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Abstract: In industrial production, the effective and reliable performance of hydraulic systems is
closely associated with product quality, personal safety, economic efficiency, etc. It is of utmost
significance to perform the health status evaluation of systems. In this paper, a least-squares recursive
parameter identification algorithm is proposed to realize the graded evaluation of the health status of
the hydraulic system under variable operating conditions. First, a nonlinear model of the hydraulic
system is established based on a mechanism analysis. Based on the system identifiable model
obtained by parameter linearization, the least squares recursive algorithm is used to get the system
parameters. Second, the system measurable data are graded and labeled under the same operating
condition, and the variable parameter ranges under different health states are obtained by the
parameter identification algorithm. Finally, under variable operating conditions, the estimates of
variable parameters are compared with the range of health state parameters to complete the system
health state graded evaluation. The feasibility of the proposed evaluation method is verified by
MATLAB simulation software.

Keywords: system identification; hydraulic system; health status evaluation; least squares; variable
operating conditions

1. Introduction

Hydraulic systems are widely used in industrial production, transportation, weaponry
and equipment manufacturing, etc., and play an important role in equipment driving,
transmission and control with the advantages of large power quality, smooth movement,
long service life, easy realization of automatic control, etc. [1–3]. In industrial production,
whether the hydraulic equipment has effective and reliable performance is directly related
to the quality of products, personal safety, economic benefits, etc. At the same time, on
account of the complicated and variable operating conditions, and the relatively rough
operating circumstance, the rate of system deterioration and the probability of fault substan-
tially increase. Therefore, it is extremely valuable to perform the health status evaluation of
the equipment in a timely and effective manner at the early stage of degradation, and to
formulate a reasonable maintenance plan and repair program [4,5].

Currently, health state evaluation methods can be generally classified into three major
categories: the model-based evaluation method, the signal processing-based evaluation
method and the knowledge-based evaluation method [6].

The model-based method consists in evaluating the health status of the equipment
by establishing an accurate physical and mathematical model. Theoretical modeling is
combined with parameter identification or state estimation by establishing a nominal model
based on the structure and theory of the system [7,8]. The residuals are then obtained by
comparing the estimates of the actual model parameters with the values of the theoretical
model parameters, or by comparing the output of the real system with a measurable
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variable obtained by reconstructing the state of the system. The main approaches of the
model-based method are physical model, (extended) Kalman filter, state observer, system
identification, etc. [9,10]. The key to such approaches is residual generation and residual
evaluation. To evaluate the system performance, ref. [11] proposed a method based on
the residuals obtained from a radial basis function (RBF) fault observer, and then self-
organizing mapping (SOM) and Gaussian mixture model (GMM) are applied to evaluate
the health status of the hydraulic servo system based on the residuals. In order to perform
the health evaluation with variable operating conditions, ref. [12] proposed a method based
on health baseline and Mahalanobis distance for hydraulic systems. An observer based
on a generalized regression neural network (GRNN) is established to construct a health
baseline using the health state data, and the observer is used to obtain the residuals. The
Marxist distance between the health baseline and the residuals is calculated and normalized
to the health degree, so as to realize the variable working condition health evaluation. To
implement the health state evaluation for hydraulic systems, ref. [13] proposed a residual-
vector-based method, constructing an analytical model and a state observation model to
obtain the residual, and using the feature of the residual vector to perform health state
evaluation. In general, the challenge of the model-based method is how to establish
accurate mathematical models under the problem of uncertainty in model parameters,
uncertainty in nonlinear relationships and uncertainty of the resulting model with system
dynamics [14,15].

The signal processing-based evaluation method uses the physical characteristics of
various output signals form the monitored equipment to analyze the health status of
the equipment. Commonly used methods include Fourier transform, wavelet transform,
spectrum analysis and information fusion. The key to such methods is feature extraction
and threshold setting (how to distinguish among health state types) [16,17]. The fuzzy
synthetic evaluation model is a method used to achieve quantitative evaluation based
on the affiliation theory. Duan et al. established a fault hierarchy model for the data
characteristics of a hydraulic system, and evaluated the health status through data mining
and the fuzzy synthetic evaluation model [18]. The gray clustering method is a way to
divide the indexes into different gray classes by a gray whitening weight function. Lin [19]
and Qi [20] et al. determined the weights of each evaluation index of each component
of the aircraft hydraulic system by expert experience, the entropy weight method and an
extension of the analytic hierarchy process, and used the gray clustering method to evaluate
the weights to obtain the health status level of each component and the whole system.
To obtain sensitive feature quantities for health state evaluation, ref. [21] used wavelet
packet decomposition and used the magnitude of the sensitive quantities to complete the
hydraulic system health state evaluation. To overcome the effect of noise on data analysis,
ref. [22] proposed a method of wavelet energy transfer rate to monitor the unit gearbox
health status. Taken together, the signal processing-based evaluation method requires
establishing a very accurate database of signal features or setting thresholds to classify
data labels.

The knowledge-based health evaluation method is an idea and method that makes
full use of the experience and knowledge of experts to simulate problem solving by domain
experts [23]. No mathematical model of the object under consideration is required for
this method, so it is suitable for dealing with complex and large nonlinear systems. The
main methods are expert systems based on knowledge, knowledge-based evolutionary
methods such as artificial neural networks and Bayesian networks based on statistical
knowledge, etc. The key to this type of method is network training and classification
decisions [24,25]. Based on the standard LeNet, an improved convolutional neural network
(CNN) with a particle swarm optimization algorithm was constructed in ref. [26], where
the model was used to train the acoustic signal of the hydraulic piston pump to analyze the
health status. To tackle the difficulty of severe class imbalance in faulty samples, ref. [27]
proposed the invariant temporal-spatial attention fusion network (ITSA-FN) to evaluate the
bearing health status with imbalance conditions. In order to rapidly predict the important
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performance indicators of mechanical devices, ref. [28] proposed a prediction algorithm
of comprehensively using a composite variable wavelet transform, deep auto-encoder
and long short term memory (CWD-LSTM) hybrid neural network. In particular, it has a
great advantage for time series. To implement the medical device health status evaluation,
ref. [29] proposed a partial least squares regression (PLSR) algorithm combined with deep
neural networks (DNNs). Briefly, the knowledge-based method involves massive amounts
of data for network training. In addition, there is high accuracy with more different kinds
of data, but it cannot explain the connection between the data and the system, i.e., the
conclusion has uncertainty.

Integrating the current state of the research, model-based methods have a deep theoret-
ical foundation and strong implementability, and will remain the main direction of research
in the field of health state evaluation technology in future development. Among them, the
parameter estimation method is very suitable for hydraulic systems with strong nonlinear-
ity. In this paper, the system variable parameters are used as indicators to evaluation the
real health status of the system, and the system parameters are obtained by establishing a
nonlinear mathematical model of the hydraulic system based on system identification. The
simulation experiment was conducted using MATLAB simulation software. The fourth-
order Runge–Kutta method was used to obtain the measurable data of the system, and the
differential data of measurable data were obtained by a tracking-differentiator (T-D). The
least squares recursive algorithm was used to identify the system parameters and obtain
the health state range of the variable parameters of the system under the same operating
conditions. Then, under variable operating conditions, the identification algorithm was
used to obtain variable parameters and compare them with the parameter range of health
state to achieve hydraulic system health state evaluation.

The main contributions and innovations of this paper can be summarized as follows:

• The idea of evaluating the health state of a hydraulic system based on parameter
estimation is introduced and implemented. The simulation results verify the feasibility
of this idea.

• A hydraulic system parameter identification model is given, and the parameter indi-
cators for evaluating the health status of the hydraulic system are delineated.

• The combination of a signal processing-based method and a model-based method is
performed, and the problem of evaluating the health status under variable operating
conditions is solved based on the data analysis of the same operating condition.

The remaining parts of this paper are arranged as follows. Section 2 establishes a
nonlinear mathematical model of the electro-hydraulic servo system for a valve-controlled
cylinder system. Section 3 gives the system parameters based on the least squares recursive
algorithm through the simulation experiment. Section 4 gives a specific process of evaluat-
ing the health status of the hydraulic system under variable operating conditions through
the simulation experiment. Section 5 is a brief summary of this paper, together with the
future research work.

2. Modeling of Electro-Hydraulic Servo System for Valve-Controlled Cylinder

In this section, a brief introduction of the electro-hydraulic position servo system is
given, and a nonlinear mathematical model of this system satisfying certain conditions is
established through the mechanism analysis.

2.1. Introduction of Electro-Hydraulic Servo Position System

Hydraulic systems can be divided into two main categories: one is hydraulic trans-
mission systems, and the other is hydraulic control systems [30]. Hydraulic transmission
systems are mainly used to transmit power, and to transmit information as a supplement.
The basic task is driving and speed regulation. Hydraulic control systems are mainly
used to transmit information, and to transmit power as a supplement. The main task is
to enable the controlled quantity to automatically, stably, quickly and accurately track the
input command changes. This paper focuses on the hydraulic automatic gauge control
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(AGC) system for rolling mills whose main application is the electro-hydraulic position
servo system, which is a hydraulic control system with servo components as the control
core. The electro-hydraulic position servo system is the main application of AGC, and it
has two major subsystems: energy subsystems and servo subsystems [31]. The customary
term electro-hydraulic position servo system mainly denotes servo subsystems, which are
generally composed of a displacement sensor and input command, controller, servo valve,
hydraulic cylinder, load and other components, and its configuration is shown in Figure 1.

xp
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321
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1: Displacement input
2: Controller
3: Amplifier
4: Displacement sensor
5: Servo valve
6: Hydraulic cylinder
7: Load

Figure 1. Configuration of electro-hydraulic position servo system.

A system of a four-way slide valve-controlled asymmetric cylinder is shown in
Figure 2. We assume that the valve is matched symmetrically, the flow at the valve port is
turbulent, the supply pressure is constant, and the temperature and density are constant;
the dynamics and losses of the pipeline are not considered. At the same time, considering
the nonlinearity of flow-pressure at the servo valve port, the nonlinearity of the saturation
characteristics of the servo valve, the nonlinearity of the internal leakage of the hydraulic
cylinder and the time-varying characteristics of the liquid volume of the two chambers,
as well as the nonlinearity of the friction characteristics, the mathematical model of the
system is established as follows [32–36].
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Figure 2. System of four-way slide valve-controlled asymmetric cylinder.

2.2. System Modeling

Servo valve dynamic characteristics equation: The deviation voltage input signal of
a servo valve is derived from the amplifier, the spool displacement is the output signal,
and the second-order oscillation element is usually used to simplify the description of the
dynamic characteristics of the servo valve [37], whose ideal transfer function is:

Xv(s)
∆U(s)

=
Ksv

s2

ω2
sv

+
2ζsv

ωsv
s + 1

, (1)
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where ∆u is the deviation voltage input signal of the servo valve in volts (V); Ksv is the
servo valve amplification factor in meters per volt (m/V); ωsv is the servo valve natural
frequency in radians per second (rad/s); ζsv is the servo valve damping ratio; xv is the
valve spool displacement in meters (m).

The system deviation input equation: the input voltage is ug, the displacement sensor
can be regarded as a proportional element, its feedback voltage is u f , and the gain is K f ;
assume that the system controller is a proportional controller, and the amplification factor
is Kp. From the feedback control principle, the relationship between the deviation voltage
∆u and the system input voltage ug is:

∆u = Kp(ug − u f ) = Kp(ug − K f xp), (2)

where ug is the input voltage in V; u f is the hydraulic cylinder piston rod displacement
feedback voltage in V; K f is the displacement sensor gain in volts per meter (V/m); Kp is
the proportional controller amplification factor; xp is the piston rod displacement in m.

Servo valve flow equation: assuming that the rightward movement of the spool is
positive, that is, xv ≥ 0, the piston rod is pushed to the right, then based on the valve port
flow-pressure equation, the flow rate q1 into the left chamber of the hydraulic cylinder and
the flow rate q2 out of the right chamber of the hydraulic cylinder are:

q1 = CdWxv

√
2
ρ
|ps − p1|sign(ps − p1), (3)

q2 = CdWxv

√
2
ρ
|p2|, (4)

where sign indicates the symbolic function. When the valve spool moves left, that is, xv < 0,
the piston rod is pushed to the left, the flow rate q1 out of the left chamber of the hydraulic
cylinder and the flow rate q2 into the right chamber of the hydraulic cylinder are:

q1 = CdWxv

√
2
ρ
|p1|, (5)

q2 = CdWxv

√
2
ρ
|ps − p2|sign(ps − p2), (6)

where q1 is the hydraulic cylinder left chamber flow rate in cubic meters per second (m3/s);
q2 is the hydraulic cylinder right chamber flow rate in m3/s; Cd is the orifice flow factor; W
is the orifice area gradient in m; ρ is the oil density in kilograms per cubic meter (kg/m3);
ps is the system oil supply pressure in mega pascals (MPa); p1 is the hydraulic cylinder left
chamber pressure in MPa; p2 is the hydraulic cylinder right chamber pressure in MPa.

Combining (3) with (5) and combining (4) with (6) yields:

q1 = CdWxv(

√
1 + sign(xv)

ρ
(ps − p1)sign(ps − p1) +

√
1− sign(xv)

ρ
|p1|), (7)

q2 = CdWxv(

√
1 + sign(xv)

ρ
|p2|+

√
1− sign(xv)

ρ
(ps − p2)sign(ps − p2)). (8)

Hydraulic cylinder flow equation: based on the equation of continuity of compressible
fluid, there is:

∑ qi −∑ qo =
V
β

dp
dt

+
dV
dt

, (9)
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where V is the volume of the control chamber in cubic meters (m3); ∑ qi is the total flow
rate into the control chamber in m3/s; ∑ qo is the total flow rate out of the control chamber
in m3/s; β is the modulus of elasticity of the fluid volume in Pa.

The application of (9) to two chambers of the hydraulic cylinder leads to the under-
standing that the net flow rate into the hydraulic left chamber will be equal to the sum of
the flow rate of the fluid being compressed and the flow rate required for piston movement,
i.e., q1 satisfies the following relation:

q1 = A1
dxp

dt
+ Cip(p1 − p2) + Cep p1 +

V1

βe

dp1

dt
. (10)

q2 satisfies the following relation:

q2 = A2
dxp

dt
+ Cip(p1 − p2)− Cep p2 −

V2

βe

dp2

dt
, (11)

where A1 is the effective area of the piston on the left side of the hydraulic cylinder in
square meters (m2); A2 is the effective area of the piston on the right side of the hydraulic
cylinder in m2; Cip is the internal leakage factor of hydraulic cylinder in m3/s · Pa−1; Cep is
the external leakage factor of the hydraulic cylinder in m3/s · Pa−1; βe is the effective bulk
modulus of elasticity in Pa; V1 is the equivalent volume of the left chamber of the hydraulic
cylinder in m3; V2 is the equivalent volume of the right chamber of the hydraulic cylinder
in m3.

The volumes of two chambers of the hydraulic cylinder are:

V1 = V10 + A1xp, V10 = VL1 + V01, (12)

V2 = V20 − A2xp, V20 = VL2 + V02, (13)

where VL1 is the volume of the oil pipe from the valve port to the left chamber of the
hydraulic cylinder in m3; VL2 is the volume of the oil pipe from the valve port to the right
chamber of the hydraulic cylinder in m3; V01 is the initial volume of the left chamber of the
hydraulic cylinder in m3; V02 is the initial volume of the right chamber of the hydraulic
cylinder in m3.

System force balance equation:

A1 p1 − A2 p2 = mẍp + Bẋp + Ktxp + Ff + FL, (14)

where m is the total mass of the piston and load converted to the piston in kg; B is the
viscous damping factor of the piston and load in Pa · s; Kt is the spring stiffness of the load
in newtons per meter (N/m); FL is the external force acting on the piston in N; Ff is the
nonlinear friction on the piston, piston rod and load in N.

The nonlinear friction is a nonlinear function related to its relative speed of motion
and can be described by the Stribeck friction model [38], i.e.,

Ff = sign(vp)[FCO + FHOe
(−

vp

vs
)δ

], (15)

where vp is the velocity of piston rod in m/s; FCO is the coulomb friction in N; FHO is the
static friction in N; vs is the Stribeck velocity (critical velocity) in m/s; δ is the attenuation
index (generally 1).
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2.3. System State Space Modeling

The piston rod displacement xp and its velocity vp, the hydraulic cylinder two-chamber
pressure p1 and p2, and the servo valve spool displacement xv and its velocity vv are selected
as the state variables of the system, i.e.,

X = [x1, x2, x3, x4, x5, x6]
T = [xp, vp, p1, p2, xv, vv]

T .

Combining all the basic equations of Section 2.2, the state space model is established as:

ẋ1 = x2 (16)

ẋ2 =
1
m
[A1x3 − A2x4 − Bx2 − Ktx1 − Ff − FL] (17)

ẋ3 =
βe

V1
[q1 − A1x2 − Cip(x3 − x4)− Cepx3] (18)

ẋ4 =
βe

V2
[−q2 + A2x2 + Cip(x3 − x4)− Cepx4] (19)

ẋ5 = x6 (20)

ẋ6 = −2ζsvωsvx6 −ω2
svx5 + Ksvω2

sv(∆u) (21)

The system outputs are xp, p1, p2 and xv, and the output equation is:

y(t) =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

X. (22)

3. Identification Model Analysis

Based on the nonlinear mathematical model in the previous section, this section
obtains the identifiable least-squares format by parameter linearization, obtains the input
and output data of the identification algorithm using T-D, estimates the system parameters
using the least-squares recursive algorithm, and verifies the feasibility of the algorithm
through MATLAB simulation experiments.

3.1. Identification Model

Referring to [39], the Stribeck friction is modeled as an easily identifiable parametric
linearization as follows:

Ff = fcsign(ẋ1) + fv ẋ1 + fs ẋ1
1
3 , (23)

where fc is the Coulomb friction factor; fv is the Viscous friction factor; fs is the Stribeck
friction parameter.

From (23) and (17), we have:

Q1 = Υ1 ·Ψ1, (24)

where:

Q1 = A1x3 − A2x4 − FL; (25)

Υ1 = [ẋ2, x2, sign(x2), (x2)
1
3 , x1]; (26)

Ψ1 = [m, B + fv, fc, fs, Kt]
T . (27)

By (7), (12) and (18), we obtain:

Q2 = Υ2 ·Ψ2, (28)
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where:

Q2 = −A1x2; (29)

Υ2 = [(V10 + A1x1) · ẋ3,−x5 · z1, x3 − x4, x3]; (30)

z1 =

√
1 + sign(x5)

ρ
(ps − x3)sign(ps − x3) +

√
1− sign(x5)

ρ
|x3|; (31)

Ψ2 = [
1
βe

,
CdW
√

ρ
, Cip, Cep]

T . (32)

From (8), (13) and (19), it follows that:

Q3 = Υ3 ·Ψ3, (33)

where:

Q3 = A2x2; (34)

Υ3 = [(V20 − A2x1) · ẋ4, x5 · z2,−(x3 − x4), x4]; (35)

z2 =

√
1 + sign(x5)

ρ
|x4|+

√
1− sign(x5)

ρ
(ps − x4)sign(ps − x4); (36)

Ψ3 = [
1
βe

,
CdW
√

ρ
, Cip, Cep]

T . (37)

Then: [
Q2
Q3

]
=

[
Υ2
Υ3

]
Ψ2 (38)

According to (2), (20) and (21), we obtain:

Q4 = Υ4 ·Ψ4, (39)

where:

Q4 = −ẋ6; (40)

Υ4 = [x6, x5,−Kp(ug − K f x1)]; (41)

Ψ4 = [2ζsvωsv, ω2
sv, Ksvω2

sv]
T . (42)

Remark 1. Our aim is to identify the unmeasurable parameters of the system that characterize the
health state of the system. In the established mathematical model, some parameters, such as volume,
area, etc., can be obtained by some physical means.

3.2. Identification Algorithm

Consider the model:

Q1(k) = Υ1(k) ·Ψ1(k) + n1(k) (43)

and:
Q4(k) = Υ4(k) ·Ψ4(k) + n2(k) (44)

where n1(k), n2(k) are the zero-mean random noise. Likewise:[
Q2(k)
Q3(k)

]
=

[
Υ2(k)
Υ3(k)

]
Ψ2 +

[
d1(k)
d2(k)

]
, (45)
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where
[

d1(k)
d2(k)

]
is the zero-mean random noise vector. Using the least squares recursive

algorithm, it follows that the identification algorithm of (43) is:

Ψ̂1(k) = Ψ̂1(k− 1) + K1(k)[Q1(k)− Υ1(k)Ψ1(k− 1)], (46)

K1(k) = P1(k− 1)ΥT
1 (k)[Υ1(k)P1(k− 1)ΥT

1 (k) +
1

Λ1(k)
]−1, (47)

P1(k) = [I1 − K1(k)Υ1(k)]P1(k− 1); (48)

the identification algorithm of (44) is:

Ψ̂4(k) = Ψ̂4(k− 1) + K2(k)[Q4(k)− Υ4(k)Ψ4(k− 1)], (49)

K2(k) = P2(k− 1)ΥT
4 (k)[Υ4(k)P2(k− 1)ΥT

4 (k) +
1

Λ2(k)
]−1, (50)

P2(k) = [I2 − K2(k)Υ4(k)]P2(k− 1); (51)

and the identification algorithm of (45) is:

Ψ̂2(k) = Ψ̂2(k− 1) + K3(k)[
[

Q2(k)
Q3(k)

]
−
[

Υ2(k)
Υ3(k)

]
Ψ2(k− 1)], (52)

K3(k) = P3(k− 1)
[

Υ2(k)
Υ3(k)

]T

[

[
Υ2(k)
Υ3(k)

]
P3(k− 1)

[
Υ2(k)
Υ3(k)

]T

+

[ 1
Λ3(k)

1
Λ4(k)

]
]−1, (53)

P3(k) = [I3 − K3(k)
[

Υ2(k)
Υ3(k)

]
]P3(k− 1). (54)

From the identification algorithm, it can be found that the differential signal is neces-
sary in the input or output data. Here, we choose the T-D, replace the differentiation with
the difference, and take the step length as hs; at this time there will be moment inequality,
so the first-order differential time is pushed back one data, the second-order differential
time is pushed back two data, the principle of T-D is as follows:

f h = fhan((µ1(k)− x(k)), µ2(k), r, h0)
µ1(k + 1) = µ1(k) + hs · µ2(k)

µ2(k + 1) = µ2(k) + hs · f h

where x(k) is the input signal; µ1(k) is the tracking signal; µ2(k) is the first-order differential
signal for the input signal x(t); h0 is a variable independent of hs and takes a value
appropriately larger than hs. Function fhan(γ1, γ2, τ, h0) is:

σ =

{
γ2 +

a−ι
2 sign(ς), |ς| > d

γ2 +
ς
h0

, |ς| ≤ d

fhan = −
{

τsign(σ), |σ| > ι
τ σ

ι , |σ| ≤ ι

where ι = τh0; d = ιh0; ς = γ1 + h0γ2; a = (ι2 + 8τ|ς|)1/2.

3.3. Numerical Simulation

MATLAB simulation software was used as the experimental tool. Referring to the
nonlinear state space model established in Section 2.3:

ẋ(t) = f (t, x(t), u(t)),
y(t) = h(t, x(t)). (55)
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In the simulation, (55) was discretized by the fourth-order Runge–Kutta method(R-K), the
sampling step h was taken as 0.01 s, and its implementation was as in (56).

xk+1 = xk +
h
6
(α1 + 2α2 + 2α3 + α4)

α1 = f (tk, xk)

α2 = f (tk +
h
2

, xk +
h
2

α1)

α3 = f (tk +
h
2

, xk +
h
2

α2)

α4 = f (tk + h, xk + hα3) (56)

The input of the system is ug = 2 + sin(2πt) in Figure 3, the simulation data of system
parameters are shown in Table 1, and total times T = 10s, x1(t), x3(t), x4(t) and x5(t) were
obtained from (56). The data length was N = T/h = 1000.

Table 1. Summary table of system parameters.

Symbol Physical Implication Value

Ksv Servo valve amplification factor 0.00025
ωsv Servo valve natural frequency 100
ζsv Servo valve damping ratio 0.5
Kp Proportional controller factor 1
K f Displacement sensor gain 40
A1 Effective area of the piston on the left side 0.0085
A2 Effective area of the piston on the right side 0.004
Cip Internal leakage factor 3× 10−11

Cep External leakage factor 0
βe Effective bulk modulus of elasticity 700,000,000
Kt Spring stiffness 1,000,000
m Total mass 120
B Viscous damping factor 6000
Ff Stribeck friction 0
FL External force 4000
V01 Given by (12) 0.11
V02 Given by (13) 0.09
VL1 Given by (12) 0
VL2 Given by (13) 0
Cd Orifice flow factor 0.6
W Orifice area gradient 0.03
ρ Oil density 880
ps System oil supply pressure 12

T-D parameters were r = 100 and h0 = 0.05. In order to obtain the first-order
differentiation, x1(t), x3(t), x4(t) and x5(t) were used as the input signals of T-D to obtain
the piston rod velocity data ẋ1(t) = x2(t), the hydraulic cylinder left and right chamber
pressure derivative data ẋ3(t) and ẋ4(t), and the servo valve velocity data ẋ5(t) = x6(t). To
obtain the second-order differentiation, x2(t) and x6(t) obtained by T-D serve as the input
signal of T-D, and the corresponding differentiation signals ẋ2(t) and ẋ6(t) were obtained,
respectively.

Afterwards, the parameter estimates were obtained on the basis of the identification
algorithm in Section 3.2. In this experiment, the Coulomb friction factor fc was taken as 5
and the viscous friction factor fv was taken as 20; neglecting the Stribeck friction parameter
fs, (26) and (27) became:

Υ1 = [ẋ2, x2, sign(x2), x1], (57)

Ψ1 = [m, B + fv, fc, Kt]
T . (58)



Appl. Sci. 2023, 13, 6052 11 of 23

To demonstrate the effect of T-D, y(t) in (55) is expanded, adding the results x2(t) and
x6(t) from R-K. x2(t) and x6(t) obtained by R-K are only used for comparison and not for
other uses in this paper. The experimental results are as follows:

The identification results are summarized in Table 2. Data differentiation processes by
T-D are shown in Figures 4–9. Parameter identification processes are shown in Figures 10–12.
From Figures 4 and 8, it can be seen that T-D can obtain more satisfactory differential data.
From Figures 10–12, it is known that the system parameters can be identified based on T-D
and the least squares recursive algorithm.

Table 2. Summary of identification results.

Parameter True Value Estimated Value

Ψ1,1 120 120.04
Ψ1,2 6025 6027.50
Ψ1,3 5 4.95
Ψ1,4 1× 106 0.99× 106

Ψ2,1 1.43× 10−9 1.42× 10−9

Ψ2,2 6.07× 10−4 6.068× 10−4

Ψ2,3 3× 10−11 2.99× 10−11

Ψ2,4 0 2.75× 10−13

Ψ3,1 100 99.85
Ψ3,2 10,000 10,014
Ψ3,3 2.50 2.5012

0 200 400 600 800 1000 1200
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1.5

2

2.5

3

3.5

Figure 3. The input signal for the identification algorithm analysis.
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Figure 4. x1 and its differential signal x2.
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Figure 5. x2 and its differential signal ẋ2.
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Figure 6. x3 and its differential signal ẋ3.
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Figure 7. x4 and its differential signal ẋ4.
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Figure 8. x5 and its differential signal ẋ6.
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Figure 9. x6 and its differential signal ẋ6.
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Figure 10. Results of the identification algorithm for Ψ1.
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Figure 11. Results of the identification algorithm for Ψ2.
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Figure 12. Results of the identification algorithm for Ψ4.

Remark 2. The identification algorithm in this paper is based on a mathematical model of a
hydraulic system. It can be applied to other hydraulic systems by making appropriate adjustments
as long as the mathematical model is established.

4. Experimental Analysis of Health State Evaluation

To realize the health state evaluation of the hydraulic system, first, the monitoring
data under the same operating condition were used as the basis to classify the health states
through feature extraction and analysis; then, the identification algorithm in Section 3.2
was used to obtain the range of system parameters for different health states; finally, the
data under the variable operating condition were captured for parameter identification to
obtain system parameters, which were compared with the system parameter range, and
then we evaluated which health state the system is in. Referring to [19,20], the hydraulic
system health states can be classified as health, sub-health, average, deterioration and fault.

Among the system parameters in Table 1, Cd, W, ρ, Ksv, Cip, Cep, fc and fv vary with
the health state and are variable; the rest of the parameters were invariant in the experiment.

4.1. Analysis of Data

By reviewing a large amount of literature, it is clear that piston rod displacement, as
the actual output of the hydraulic system, can be used as a measure of the health status of
the hydraulic system. First, capturing multiple groups of x1, x3, x4 and x5 under the same
operating condition, x1 was used for health state evaluation by signal processing. Then, x1,
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x3, x4 and x5 were labeled with different health states. The simulation step was h = 0.01 s,
the simulation time T = 10 s, the data length N = T/h = 1000, the input of the system
was ug = 2 + sin(2πt), and 200 groups of x1, x3, x4 and x5 with different health states were
obtained by changing the variable parameters. From expert experience, it is known that
the mean value of x1 gets smaller as the health status gets worse, so we can obtain four
thresholds and label x1, x3, x4 and x5 with five health statuses. x1 values in different health
states are shown in Figure 13.

0 200 400 600 800 1000 1200
-3

-2

-1

0

1

2

3

4

5

6

7 10-3

Health
Sub-health
Average
Deterioration
Fault

Figure 13. x1 in different health states.

4.2. Evaluation of Health Status

The 200 groups of x1, x3, x4 and x5 labeled with five health states were obtained in
the previous section, and the estimated values of system identifiable parameters were
obtained by the identification algorithm in Section 3.2. Then, according to the labels, we
can obtain the parameter range under different health states, the health state evaluation
parameters consisting of variable parameters are Ksv, ω2

sv, CdW√
ρ , fc, B + fv, Cip and Cep, and

the parameter range is shown in the following table.
The range of parameters in Table 3 can be used as a basis for evaluating the health

status.

Table 3. The parameter range for health status evaluation.

Parameter Health Sub-Health Average Deterioration Fault

Ksvω2
sv [2.6, 2.2] [2.2, 1.7] [1.7, 1.4] [1.4, 1.0] [1.0, 0.5]

CdW√
ρ ↓ 1 ↓ ↓ ↓ ↓

fc [4, 10] (10, 20] (20, 45] (45, 75] (75, 120]
B + fv [6020, 6075] (6075, 6150] (6150, 6250] (6250, 6400] (6400, 6600]

Cip 3× 10−11 3× 10−11 3× 10−11 3× 10−11 3× 10−10

Cep 0 0 0 0 3× 10−10

1 The ↓ symbol represents a downward trend for this parameter, but there is no clear range bound.

In order to simulate the variable operating condition, we changed the input signal
as follows.

ug = 0.5 sin(5πt) +
{

2, T
4 < t ≤ T

2 or t > 3T
4

2.5, t ≤ T
4 or T

2 < t ≤ 3T
4

which is shown in Figure 14. x1, x3, x4 and x5 under ug were captured. Estimates of
the variable parameters were obtained by R-K, T-D and the identification algorithms in
Section 3.2. Then, by comparison with Table 3, we performed a health status evaluation.
Five groups of simulation results are given as follows.
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Figure 14. The input signal for health status evaluation.

The five groups of parameter identification processes are shown in Figures 15–29.
The five groups of identification results and the results of the health status evaluation
performed by comparing with Table 3 are shown in Table 4.

Table 4. Results of Identification algorithm and health status evaluation.

Parameter Estimates Ksvω2
sv

CdW√
ρ × 104 fc B + fv Cip× 1011 Cep× 1013 Evaluation Results

Group 1 1.96 5.51 14.64 6098.00 2.94 8.68 Sub-health
Group 2 2.49 5.70 4.67 6021.31 3.01 2.45 Health
Group 3 0.79 3.74 99.48 6496.67 29.15 3010 fault
Group 4 1.6 4.74 29.78 6183.32 2.99 2.06 Average
Group 5 1.19 4.75 60.44 6297.15 3.03 3.20 Deterioration
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Figure 15. Identification results of the first group for Ψ1.
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Figure 16. Identification results of the first group for Ψ2.
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Figure 17. Identification results of the first group for Ψ4.
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Figure 18. Identification results of the second group for Ψ1.



Appl. Sci. 2023, 13, 6052 18 of 23

0 100 200 300 400 500 600 700 800 900 1000
-20

-15

-10

-5

0

5 10-3

0 200 400 600 800 1000
0

5

10

15

20
10-10

0 200 400 600 800 1000
2

3

4

5

6

10-4

Figure 19. Identification results of the second group for Ψ2.
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Figure 20. Identification results of the second group for Ψ4.
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Figure 21. Identification results of the third group for Ψ1.
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Figure 22. Identification results of the third group for Ψ2.
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Figure 23. Identification results of the third group for Ψ4.
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Figure 24. Identification results of the fourth group for Ψ1.
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Figure 25. Identification results of the fourth group for Ψ2.
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Figure 26. Identification results of the fourth group for Ψ4.
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Figure 27. Identification results of the fifth group for Ψ1.
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Figure 28. Identification results of the fifth group for Ψ2.
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Figure 29. Identification results of the fifth group for Ψ4.

5. Conclusions

The health state of a hydraulic system depends largely on the system parameters,
and the change of parameters will definitely affect the system’s performance. Based on
the nonlinear mathematical model of a hydraulic system, first, the nonlinear model is
transformed into least-squares identifiable format through parameter linearization. The
fourth-order Runge–Kutta method is used to obtain the measurable data of the system, and
the differential data of measurable data are obtained by a tracking-differentiator (T-D). The
least-squares recursive algorithm is used to estimate the system parameters. Second, under
the same operating condition, the health state change is simulated by changing the variable
parameters, so as to classify the measurable data and obtain the health state range of the
variable parameters by an identification algorithm. Finally, under the variable operating
condition, the estimates of variable parameters are obtained by the identification algorithm
and compared with the health state range to evaluate which health state the system is in.

The health state graded evaluation method proposed in this paper focuses on the
electro-hydraulic position servo system, and combines the use of both signal processing-
based and model-based methods. In future work, on the one hand, the application of
this method to other systems can be explored. On the other hand, we can also consider
introducing a knowledge-based method to combine three methods to establish a health
state evaluation method with a more complete algorithm and application for a broader
range of areas.
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