7 April 2017;
pp. 169–172.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/jsfa.8996
https://doi.org/10.1002/jsfa.6729
https://doi.org/10.1016/j.eja.2004.06.005
https://doi.org/10.3389/fpls.2019.01380
https://doi.org/10.3390/rs12010113
https://doi.org/10.1890/15-1683.1
https://www.ncbi.nlm.nih.gov/pubmed/27859176
https://doi.org/10.1016/j.rse.2020.111933
https://doi.org/10.1080/01431161.2012.713142
https://doi.org/10.1080/01431161.2021.2019847
https://doi.org/10.3390/atmos13010122
https://doi.org/10.3390/rs14112576
https://doi.org/10.3390/rs14071721
https://doi.org/10.3390/rs14143504
https://doi.org/10.3390/rs14246366
https://doi.org/10.2135/cropsci2013.03.0165
https://doi.org/10.1155/2018/1469314

	Introduction 
	Materials and Methods 
	Plant Materials 
	Hyperspectral Image Acquisition 
	Chemical Analysis 
	Hyperspectral Image Transformation and Spectral Data Extraction 
	Spectral Data Preprocessing 
	Statistical Analysis and Model Development 

	Results and Discussion 
	Nitrogen and Water Stress Impact on Chlorophyll and N Content in Leaves 
	Spectra Feature 
	Effective Wavelengths Selection 
	Model Performance 

	Conclusions 
	References

