
Citation: Issa, O.; Shanableh, T. Static

Video Summarization Using Video

Coding Features with Frame-Level

Temporal Subsampling and Deep

Learning. Appl. Sci. 2023, 13, 6065.

https://doi.org/

10.3390/app13106065

Academic Editor: Qingbo Wu

Received: 19 April 2023

Revised: 7 May 2023

Accepted: 11 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Static Video Summarization Using Video Coding Features with
Frame-Level Temporal Subsampling and Deep Learning
Obada Issa * and Tamer Shanableh

Department of Computer Science and Engineering, American University of Sharjah,
Sharjah P.O. Box 26666, United Arab Emirates; tshanableh@aus.edu
* Correspondence: b00071518@aus.edu

Abstract: There is an abundance of digital video content due to the cloud’s phenomenal growth
and security footage; it is therefore essential to summarize these videos in data centers. This pa-
per offers innovative approaches to the problem of key frame extraction for the purpose of video
summarization. Our approach includes the extraction of feature variables from the bit streams of
coded videos, followed by optional stepwise regression for dimensionality reduction. Once the
features are extracted and their dimensionality is reduced, we apply innovative frame-level temporal
subsampling techniques, followed by training and testing using deep learning architectures. The
frame-level temporal subsampling techniques are based on cosine similarity and the PCA projections
of feature vectors. We create three different learning architectures by utilizing LSTM networks, 1D-
CNN networks, and random forests. The four most popular video summarization datasets, namely,
TVSum, SumMe, OVP, and VSUMM, are used to evaluate the accuracy of the proposed solutions.
This includes the precision, recall, F-score measures, and computational time. It is shown that the
proposed solutions, when trained and tested on all subjective user summaries, achieved F-scores of
0.79, 0.74, 0.88, and 0.81, respectively, for the aforementioned datasets, showing clear improvements
over prior studies.

Keywords: video summarization; video coding; temporal subsampling; convolution neural networks;
long-short term memory

1. Introduction

There is a surge in the number of digital videos around the world due to the growth of
the Internet and surveillance footage. Databases must be used to summarize these videos,
which is where video summarization comes in handy. Video summarization is the process
of creating a meaningful summary of the original video to make it easier to retrieve the
video and identify anomalies; it also facilitates activity tracking [1]. Video summarization
is important for several reasons, such as allowing users to quickly navigate through large
amounts of video content and reducing storage space in archives, and has many practical
applications in a variety of fields. Video summarization techniques can be categorized
into two groups [2]. The first involves choosing sections from the original video, while the
second, which is the most popular group, involves choosing key frames from the original
video. Therefore, this work focuses on video summarization via automatically selecting
key frames from a video.

Video summarization requires a significant amount of computational power; thus,
more effective methods are always encouraged. The summarizing process can be lengthy,
and computing resources are wasted on redundant or similar frames if every frame in a
video is reviewed for selection. Space reduction should also be utilized for any group of fea-
tures to speed up the process and guarantee that only important features are considered [3].
This work aims to address these two issues.

In recent years, deep learning has become more common for generation tasks in image
and video processing. To achieve the desired results, a variety of tools and techniques

Appl. Sci. 2023, 13, 6065. https://doi.org/10.3390/app13106065 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106065
https://doi.org/10.3390/app13106065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8093-218X
https://orcid.org/0000-0002-7651-3094
https://doi.org/10.3390/app13106065
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106065?type=check_update&version=1

Appl. Sci. 2023, 13, 6065 2 of 17

can be employed alone or together. Some of the most notable tools include random
forests (RFs) [4], convolution neural networks (CNNs) [5], and long short-term memory
(LSTM) networks [6].

While the video compression community belongs to the electrical engineering disci-
pline, the deep learning community belongs to the computer and data science disciplines.
The deep learning community frequently struggles with an inadequate understanding of
video compression due to the division between these research fields. With the increase
in the high efficiency video codec (HEVC) video standard [7], HEVC information in the
video bitstream is often ignored and underutilized in the deep learning field. This work
aims to leverage the useful information encapsulated by HEVC coding in the video bit-
stream. HEVC bitstream information in the form of features was proven to be useful in
several applications, such as static video summarization [8], encoding speedup and video
transcoding [9], data embedding [10], the detection of double and triple compression [11],
and saliency detection [12].

This work also presents novel methods for the temporal subsampling of frames based
on HEVC features, a principle component analysis (PCA), and cosine similarity. In addition,
this paper presents the use of stepwise regression (SW) for reducing the dimensionality of
the feature space. A general overview of the system architecture is shown in Figure 1. The
main contributions of this paper can be summarized as follows:

• The introduction of two new architectures for video summarization based on HEVC
features, using LSTM networks and 1D-CNNs.

• The introduction of two new subsampling methods based on cosine similarity and the
projections of HEVC feature vectors.

• Complete experimental results with the four most commonly used datasets in video
summarization, namely, TVSum, SumMe, OVP, and VSUMM. The use of all four
datasets in one research paper rarely occurs in the literature, if at all. From our
observations and experimental results, it is rarely the case that a reported video
summarization solution works well for all four datasets. Therefore, most papers opt
to use a subset of these four datasets.

• A detailed discussion regarding the suitability of different methodologies used in
digital video summarization, including accuracy and computational time.

Video summarization has been the subject of substantial research over the past two
decades. The efforts made to handle the challenge of video summarization are outlined in
this section, with a focus on deep-learning-based approaches.

The authors of [13] took advantage of spatio-temporal learning with 3D-CNNs, LSTMs,
and recurrent neural networks to detect soccer video highlights. A GAN-based framework
was presented in [14] with an attention-aware Ptr-Net generator and a 3D-CNN discrimina-
tor. HEVC intra-frame coding was leveraged by the authors of [15] via merging weighted
luminance and chrominance values with a texture-based feature against a threshold to
group frames into a video summary. In [16], a stacked memory network (SMN) with LSTM
layers was presented that models long dependencies among frames to decrease redundancy
in the final summaries. A framework presented in [17] focuses on cost-sensitive learning
by having a spatial stream that represents the appearance of frames and a temporal stream
that uses motion vectors to represent the temporal information of a video.

The authors of [18] built an unsupervised GAN with an attention mechanism to detect
meaningful parts of a video. In [19], motion information between frames is leveraged as
spatio-temporal information is extracted and inter-frame motion is generated from it, and a
self-attention model selects key frames for the summary. Multi-video summarization was
explored by the authors of [20], who applied target-appearance-based shot segmentation in
addition to feature extraction from frames; these features were passed to a bidirectional
LSTM to generate probabilities to form a summary. An attentive encoder–decoder network
was presented by the authors of [21], in which they used a bidirectional LSTM as the
encoder to extract contextual information between frames and then two attention-based
LSTM networks as the decoder, which used additive and multiplicative objective functions.

Appl. Sci. 2023, 13, 6065 3 of 17

An encoder–decoder CNN structure was developed by the authors of [22], who used a
diagnostic view plane detection network as the encoder, followed by a decoder that feeds
features into a bidirectional LSTM to analyze the features of preceding and future frames.
The final reinforcement learning network selected key frames for the summary. Video
summarization was achieved by the authors of [23] in the Internet of Things (IoT) domain
by developing a CNN for shot segmentation and image memorability, using aesthetic-
and entropy-based features to ensure summary variation. The work in [24] used motion
information and a clustering validity index to segment shots and select key frames by
estimating their forward and backward motion.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 19

Figure 1. General overview of the system architecture. Feature extraction is performed through
HEVC coding. Temporal subsampling using HEVC features, PCA, or cosine similarity. The reduc-
tion of the feature space is optional with stepwise regression. Training is performed with LSTM
networks, 1D-CNNs, or random forests.

Figure 1. General overview of the system architecture. Feature extraction is performed through
HEVC coding. Temporal subsampling using HEVC features, PCA, or cosine similarity. The reduction
of the feature space is optional with stepwise regression. Training is performed with LSTM networks,
1D-CNNs, or random forests.

A self-attention binary neural tree (SABT-Net) model was presented in [25], in which
the authors used GoogleNet for feature extraction in addition to shot encoding, branch
routing, self-attention, and score prediction modules to achieve video summarization. The
authors of [26] used a sparse autoencoder to combine feature vectors derived from multiple

Appl. Sci. 2023, 13, 6065 4 of 17

pre-trained CNNs into a reduced space with a random forest classifier to form video
summaries. A TTH-RNN was presented in [27] and comprised a tensor train embedding
layer with a hierarchical LSTM to capture forward and backward temporal intra-shot
dependencies and encoded inter-shot dependencies to establish the importance of each
frame and form a final summary. The authors of [28] offer CLIP-It, a framework for dealing
with query-focused video summarization through the use of a multimodal transformers
that correlates frames with user-written queries.

The authors of [29] proposed a deep hierarchical LSTM with attention for video sum-
marization (DHAVS) in response to the LSTM’s inability to handle longer video sequences.
They used a 3D-CNN to extract spatio-temporal features and an attention-based hierarchi-
cal LSTM module to capture the temporal correlations between video frames. Since most
summarizing techniques analyze the visual components of the video and ignore audio
elements, the authors of [30] provide a method that uses both visual and audio information.
A structural similarity index was used to determine similarity among frames, and the
mel-frequency cepstral coefficient was used for feature extraction from audio signals.

The authors of [31] used GANs to extract representative parts of the videos as features
through reconstruction loss followed by knowledge distillation, using a basic network
for key frame selection. The authors of [32] used a bidirectional LSTM that took advan-
tage of the underlying hierarchical structure of video sequences and learned temporal
representations via intra-block and inter-block attention. They then partitioned shots and
calculated shot-level importance scores to rank the frames that were included in the final
video summary.

2. Methodology
2.1. Data Preprocessing

The original videos were converted into YUV frames before they were encoded using
a HEVC/H.265 video coder. We modified the coder to produce low-level features, which
are discussed in this section. The HEVC codec is used to compress the videos; hence, rich
feature sets can be extracted from it based on the quadratic recursive splitting of the coding
units (CUs) in the HEVC. An overview of the process of acquiring the HEVC feature set is
shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19

coding units (CUs) in the HEVC. An overview of the process of acquiring the HEVC fea-
ture set is shown in Figure 2.

Figure 2. MPEG to HEVC video conversion process to extract HEVC features.

CUs in HEVC can vary in depth from 0, which is typically equivalent to a maximum
block size of 64 × 64 pixels, to 3, which is equivalent to a block of 16 × 16 pixels. The CUs
are then split to prediction units (PUs) of a size from 4 × 4 to 32 × 32, which are then further
split into transform units (TUs) of a size from 4 × 4 to 32 × 32. Figure 3 illustrates the
partitioning scheme followed in HEVC coding. We based our feature vectors on the par-
titioning and prediction information found in the output bit streams.

Figure 3. Coding unit partitioning in HEVC coding.

For video summarization, we presented a set of 64 feature variables. The variables
were chosen to quantify the spatio-temporal activity of the video frames. Table 1 presents
a list of the variables. The feature variables in Table 1-A are averaged per frame, and the
rest in Table 1-B are not. The tables use the abbreviations MVD for motion vector differ-
ence, SAD for the sum of absolute differences, and CU for coding unit.

Table 1. HEVC features extracted per frame from a custom HEVC decoder [8]. (A) Feature variables
that are averaged per frame. (B) Feature variables that are not averaged per frame.

Feature Number Feature Description
1 Number of CU parts
2 MVD bits per CU
3 CU bits excluding MVD bits
4 Percentage of intra CU parts
5 Percentage of skipped CU parts
6 Number of CUs with depth 0 (i.e., 64 × 64)
7 Number of parts with depth 1 (i.e., 32 × 32)
8 Number of CUs with depth 2 (i.e., 16 × 16)

Figure 2. MPEG to HEVC video conversion process to extract HEVC features.

CUs in HEVC can vary in depth from 0, which is typically equivalent to a maximum
block size of 64 × 64 pixels, to 3, which is equivalent to a block of 16 × 16 pixels. The
CUs are then split to prediction units (PUs) of a size from 4 × 4 to 32 × 32, which are then
further split into transform units (TUs) of a size from 4 × 4 to 32 × 32. Figure 3 illustrates
the partitioning scheme followed in HEVC coding. We based our feature vectors on the
partitioning and prediction information found in the output bit streams.

Appl. Sci. 2023, 13, 6065 5 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 19

coding units (CUs) in the HEVC. An overview of the process of acquiring the HEVC fea-
ture set is shown in Figure 2.

Figure 2. MPEG to HEVC video conversion process to extract HEVC features.

CUs in HEVC can vary in depth from 0, which is typically equivalent to a maximum
block size of 64 × 64 pixels, to 3, which is equivalent to a block of 16 × 16 pixels. The CUs
are then split to prediction units (PUs) of a size from 4 × 4 to 32 × 32, which are then further
split into transform units (TUs) of a size from 4 × 4 to 32 × 32. Figure 3 illustrates the
partitioning scheme followed in HEVC coding. We based our feature vectors on the par-
titioning and prediction information found in the output bit streams.

Figure 3. Coding unit partitioning in HEVC coding.

For video summarization, we presented a set of 64 feature variables. The variables
were chosen to quantify the spatio-temporal activity of the video frames. Table 1 presents
a list of the variables. The feature variables in Table 1-A are averaged per frame, and the
rest in Table 1-B are not. The tables use the abbreviations MVD for motion vector differ-
ence, SAD for the sum of absolute differences, and CU for coding unit.

Table 1. HEVC features extracted per frame from a custom HEVC decoder [8]. (A) Feature variables
that are averaged per frame. (B) Feature variables that are not averaged per frame.

Feature Number Feature Description
1 Number of CU parts
2 MVD bits per CU
3 CU bits excluding MVD bits
4 Percentage of intra CU parts
5 Percentage of skipped CU parts
6 Number of CUs with depth 0 (i.e., 64 × 64)
7 Number of parts with depth 1 (i.e., 32 × 32)
8 Number of CUs with depth 2 (i.e., 16 × 16)

Figure 3. Coding unit partitioning in HEVC coding.

For video summarization, we presented a set of 64 feature variables. The variables
were chosen to quantify the spatio-temporal activity of the video frames. Table 1 presents a
list of the variables. The feature variables in Table 1-A are averaged per frame, and the rest
in Table 1-B are not. The tables use the abbreviations MVD for motion vector difference,
SAD for the sum of absolute differences, and CU for coding unit.

Table 1. HEVC features extracted per frame from a custom HEVC decoder [8]. (A) Feature variables
that are averaged per frame. (B) Feature variables that are not averaged per frame.

Feature Number Feature Description

1 Number of CU parts
2 MVD bits per CU
3 CU bits excluding MVD bits
4 Percentage of intra CU parts
5 Percentage of skipped CU parts
6 Number of CUs with depth 0 (i.e., 64 × 64)
7 Number of parts with depth 1 (i.e., 32 × 32)
8 Number of CUs with depth 2 (i.e., 16 × 16)
9 Number of parts with depth 3 (i.e., 8 × 8)

10 Row-wise SAD of the CU prediction error
11 Column-wise SAD of the CU prediction error
12 Ratio of gradients (i.e., feature 10 divided by feature 11) per CU
13 Total distortion per CU as computed by the HEVC encoder

(A)

Feature number Feature description

14 to 22 Standard deviation of feature IDs 1–9 per frame
23 Max CU depth per frame
24 For CUs with depth > 0, log2(|sum o f MVD|)
25 For CUs with depth = 0, log2(|sum o f MVD|)

26 to 29 Standard deviation of feature IDs 23–25 per frame
30 Per frame: Summation of variance of the x and y components of all MVs

31 to 47 Histogram of x-component of all MVs per frame (using 16 pins)
48 to 64 Histogram of y-component of all MVs per frame (using 16 pins)

(B)

These features were chosen as they capture the spatio-temporal activities of the video
frames; they also rely on motion estimation and compensation with previous video frames
and thus preserve the temporal dependencies.

2.2. Temporal Subsampling

The temporal subsampling of frames is necessary to reduce the amount of video data
that must be fed into our proposed models. This is commonly practiced in video summa-
rization as many frames contain redundant content in the temporal sense. In this work,
temporal subsampling was carried out through one of the following proposed methods.

2.2.1. HEVC-Based Temporal Subsampling

We used the sum of the HEVC features as an indication of the temporal activity of
individual video frames. This can be achieved by summing up all the HEVC feature
values to create a temporal activity index. The lower the index, the lower the temporal
activity, indicating that the underlying frame is potentially redundant and can be safely
deleted. We carried out comprehensive experiments, and we found that the summations
of the HEVC feature variables were lower for redundant frames. Conceptually, this is

Appl. Sci. 2023, 13, 6065 6 of 17

a valid conclusion as the HEVC feature variables mainly rely on motion estimation and
compensation, thus capturing the temporal activity of the video frames. Lower summations
pertain to redundant frames and vice versa.

In general, the temporal activity index of each frame was compared with a threshold
to determine whether it would be deleted.

The calculation of the threshold was based on the training split in each of the five splits
in each run. The average values of each and every feature listed in Table 1 were calculated
per training split using video frames with a ground truth value of zero (i.e., video frames
that were not included in the video summary). This resulted in 64 average values that were
summed to generate a “sum of averages”. Likewise, the standard deviations of each and
every feature listed in Table 1 were calculated per training split using video frames with a
ground truth value of zero. This resulted in 64 standard deviation values that were summed
to generate a “sum of standard deviations”. Lastly, the threshold was computed as: “sum
of averages” + “sum of standard deviations”. This process is illustrated in Figure 4. To
vary the percentage of deleted frames, we added a multiplier to the calculated threshold
which had a range of 0 to 1. In this work, using empirical testing, we set the multiplier to
0.3. Consequently, a video frame was retained if its sum of features was greater than the
calculated threshold and vice versa.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19

values that were summed to generate a “sum of averages”. Likewise, the standard devia-
tions of each and every feature listed in Table 1 were calculated per training split using
video frames with a ground truth value of zero. This resulted in 64 standard deviation
values that were summed to generate a “sum of standard deviations”. Lastly, the thresh-
old was computed as: “sum of averages” + “sum of standard deviations”. This process is
illustrated in Figure 4. To vary the percentage of deleted frames, we added a multiplier to
the calculated threshold which had a range of 0 to 1. In this work, using empirical testing,
we set the multiplier to 0.3. Consequently, a video frame was retained if its sum of features
was greater than the calculated threshold and vice versa.

Figure 4. Calculation of temporal activity threshold for temporal subsampling with HEVC features.

2.2.2. PCA-Based Temporal Subsampling
A principal component analysis (PCA) is a well-known dimensionality reduction

method [33]. In our proposed setup, we used a PCA to project each of the feature vectors
into a scalar value. Consequently, the consecutive differences of the projected values were
computed and stored in list D. Then, for each difference element d in D, we checked it
against a threshold and decided whether to retain the underlying video frame. The thresh-
old was based on statistics gathered from the projected feature vector values, as detailed
in Algorithm 1.

The theory behind this is that that smaller differences between principal components
belonging to feature vectors of frames indicate a higher similarity between them, which
indicates redundancy and allows us to remove one of the frames. For example, for the
following frames [𝑓𝑟 , 𝑓𝑟 , 𝑓𝑟 , 𝑓𝑟 , … , 𝑓𝑟] and their feature vectors [𝑣 , 𝑣 , 𝑣 , 𝑣 , … , 𝑣] ,
the first principle component would appear as [𝑝 , 𝑝 , 𝑝 , 𝑝 , … , 𝑝], and the consecutive
differences would be [𝑑 , 𝑑 , 𝑑 , 𝑑 , … , 𝑑], with 𝑑 and 𝑑 being the differences be-
tween 𝑝 − 𝑝 and 𝑝 − 𝑝 , respectively. In Algorithm 1, with the calculation of the TH,
the mean and std are the mean and standard deviation of all values in D, respectively. If
𝑑 is less than the composite thresholding value, then 𝑓𝑟 is marked for elimination. This
continues until all feature vectors are covered.

This proposed algorithm relies on projecting feature vectors into scalars. The tem-
poral activity threshold is computed based on the means and standard deviations of the
differences of these scalar values pertaining to the consecutive feature vectors of a video
sequence, hence the use of the first PCA component only.

Algorithm 1: PCA-based temporal subsampling of frames.
Input:
FVs_train[]: Feature matrix of train data set
FVs_test[]: Feature matrix of test data set
k: Predetermined multiplier
Output:
IDX_DEL[]: Frame indices to delete

// Calculate temporal TH

Figure 4. Calculation of temporal activity threshold for temporal subsampling with HEVC features.

2.2.2. PCA-Based Temporal Subsampling

A principal component analysis (PCA) is a well-known dimensionality reduction
method [33]. In our proposed setup, we used a PCA to project each of the feature vectors
into a scalar value. Consequently, the consecutive differences of the projected values were
computed and stored in list D. Then, for each difference element d in D, we checked
it against a threshold and decided whether to retain the underlying video frame. The
threshold was based on statistics gathered from the projected feature vector values, as
detailed in Algorithm 1.

The theory behind this is that that smaller differences between principal components
belonging to feature vectors of frames indicate a higher similarity between them, which
indicates redundancy and allows us to remove one of the frames. For example, for the
following frames [f r1, f r2, f r3, f r4, . . . , f rn] and their feature vectors [v1, v2, v3, v4, . . . , vn],
the first principle component would appear as [p1, p2, p3, p4, . . . , pn], and the consecutive
differences would be [d1, d2, d3, d4, . . . , dn−1], with d1 and d2 being the differences between
p1 − p2 and p2 − p3, respectively. In Algorithm 1, with the calculation of the TH, the mean
and std are the mean and standard deviation of all values in D, respectively. If d1 is less
than the composite thresholding value, then f r1 is marked for elimination. This continues
until all feature vectors are covered.

This proposed algorithm relies on projecting feature vectors into scalars. The tem-
poral activity threshold is computed based on the means and standard deviations of the
differences of these scalar values pertaining to the consecutive feature vectors of a video
sequence, hence the use of the first PCA component only.

Appl. Sci. 2023, 13, 6065 7 of 17

Algorithm 1: PCA-based temporal subsampling of frames.

Input:
FVs_train[]: Feature matrix of train data set
FVs_test[]: Feature matrix of test data set
k: Predetermined multiplier
Output:
IDX_DEL[]: Frame indices to delete

// Calculate temporal TH
[Projected_FVs, first_PC] = Project FVs_train using PCA into scalar values
D = Consecutive differences of Projected_FVs
mean = Mean of all values in D
std = Standard deviation of all values in D
TH = mean + (k× std)

// Perform temporal subsampling
for each FV in FVs_test do

p = Project FV using first_PC
if p ≤ TH

Append index of FV to IDX-DEL[]
end

end

2.2.3. Cosine-Based Temporal Subsampling

Cosine similarity [34] is a metric that assesses how similar two vectors are to one
another. It represents the cosine of the angle formed by the two vectors. Cosine similarity
is formally defined as the division between the dot product of the vectors and the product
of the Euclidean magnitude of each vector. The range of the cosine similarity value is from
0 to 1, with 1 denoting the highest similarity and 0 denoting the lowest. The following is
the equation for the cosine similarity score between two feature vectors fi and fj:

similarity = cos(θ) =
fi· f j

‖ fi ‖‖ f j ‖
(1)

In our setup, we applied cosine similarity between each feature vector and its successor,
and then stored the similarity score and index of the first feature vector in a tuple list S.
After gathering all the similarity scores, the tuple list S was sorted ascendingly. All the
feature vectors denoted by scores in the upper 90% (i.e., the scores closer to 1) in the tuple
list S were marked for elimination. This subsampling process is detailed in Algorithm 2.

Algorithm 2: Cosine-based temporal subsampling of frames.

Input:
FVs[]: Feature matrix of train and test data sets
Output:
IDX_DEL[]: Frame indices to delete

Scores{}: Empty tuple to hold cosine scores
for i = 0 . . . count_of(FVs)-1 do

C = Cosine score between FVs(i,:) and FVs(i + 1,:)
Append [C, i] to Scores {}

end
Sort Scores{} ascendingly (based on C values)
IDX_DEL[] = Indices (i) of upper 90th percentile in Scores{}

The concept here is that higher similarity scores between feature vectors imply a higher
degree of similarity between them, which indicates redundancy and allows the algorithm to
eliminate one of the frames. For example, if we have the frames [f r1, f r2, f r3, f r4, . . . , f rn]
and their feature vectors: [v1, v2, v3, v4, . . . , vn], the cosine similarity scores between them
are [c1, c2, c3, c4, . . . , cn−1], with c1 and c2 being the scores between v1 − v2 and v2 − v3,
respectively. If c1 is in the upper 90% of the similarity indices then f r1, which is represented
by v1, is marked for elimination, and this continues until all feature vectors are covered.

2.3. Reducing the Feature Space

A supervised feature selection approach known as stepwise regression is used to auto-
matically select the most relevant predictor variables used to predict response variables [35].

Appl. Sci. 2023, 13, 6065 8 of 17

The authors of [36] first suggested using stepwise regression in video-based intelligent
systems. Since then, it has been effectively employed in many vision-based applications, as
documented in several works, including [12,37,38].

In this study, we used stepwise regression to reduce the dimensionality of our feature
vectors, where features were treated as predictors and the class labels were treated as
response variables. This was carried out to assess the suitability of the selected features
and consequently reduce the dimensionality of the feature vectors if needed. Stepwise
regression was only used with the training data because it is a supervised approach. Later,
the dimensionality of the test data was reduced by using the indices of the retained feature
variables of the training set, as illustrated in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

2.3. Reducing the Feature Space
A supervised feature selection approach known as stepwise regression is used to au-

tomatically select the most relevant predictor variables used to predict response variables
[35]. The authors of [36] first suggested using stepwise regression in video-based intelli-
gent systems. Since then, it has been effectively employed in many vision-based applica-
tions, as documented in several works, including [12,37,38].

In this study, we used stepwise regression to reduce the dimensionality of our feature
vectors, where features were treated as predictors and the class labels were treated as re-
sponse variables. This was carried out to assess the suitability of the selected features and
consequently reduce the dimensionality of the feature vectors if needed. Stepwise regres-
sion was only used with the training data because it is a supervised approach. Later, the
dimensionality of the test data was reduced by using the indices of the retained feature
variables of the training set, as illustrated in Figure 5.

Figure 5. General overview of feature space reduction with stepwise regression.

For completeness, a summary of the stepwise regression algorithm is as follows: for
a feature set of 𝑥 , 𝑥 , … , 𝑥 , 𝐹 is the F-random feature for the feature to be added to the
reduced feature space, and 𝐹 is the feature to be dropped from the reduced feature
space. The steps for stepwise regression are as follows:
1. Create single-set models from all features:

ℎ(𝑥) = 𝜃 + 𝜃 𝑥 (2)

where ℎ(𝑥) is the hypothesis that the added features are important for classification. 𝑥
was one of the features that yielded the highest F-score. 𝑓 is the statistic of 𝑥 , and is
given by the following formula:

𝑓 =
𝑆𝑆 (𝜃 |𝜃 𝜃)

𝑀𝑆 (𝑥 , 𝑥)
 (3)

where 𝑀𝑆 is the mean square error, and 𝑆𝑆 is the regression sum square error.
2. Repeat step 1 for all feature variables. For every new h(x) produced, it is examined in

combination with the existing h(x) if they produce a higher hypothesis than the older
ℎ(𝑥) alone. We add 𝑥 if its 𝑓 is greater than 𝐹 and obtain the following:

𝑓 =
𝑆𝑆 (𝜃 |𝜃 𝜃)

𝑀𝑆 (𝑥 , 𝑥)
 (4)

ℎ(𝑥) = 𝜃 + 𝜃 𝑥 + 𝜃 𝑥 (5)

After adding 𝑥 , 𝑥 is checked for removal by comparing 𝑓 to the new 𝐹 . If 𝑓
is lesser, then 𝑥 is dropped.
3. The algorithm continues until there are no features to add or drop, with the final

hypothesis appearing similar to the following:

Figure 5. General overview of feature space reduction with stepwise regression.

For completeness, a summary of the stepwise regression algorithm is as follows: for a
feature set of x1, x2, . . . , xk, Fin is the F-random feature for the feature to be added to the
reduced feature space, and Fout is the feature to be dropped from the reduced feature space.
The steps for stepwise regression are as follows:

1. Create single-set models from all features:

h(x) = θ0 + θ1x1 (2)

where h(x) is the hypothesis that the added features are important for classification.
x1 was one of the features that yielded the highest F-score. f1 is the statistic of x1, and
is given by the following formula:

f1 =
SSR(θ2|θ1θ0)

MSE(x2, x1)
(3)

where MSE is the mean square error, and SSR is the regression sum square error.

2. Repeat step 1 for all feature variables. For every new h(x) produced, it is examined in
combination with the existing h(x) if they produce a higher hypothesis than the older
h(x) alone. We add x2 if its f2 is greater than Fin and obtain the following:

f2 =
SSR(θ1|θ2θ0)

MSE(x1, x2)
(4)

h(x) = θ0 + θ1x1 + θ2x2 (5)

After adding x2, x1 is checked for removal by comparing f1 to the new Fout. If f1 is
lesser, then x1 is dropped.

3. The algorithm continues until there are no features to add or drop, with the final
hypothesis appearing similar to the following:

h(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + · · · (6)

Appl. Sci. 2023, 13, 6065 9 of 17

2.4. Video Summarization Architectures
2.4.1. LSTM-Based Architecture

Recurrent neural networks (RNNs) [39] are a type of neural network used with se-
quential or time series data. They differ from standard neural networks, which assume that
inputs and outputs are independent, in that they remember information from earlier inputs
and use it to impact the current input and output. A major drawback of RNN networks
is that they are susceptible to the vanishing gradient problem [40]. The gradient of the
loss function approaches zero as the network’s number of layers with activation functions
increases, making the network more challenging to train. Due to the vanishing gradient
problem, RNNs are not able to remember long-term dependencies. A long short-term mem-
ory network (LSTM) is an advanced RNN network that allows information to persist [6]. It
is capable of handling the vanishing gradient problem with a chain structure that contains
memory blocks called cells.

These cells can forget information that is no longer useful before passing it to the
next cell. The output of one cell is taken as input of another. This chain structure is what
allows the LSTM to retain only the useful information without suffering from the vanishing
gradient problem. The LSTM network can remember the information between different
frames of the video while only retaining the important information.

The LSTM architecture used in this work was a four-layer LSTM network with 50 nodes
in each layer. The proposed LSTM architecture is shown in Figure 6 (left).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19

ℎ(𝑥) = 𝜃 + 𝜃 𝑥 + 𝜃 𝑥 + 𝜃 𝑥 + ⋯ (6)

2.4. Video Summarization Architectures
2.4.1. LSTM-Based Architecture

Recurrent neural networks (RNNs) [39] are a type of neural network used with se-
quential or time series data. They differ from standard neural networks, which assume
that inputs and outputs are independent, in that they remember information from earlier
inputs and use it to impact the current input and output. A major drawback of RNN net-
works is that they are susceptible to the vanishing gradient problem [40]. The gradient of
the loss function approaches zero as the network’s number of layers with activation func-
tions increases, making the network more challenging to train. Due to the vanishing gra-
dient problem, RNNs are not able to remember long-term dependencies. A long short-
term memory network (LSTM) is an advanced RNN network that allows information to
persist [6]. It is capable of handling the vanishing gradient problem with a chain structure
that contains memory blocks called cells.

These cells can forget information that is no longer useful before passing it to the next
cell. The output of one cell is taken as input of another. This chain structure is what allows
the LSTM to retain only the useful information without suffering from the vanishing gra-
dient problem. The LSTM network can remember the information between different
frames of the video while only retaining the important information.

The LSTM architecture used in this work was a four-layer LSTM network with 50
nodes in each layer. The proposed LSTM architecture is shown in Figure 6 (left).

Figure 6. Proposed LSTM network architecture (left), and 1D-CNN network architecture (right).

2.4.2. One-Dimensional-CNN-Based Architecture
Convolutional neural networks (CNNs), as opposed to conventional artificial neural

networks, can combine feature extraction and classification into a single learning body,
averting the need for fixed and manually constructed features. In a typical two-dimen-
sional CNN, the kernel can slide along two dimensions of the data [5]. A kernel is a matrix
of weights that extracts key information by multiplying them by the input. Contrary, in
one-dimensional CNN (1D-CNN), the kernel slides along one dimension of the data in
which the convolution operation is applied, significantly reducing the computational
complexity.

One-dimensional CNNs are usually used with sequential data due to their simplicity
and effectiveness, which is why the architecture used in this work is a single-layer 1D-
CNN with 256 filters of size 5. Figure 6 (right) shows the proposed 1D-CNN architecture.

2.4.3. Random-Forest-Based Architecture
The random forest algorithm is a supervised learning approach. An ensemble of de-

cision trees, or a “forest”, are usually trained using the “bagging” method. The

Figure 6. Proposed LSTM network architecture (left), and 1D-CNN network architecture (right).

2.4.2. One-Dimensional-CNN-Based Architecture

Convolutional neural networks (CNNs), as opposed to conventional artificial neural
networks, can combine feature extraction and classification into a single learning body,
averting the need for fixed and manually constructed features. In a typical two-dimensional
CNN, the kernel can slide along two dimensions of the data [5]. A kernel is a matrix of
weights that extracts key information by multiplying them by the input. Contrary, in one-
dimensional CNN (1D-CNN), the kernel slides along one dimension of the data in which
the convolution operation is applied, significantly reducing the computational complexity.

One-dimensional CNNs are usually used with sequential data due to their simplicity
and effectiveness, which is why the architecture used in this work is a single-layer 1D-CNN
with 256 filters of size 5. Figure 6 (right) shows the proposed 1D-CNN architecture.

2.4.3. Random-Forest-Based Architecture

The random forest algorithm is a supervised learning approach. An ensemble of deci-
sion trees, or a “forest”, are usually trained using the “bagging” method. The fundamental
concept of the bagging method is that the final output is improved by combining several
learning models [4]. Random forests increase the model’s randomness while creating the
decision trees. When splitting a node, it looks for the strongest feature among a random
group of features rather than the best feature from the entire set. There is significant variety
as a result, which usually results in a better overall model. By using random thresholds for
each feature, random forests make trees even more random, as opposed to searching for
the best thresholds (such as in conventional decision trees). We employed a threshold of
0.9 in our implementation in order to keep features with values over the threshold. When

Appl. Sci. 2023, 13, 6065 10 of 17

none of the features were higher than the threshold, they were then all used. For training
across the chosen features, we specified that the forest produced 128 trees. Then, in order
to quantify the findings, we computed a few performance measures using the predicted
labels that we had previously saved.

3. Experimental Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Datasets

In this work, the proposed solutions are evaluated using four popular datasets for
video summarization, namely, TVSum [41], SumMe [42], OVP [43], and VSUMM [43]. The
TVSum dataset contains 50 videos of various genres such as news, documentaries, and
vlogs at 30 fps. The SumMe dataset contains 25 videos at 30 fps. The OVP (Open Video
Project) dataset has 50 videos of several genres from the Open Video Project, presented at
30 and with a duration of 1–4 min. The VSUMM dataset contains 50 videos from YouTube,
also from several genres, provided at 30 fps with a duration of 1–10 min.

In these datasets, video summaries are generated manually by a number of users
and stored in a matrix referred to as “user summaries” which is used as the ground truth.
Some existing research papers clearly state that they compare their automatically generated
summaries against each of the user summaries and report the average F-score, while
other research papers loosely mention that their automatically generated summaries are
compared against the ground truth without further details.

Since this work was concerned with static video summarization or key frame extrac-
tion, we trained and tested the datasets on the disjunction (inclusive OR) of all user sum-
maries. In our published datasets, we refer to these vectors as “user_summary_inclusive_OR”,
which we added to the files of the datasets and made publicly available.

To the best of our knowledge, the use of all four datasets in one research paper rarely
occurs in the reporting of experimental results in the literature. From our observations
and experimental results, it is rarely the case that a reported video summarization solution
works well on all four datasets. Therefore, most papers opt to use a subset of these
four datasets.

3.2. Evaluation Criteria

We used quantitative metrics similar to the criteria used in other works for a fair
comparison. We define the following metrics using the temporal overlap between the
predicted summary A and the ground truth summary B:

Precision (P) =
overlap(A, B)

length(A)
(7)

Recall (R) =
overlap(A, B)

length(B)
(8)

F−measure (F) =
2P× R
P + R

× 100 (9)

To put these metrics into words: precision (P) is the percentage of true positive predic-
tions over all positive predictions, recall (R) is the percentage of true positive predictions
over the ground truth, and the F-score (F) is the harmonic mean between them.

3.3. Experimental Setup

Before presenting the results, we describe the general setup that is common to all
three proposed architectures. After the video coding feature vectors are generated and

Appl. Sci. 2023, 13, 6065 11 of 17

the temporal subsampling algorithm is applied, the feature vectors are split in a 20–80%
fashion for testing and training, respectively. We apply cross-validation with five folds
(K = 5) in which, in every fold, the new testing set shifts by 20% and the older testing set is
added back to the training set. The results are then averaged over five folds. The training
setup is illustrated in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹) =
2𝑃 × 𝑅

𝑃 + 𝑅
× 100 (9)

To put these metrics into words: precision (P) is the percentage of true positive pre-
dictions over all positive predictions, recall (R) is the percentage of true positive predic-
tions over the ground truth, and the F-score (F) is the harmonic mean between them.

3.3. Experimental Setup
Before presenting the results, we describe the general setup that is common to all

three proposed architectures. After the video coding feature vectors are generated and the
temporal subsampling algorithm is applied, the feature vectors are split in a 20–80% fash-
ion for testing and training, respectively. We apply cross-validation with five folds (K = 5)
in which, in every fold, the new testing set shifts by 20% and the older testing set is added
back to the training set. The results are then averaged over five folds. The training setup
is illustrated in Figure 7.

Figure 7. General overview of learning architecture with averaged results over five folds of cross-
validation.

We use HEVC features derived from the custom re-encoder mentioned in Section III.
We test our setups with and without a dimensionality reduction of the feature space. In
addition, the proposed temporal subsampling of video frames methods using HEVC fea-
tures, PCA projections, and cosine similarity are all tested with the following three learn-
ing architectures: 1D-CNNs, LSTM networks and random forests. For each of the four
datasets, the top-performing model from each learning architecture is shortlisted and
compared against benchmark methods in the literature. First, the results are reported for
every dataset, and the best models are then compared with the literature, followed by a
thorough discussion of the results.

The metrics used for comparison are precision (P), recall I and the F-score. The ex-
periments were conducted on a PC with 9th gen Intel i9, 32 GB of RAM, and an NVIDIA
RTX 2070 GPU.

3.4. Results
3.4.1. TVSum Dataset

The best results across all learning architectures in Table 2-A do not use stepwise
regression (denoted as SW in the tables), while the second-best results do use it for the
dimensionality reduction of the feature space. HEVC-based temporal subsampling
achieves the highest results in the TVSum dataset, regardless of using stepwise regression
or not. The highest overall scores appear with the use of the LSTM network.

Table 2. Proposed solutions: F-scores of the two best-performing models using the three proposed
learning architectures, with and without the reduction of the feature space, and across the three

Figure 7. General overview of learning architecture with averaged results over five folds of
cross-validation.

We use HEVC features derived from the custom re-encoder mentioned in Section
III. We test our setups with and without a dimensionality reduction of the feature space.
In addition, the proposed temporal subsampling of video frames methods using HEVC
features, PCA projections, and cosine similarity are all tested with the following three
learning architectures: 1D-CNNs, LSTM networks and random forests. For each of the
four datasets, the top-performing model from each learning architecture is shortlisted and
compared against benchmark methods in the literature. First, the results are reported for
every dataset, and the best models are then compared with the literature, followed by a
thorough discussion of the results.

The metrics used for comparison are precision (P), recall I and the F-score. The
experiments were conducted on a PC with 9th gen Intel i9, 32 GB of RAM, and an NVIDIA
RTX 2070 GPU.

3.4. Results
3.4.1. TVSum Dataset

The best results across all learning architectures in Table 2-A do not use stepwise
regression (denoted as SW in the tables), while the second-best results do use it for the
dimensionality reduction of the feature space. HEVC-based temporal subsampling achieves
the highest results in the TVSum dataset, regardless of using stepwise regression or not.
The highest overall scores appear with the use of the LSTM network.

Table 2. Proposed solutions: F-scores of the two best-performing models using the three proposed
learning architectures, with and without the reduction of the feature space, and across the three
proposed temporal subsampling methods on the TVSum (A), SumMe (B), OVP (C), and VSUMM (D)
datasets. Bold scores indicate the highest and underlined scores indicate the second highest.

Architecture Reduction
Temporal

F-Score
Time Time Architecture Reduction Temporal

Subsampling F-Score Time Time

Subsampling (K = 5) (K = 1) (K = 5) (K = 1)

1D-CNN Stepwise HEVC-based 0.728 20.36 4.07 1D-CNN None PCA-based 0.61 12.38 2.48
1D-CNN None HEVC-based 0.737 48.86 9.77 1D-CNN None HEVC-based 0.644 16.29 3.26

RF Stepwise HEVC-based 0.737 22.13 4.43 LSTM None PCA-based 0.646 49.51 9.9
RF None HEVC-based 0.74 49.74 9.95 LSTM None HEVC-based 0.676 65.14 13.03

LSTM Stepwise HEVC-based 0.775 81.43 16.29 RF None PCA-based 0.72 13.22 2.64
LSTM None HEVC-based 0.785 195.42 39.08 RF None HEVC-based 0.737 17.04 3.41

(A) (B)

Architecture Reduction Temporal
subsampling F-score Time Time Architecture Reduction Temporal

subsampling F-score Time Time
(K = 5) (K = 1) (K = 5) (K = 1)

1D-CNN Stepwise Cosine-based 0.827 6.17 1.23 1D-CNN Stepwise HEVC-based 0.728 13.86 2.8
1D-CNN None HEVC-based 0.84 22.94 4.59 1D-CNN None HEVC-based 0.744 33.26 6.7

RF Stepwise Cosine-based 0.852 6.86 1.37 LSTM Stepwise HEVC-based 0.753 55.43 11.1
RF None HEVC-based 0.864 24.7 4.94 LSTM None HEVC-based 0.77 133.03 26.6

LSTM Stepwise Cosine-based 0.866 25.52 5.1 RF Stepwise HEVC-based 0.799 14.67 2.9
LSTM None HEVC-based 0.879 91.75 18.35 RF None HEVC-based 0.808 35.21 7

(C) (D)

Appl. Sci. 2023, 13, 6065 12 of 17

3.4.2. SumMe Dataset

Regardless of the temporal subsampling method used, all results in the SumMe dataset
in Table 2-B are without stepwise regression. Across all learning architectures, the best
model uses HEVC-based temporal subsampling, and the second-best model uses PCA-
based temporal subsampling. The highest overall scores appear with the use of the random
forest architecture.

3.4.3. OVP Dataset

Across all three learning architectures in Table 2-C, the best results in the OVP dataset
come from using HEVC-based temporal subsampling and without applying stepwise
regression. The second-best model across all learning architectures, however, uses stepwise
regression for the dimensionality reduction and cosine similarity for temporal subsampling.
The highest overall score appears with the use of the LSTM network.

3.4.4. VSUMM Dataset

In Table 2-D for the VSUMM dataset, all results across all three learning architectures
use HEVC-based temporal subsampling. The first across all learning architectures is
without stepwise regression, while the second is with stepwise regression. The highest
overall scores are with the use of random forests.

3.4.5. All Datasets Versus Benchmarks

Again, as mentioned above, we carried out training and testing using all user sum-
maries combined into one label vector. In the existing work, different papers used different
approaches for training and testing, with some of them loosely using the term ground
truth without further details. Nonetheless, for completeness, in this section, we provide
comparisons against the existing work which carry out training and testing using different
approaches but with the same datasets.

Table 3 (A–D) contain the F-scores of our best-performing models from each learning
architecture compared against state-of-the-art works in the literature on the SumMe, TV-
Sum, OVP, and VSUMM datasets. With the SumMe dataset in Table 3-A, our random forest
model with no dimensionality reduction and with HEVC-based temporal subsampling
surpasses the highest scores in the literature.

Table 3. F-scores of our best performing models from the three proposed learning architectures
against benchmark models in the literature on the TVSum (A), SumMe (B), OVP (C), and VSUMM
(D) datasets. Sorted ascendingly from top to bottom. Bold scores indicate the highest and underlined
scores indicate the second highest.

Method F-Score Method F-Score Method F-Score Method F-Score

RR-STG [44] 0.637 MC-VSA [45] 0.534 VRHDPS [46] 0.63 VSUMM [47] 0.67
PGL-SUM

[48] 0.654 re-seq2seq
[49] 0.556 VSUMM [47] 0.68 VISCOM [50] 0.67

SMN [51] 0.675 MAVS [16] 0.583 VISCOM [50] 0.72 VRHDPS [46] 0.68
Ours

(1D-CNN) 0.737 Ours
(1D-CNN) 0.644 Ours

(1D-CNN) 0.84 Ours
(1D-CNN) 0.744

Ours (RF) 0.74 Ours (LSTM) 0.676 Ours (RF) 0.869 Ours (LSTM) 0.77
Ours (LSTM) 0.785 Ours (RF) 0.737 Ours (LSTM) 0.879 Ours (RF) 0.808

(A) (B) (C) (D)

With the TVSum dataset in Table 3-B, our LSTM network model with no dimensionality
reduction and with HEVC-based temporal subsampling also exceeds the highest scores
in the literature. Our second- and third-best models with random forests and 1D-CNNs,
without dimensionality reduction and with the HEVC-based temporal subsampling of
frames, also exceed the benchmark scores.

Appl. Sci. 2023, 13, 6065 13 of 17

With the OVP dataset in Table 3-C, our model with the LSTM network without
dimensionality reduction and with the HEVC-based temporal subsampling of frames
surpasses the highest scores in the literature. Our second- and third-ranking models with
random forests and 1D-CNNs, without dimensionality reduction, and with HEVC-based
temporal subsampling also outperform the benchmark scores.

With the VSUMM dataset in Table 3-D, our model with random forests, without using
stepwise regression, and with HEVC-based temporal subsampling tops the best scores in
the literature. Our second- and third-best models with LSTM networks and 1D-CNNs,
without stepwise regression and with the HEVC-based temporal subsampling of frames,
also exceed benchmark scores.

4. Discussion of Results
4.1. Reduction of Feature Space

One observation from the results in Table 2 is that the highest score is constantly
achieved without resorting to reducing the dimensionality of the HEVC feature set. Di-
mensionality reduction methods aim to retain the most representative features and discard
the features that are deemed unnecessary, redundant, or non-representative of the original
image information. The fact that retaining all and not some of the 64 HEVC features yields
higher scores means that all 64 HEVC features are excellent representatives, and none of
them can be discarded.

This is also true for the second-highest scores across all learning architectures in the
SumMe dataset but with the PCA-based temporal subsampling of frames per training set.
This means that for the SumMe dataset, the quality of the features used is more important
or influential than the method used for the temporal subsampling of frames due to the
difficult nature of the videos it contains, which were intended to be used with importance-
and interestingness-based applications of video summarization [52]. According to the
presented results, HEVC features successfully capture importance and interestingness
information of video frames.

For TVSum, OVP, and VSUMM, the second-highest score across all three learning
architectures is achieved when HEVC features are reduced with stepwise regression regard-
less of the temporal subsampling method used. The interesting finding with the TVSum
and VSUMM datasets is that the F-score of the video summarization is negatively affected
by less than 2% when the HEVC-based temporal subsampling of frames is used compared
to the best scores. Even in the case of the second-highest scores in the OVP dataset, in which
dimensionality reduction is applied and cosine similarity is used for temporal subsampling,
the decrease in the F-score is less than 2% as well. This indicates that even when some
of the HEVC features are removed, regardless of the method being used for temporal
subsampling, the retained features are still highly representative of the frame content and
contain close and comparable information compared to the full set of HEVC features.

In general, the use of stepwise regression did not generate the best results in any
of our experiments. This can be justified by the fact that stepwise regression uses linear
multivariate regression for variable selection. However, the problem at hand, which
is mapping feature variables to key frames, is clearly non-linear, leading the stepwise
regression approach to fail.

The following are examples of using stepwise regression with the TVSum and SumMe
datasets. For the TVsum dataset, we found that the most significant features pertain to
the following IDs from Table 1: 4, 5, 8, and 9 and standard deviations of (2–4, 6–8), 10–13,
23–25, and 30, and 10 bins of MVx histogram and 12 bins of the MVy histogramm whereas
for the SumMe dataset, we found that the most significant features pertain to the following
IDs from Table 1: 3 and 5–7, standard deviations of 1 and 4, 23, standard deviations of 23
and 30, and 7 bins of MVx histogram and 5 bins of the MVy histogram.

Appl. Sci. 2023, 13, 6065 14 of 17

4.2. Learning Architecture

Recall that the HEVC features are extracted from the HEVC video coding process.
Such a process is based on motion estimation and compensation, which is known to make
use of previous video frames in the coding of the present video frame. As such, the resultant
feature vector of a video frame inherently contains information from previous frames. This
justifies the outstanding results obtained using the RF and 1D-CNN architectures which,
unlike LSTM networks, lack the ability to maintain information beyond the current frame.

On the other hand, in SumMe and VSUMM, RFs achieved higher scores compared to
the other two learning architectures, implying less content or scene changes in the content
of the videos within these datasets. When a video contains many scene changes, LSTMs
excel; however, when there are not many changes, RFs can keep up with and exceed LSTMs
in terms of classification accuracy.

The datasets in which LSTM networks performed better, i.e., TVSum and OVP, indicate
that the videos contained in them have more temporal variance or scene changes in their
content compared to the other two datasets. This can be explained by the way LSTM
networks work; they can retain information about older frames or content through their
long memory in addition to the recently preceding frames with their short memory.

4.3. Elapsed Runtimes

LSTM networks are computationally expensive and require at least four times the
resources required by 1D-CNNs or random forests, according to our experiments. When
runtime is not a priority, LSTM networks are recommended. On the other hand, when run-
time is a priority, random forests are the learning architecture of choice. One-dimensional
CNNs still have a place when the runtime is of absolute significance and the accuracy of
the summary is not highly prioritized or is not intended to be relied upon in a sensitive
application. Recall that in this work, we used cross-validation with K = 5 to generate the
results; the results reported in the experiment are for both K = 5 and K = 1.

In conclusion, as the proposed feature set contains only 64 variables, the model
generation and testing time is very fast in comparison to typical works in which hundreds
or thousands of CNN features are used.

5. Limitations and Future Work

This work was designed for key frame extraction or static video summarization; how-
ever, we do not know how it can be expanded or modified to work for dynamic video
summarization, which is usually a computationally heavier task. For the learning archi-
tectures used, LSTM architectures can be a limiting factor due to expensive computation.
However, this can be remedied by using alternative architectures, such as light-weight
1D-CNNs and random forests.

In HEVC-based temporal subsampling, we mentioned using a multiplier to vary the
mount of deleted or eliminated frames that was arrived at through empirical testing. This
multiplier can be potentially calculated dynamically or in an automated manner.

6. Conclusions

In this work, we presented multiple proposals for generating summaries of video
content in the form of key frames. The proposals are based on a precise and concise feature
set generated from an HEVC video coder. We presented novel methods for the temporal
subsampling of frames using PCA projections and cosine similarity, in addition to the use
of stepwise regression for the reduction of the feature space.

We also developed three learning architectures using LSTM networks, 1D-CNNs, and
random forests. The experimental results section presented extensive results using all four
well-known datasets in the video summarization domain, namely, TVSum, SumMe, OVP,
and VSUMM. The reported results surpass reviewed work in the literature in terms of their
F-scores. The advantage against existing work is mainly attributed to our use of HEVC
features that are based on video coding. Such coding is based on motion estimation and

Appl. Sci. 2023, 13, 6065 15 of 17

compensation, leading the final HEVC feature vectors to successfully capture temporal
dependencies across frames. The reported results are not exclusive to high F-scores but
also include reasonable runtimes. The feature vectors have a length of 64 features only,
making them compact compared to traditional features from well-known pre-trained CNN
networks, which have lengths that are usually in the hundreds or thousands of features.

Author Contributions: Conceptualization, O.I. and T.S.; methodology, O.I. and T.S.; software, O.I.
and T.S.; validation, O.I. and T.S.; formal analysis, O.I. and T.S.; investigation, O.I. and T.S.; resources,
O.I. and T.S.; data curation, O.I. and T.S.; writing—original draft preparation, O.I. and T.S.; writing—
review and editing, O.I. and T.S.; visualization, O.I. and T.S.; supervision, O.I. and T.S.; project
administration, O.I. and T.S.; funding acquisition, O.I. and T.S. All authors have read and agreed to
the published version of the manuscript.

Funding: The work in this paper is supported by the American University of Sharjah under research
grant number FRG22-E-E44. The work in this paper was also supported, in part, by the Open Access
Program from the American University of Sharjah.

Data Availability Statement: The datasets used are made publicly available via GitHub at: https:
//github.com/b00071518/HEVC-SVS (accessed on 1 January 2023).

Acknowledgments: This paper represents the opinions of the author(s) and does not mean to
represent the position or opinions of the American University of Sharjah.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Basavarajaiah, M.; Sharma, P. Survey of Compressed Domain Video Summarization Techniques. ACM Comput. Surv. 2020, 52, 116.

[CrossRef]
2. Apostolidis, E.; Adamantidou, E.; Metsai, A.I.; Mezaris, V.; Patras, I. Video Summarization Using Deep Neural Networks: A

Survey. arXiv 2021, arXiv:2101.06072. [CrossRef]
3. Van Der Maaten, L.; Postma, E.; Van den Herik, J. Others Dimensionality reduction: A comparative study. J. Mach. Learn. Res.

2009, 10, 13.
4. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. arXiv 2014, arXiv:1409.4842.
6. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
7. Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.

Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]
8. Issa, O.; Shanableh, T. CNN and HEVC Video Coding Features for Static Video Summarization. IEEE Access 2022, 10, 72080–72091.

[CrossRef]
9. Hassan, M.; Shanableh, T. Predicting split decisions of coding units in HEVC video compression using machine learning

techniques. Multimed. Tools Appl. 2019, 78, 32735–32754. [CrossRef]
10. Shanableh, T. Altering split decisions of coding units for message embedding in HEVC. Multimed. Tools Appl. 2018, 77, 8939–8953.

[CrossRef]
11. Youssef, S.; Shanableh, T. Detecting Double and Triple Compression in HEVC Videos Using the Same Bit Rate. SN Comput. Sci.

2021, 2, 406. [CrossRef]
12. Shanableh, T. Saliency detection in MPEG and HEVC video using intra-frame and inter-frame distances. Signal Image Video

Process. 2016, 10, 703–709. [CrossRef]
13. Agyeman, R.; Muhammad, R.; Choi, G.S. Soccer Video Summarization Using Deep Learning. In Proceedings of the 2019 IEEE

Conference on Multimedia Information Processing and Retrieval (MIPR), San Jose, CA, USA, 28–30 March 2019; pp. 270–273.
[CrossRef]

14. Fu, T.-J.; Tai, S.-H.; Chen, H.-T. Attentive and Adversarial Learning for Video Summarization. In Proceedings of the 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1579–1587.
[CrossRef]

15. Wang, F.; Liu, F.; Zhu, S.; Fu, L.; Liu, Z.; Wang, Q. HEVC intra frame based compressed domain video summarization. In
Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC’19,
Sanya, China, 19–21 December 2019; ACM Press: New York, NY, USA, 2019; pp. 1–7. [CrossRef]

16. Wang, J.; Wang, W.; Wang, Z.; Wang, L.; Feng, D.; Tan, T. Stacked Memory Network for Video Summarization. In Proceedings
of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; ACM: New York, NY, USA, 2019;
pp. 836–844. [CrossRef]

https://github.com/b00071518/HEVC-SVS
https://github.com/b00071518/HEVC-SVS
https://doi.org/10.1145/3355398
https://doi.org/10.1109/JPROC.2021.3117472
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/ACCESS.2022.3188638
https://doi.org/10.1007/s11042-018-6882-8
https://doi.org/10.1007/s11042-017-4787-6
https://doi.org/10.1007/s42979-021-00800-8
https://doi.org/10.1007/s11760-015-0798-9
https://doi.org/10.1109/MIPR.2019.00055
https://doi.org/10.1109/WACV.2019.00173
https://doi.org/10.1145/3371425.3371450
https://doi.org/10.1145/3343031.3350992

Appl. Sci. 2023, 13, 6065 16 of 17

17. Zhong, S.; Wu, J.; Jiang, J. Video summarization via spatio-temporal deep architecture. Neurocomputing 2019, 332, 224–235.
[CrossRef]

18. Apostolidis, E.; Adamantidou, E.; Metsai, A.I.; Mezaris, V.; Patras, I. Unsupervised Video Summarization via Attention-
Driven Adversarial Learning. In MultiMedia Modeling; Ro, Y.M., Cheng, W.-H., Kim, J., Chu, W.-T., Cui, P., Choi, J.-W., Hu,
M.-C., De Neve, W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020;
Volume 11961, pp. 492–504, ISBN 978-3-030-37730-4. [CrossRef]

19. Huang, C.; Wang, H. A Novel Key-Frames Selection Framework for Comprehensive Video Summarization. IEEE Trans. Circuits
Syst. Video Technol. 2020, 30, 577–589. [CrossRef]

20. Hussain, T.; Muhammad, K.; Ullah, A.; Cao, Z.; Baik, S.W.; de Albuquerque, V.H.C. Cloud-Assisted Multiview Video Summariza-
tion Using CNN and Bidirectional LSTM. IEEE Trans. Ind. Inform. 2020, 16, 77–86. [CrossRef]

21. Ji, Z.; Xiong, K.; Pang, Y.; Li, X. Video Summarization With Attention-Based Encoder–Decoder Networks. IEEE Trans. Circuits
Syst. Video Technol. 2020, 30, 1709–1717. [CrossRef]

22. Liu, T.; Meng, Q.; Vlontzos, A.; Tan, J.; Rueckert, D.; Kainz, B. Ultrasound Video Summarization Using Deep Reinforcement
Learning. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020: 23rd International Conference, Lima, Peru,
4–8 October 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz,
L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12263,
pp. 483–492, ISBN 978-3-030-59715-3. [CrossRef]

23. Muhammad, K.; Hussain, T.; Tanveer, M.; Sannino, G.; de Albuquerque, V.H.C. Cost-Effective Video Summarization Using Deep
CNN With Hierarchical Weighted Fusion for IoT Surveillance Networks. IEEE Internet Things J. 2020, 7, 4455–4463. [CrossRef]

24. Zhao, Y.; Guo, Y.; Sun, R.; Liu, Z.; Guo, D. Unsupervised video summarization via clustering validity index. Multimed. Tools Appl.
2020, 79, 33417–33430. [CrossRef]

25. Song, J.; He, T.; Gao, L.; Xu, X.; Hanjalic, A.; Shen, H.T. Unified Binary Generative Adversarial Network for Image Retrieval and
Compression. Int. J. Comput. Vis. 2020, 128, 2243–2264. [CrossRef]

26. Nair, M.S.; Mohan, J. Static video summarization using multi-CNN with sparse autoencoder and random forest classifier. Signal
Image Video Process. 2021, 15, 735–742. [CrossRef]

27. Zhao, B.; Li, X.; Lu, X. TTH-RNN: Tensor-Train Hierarchical Recurrent Neural Network for Video Summarization. IEEE Trans.
Ind. Electron. 2021, 68, 3629–3637. [CrossRef]

28. Narasimhan, M.; Rohrbach, A.; Darrell, T. CLIP-It! Language-Guided Video Summarization. arXiv 2021, arXiv:2107.00650.
29. Lin, J.; Zhong, S.; Fares, A. Deep hierarchical LSTM networks with attention for video summarization. Comput. Electr. Eng. 2022,

97, 107618. [CrossRef]
30. Rhevanth, M.; Ahmed, R.; Shah, V.; Mohan, B.R. Deep Learning Framework Based on Audio–Visual Features for Video

Summarization. In Advanced Machine Intelligence and Signal Processing; Gupta, D., Sambyo, K., Prasad, M., Agarwal, S., Eds.;
Lecture Notes in Electrical Engineering; Springer Nature Singapore: Singapore, 2022; Volume 858, pp. 229–243, ISBN 978-981-
19083-9-2.

31. Sreeja, M.U.; Kovoor, B.C. A multi-stage deep adversarial network for video summarization with knowledge distillation.
J. Ambient Intell. Humaniz. Comput. 2022. [CrossRef]

32. Zhu, W.; Lu, J.; Han, Y.; Zhou, J. Learning multiscale hierarchical attention for video summarization. Pattern Recognit. 2022, 122, 108312.
[CrossRef]

33. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng.
Sci. 2016, 374, 20150202. [CrossRef]

34. Singhal, A.; Google, I. Modern Information Retrieval: A Brief Overview. IEEE Data Eng. Bull. 2001, 24, 35–43.
35. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; EMEA edition; Seventh edition; Wiley: Hoboken,

NJ, USA, 2018; ISBN 978-1-119-40036-3.
36. Shanableh, T.; Assaleh, K. Feature modeling using polynomial classifiers and stepwise regression. Neurocomputing 2010, 73,

1752–1759. [CrossRef]
37. Shanableh, T. A regression-based framework for estimating the objective quality of HEVC coding units and video frames. Signal

Process. Image Commun. 2015, 34, 22–31. [CrossRef]
38. Shanableh, T. Detection of frame deletion for digital video forensics. Digit. Investig. 2013, 10, 350–360. [CrossRef]
39. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network

applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]
40. Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]
41. Song, Y.; Vallmitjana, J.; Stent, A.; Jaimes, A. TVSum: Summarizing web videos using titles. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5179–5187. [CrossRef]
42. Gygli, M.; Grabner, H.; Riemenschneider, H.; Van Gool, L. Creating Summaries from User Videos. In Computer Vision–ECCV 2014:

13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014.
43. de Avila, S.E.F.; da_Luz, A., Jr.; de A. Araújo, A.; Cord, M. VSUMM: An Approach for Automatic Video Summarization and

Quantitative Evaluation. In Proceedings of the 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing,
Campo Grande, Brazil, 12–15 October 2008; pp. 103–110. [CrossRef]

https://doi.org/10.1016/j.neucom.2018.12.040
https://doi.org/10.1007/978-3-030-37731-1_40
https://doi.org/10.1109/TCSVT.2019.2890899
https://doi.org/10.1109/TII.2019.2929228
https://doi.org/10.1109/TCSVT.2019.2904996
https://doi.org/10.1007/978-3-030-59716-0_46
https://doi.org/10.1109/JIOT.2019.2950469
https://doi.org/10.1007/s11042-019-7582-8
https://doi.org/10.1007/s11263-020-01305-2
https://doi.org/10.1007/s11760-020-01791-4
https://doi.org/10.1109/TIE.2020.2979573
https://doi.org/10.1016/j.compeleceng.2021.107618
https://doi.org/10.1007/s12652-021-03641-8
https://doi.org/10.1016/j.patcog.2021.108312
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1016/j.neucom.2009.11.045
https://doi.org/10.1016/j.image.2015.02.008
https://doi.org/10.1016/j.diin.2013.10.004
https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.ncbi.nlm.nih.gov/pubmed/30519653
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1109/CVPR.2015.7299154
https://doi.org/10.1109/SIBGRAPI.2008.31

Appl. Sci. 2023, 13, 6065 17 of 17

44. Liu, Y.-T.; Li, Y.-J.; Wang, Y.-C.F. Transforming Multi-Concept Attention into Video Summarization. arXiv 2020, arXiv:2006.01410.
45. Zhu, W.; Han, Y.; Lu, J.; Zhou, J. Relational Reasoning Over Spatial-Temporal Graphs for Video Summarization. IEEE Trans. Image

Process. 2022, 31, 3017–3031. [CrossRef] [PubMed]
46. Wu, J.; Zhong, S.; Jiang, J.; Yang, Y. A novel clustering method for static video summarization. Multimed. Tools Appl. 2017, 76,

9625–9641. [CrossRef]
47. de Avila, S.E.F.; Lopes, A.P.B.; da Luz, A.; de Albuquerque Araújo, A. VSUMM: A mechanism designed to produce static video

summaries and a novel evaluation method. Pattern Recognit. Lett. 2011, 32, 56–68. [CrossRef]
48. Zhang, K.; Grauman, K.; Sha, F. Retrospective Encoders for Video Summarization. In Computer Vision—ECCV 2018; Ferrari, V.,

Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham,
Switzerland, 2018; Volume 11212, pp. 391–408, ISBN 978-3-030-01236-6. [CrossRef]

49. Apostolidis, E.; Balaouras, G.; Mezaris, V.; Patras, I. Combining Global and Local Attention with Positional Encoding for Video
Summarization. In Proceedings of the 2021 IEEE International Symposium on Multimedia (ISM), Naple, Italy, 6–8 December
2021; pp. 226–234. [CrossRef]

50. Mussel Cirne, M.V.; Pedrini, H. VISCOM: A robust video summarization approach using color co-occurrence matrices. Multimed.
Tools Appl. 2018, 77, 857–875. [CrossRef]

51. Feng, L.; Li, Z.; Kuang, Z.; Zhang, W. Extractive Video Summarizer with Memory Augmented Neural Networks. In Proceedings of
the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; ACM: New York, NY, USA,
2018; pp. 976–983. [CrossRef]

52. Atencio, P.; German, S.; Branch, J.W.; Delrieux, C. Video summarisation by deep visual and categorical diversity. IET Comput. Vis.
2019, 13, 569–577. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIP.2022.3163855
https://www.ncbi.nlm.nih.gov/pubmed/35385384
https://doi.org/10.1007/s11042-016-3569-x
https://doi.org/10.1016/j.patrec.2010.08.004
https://doi.org/10.1007/978-3-030-01237-3_24
https://doi.org/10.1109/ISM52913.2021.00045
https://doi.org/10.1007/s11042-016-4300-7
https://doi.org/10.1145/3240508.3240651
https://doi.org/10.1049/iet-cvi.2018.5436

	Introduction
	Methodology
	Data Preprocessing
	Temporal Subsampling
	HEVC-Based Temporal Subsampling
	PCA-Based Temporal Subsampling
	Cosine-Based Temporal Subsampling

	Reducing the Feature Space
	Video Summarization Architectures
	LSTM-Based Architecture
	One-Dimensional-CNN-Based Architecture
	Random-Forest-Based Architecture

	Experimental Results
	Datasets
	Evaluation Criteria
	Experimental Setup
	Results
	TVSum Dataset
	SumMe Dataset
	OVP Dataset
	VSUMM Dataset
	All Datasets Versus Benchmarks

	Discussion of Results
	Reduction of Feature Space
	Learning Architecture
	Elapsed Runtimes

	Limitations and Future Work
	Conclusions
	References

