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Abstract: Phase contrast computed tomography (PCCT) provides an effective non-destructive testing
tool for weak absorption objects. Limited by the phase stepping principle and radiation dose
requirement, sparse-view sampling is usually performed in PCCT, introducing severe artifacts in
reconstruction. In this paper, we report a dual-domain (i.e., the projection sinogram domain and
image domain) enhancement framework based on deep learning (DL) for PCCT with sparse-view
projections. It consists of two convolutional neural networks (CNN) in dual domains and the phase
contrast Radon inversion layer (PCRIL) to connect them. PCRIL can achieve PCCT reconstruction, and
it allows the gradients to backpropagate from the image domain to the projection sinogram domain
while training. Therefore, parameters of CNNs in dual domains are updated simultaneously. It could
overcome the limitations that the enhancement in the image domain causes blurred images and the
enhancement in the projection sinogram domain introduces unpredictable artifacts. Considering the
grating-based PCCT as an example, the proposed framework is validated and demonstrated with
experiments of the simulated datasets and experimental datasets. This work can generate high-quality
PCCT images with given incomplete projections and has the potential to push the applications of
PCCT techniques in the field of composite imaging and biomedical imaging.

Keywords: phase contrast computed tomography; sparse-view sampling; dual domain; convolutional
neural network; radon inversion layer

1. Introduction

Attenuation and refraction occur when X-rays penetrate objects, which correspond
to the absorption and phase contrast. Conventional absorption-based X-ray computed
tomography (CT) is widely used in clinical diagnosis [1–4] and industrial testing [5–8].
It plays a crucial role in imaging strong absorption objects, while it performs poorly
when encountering weak absorption objects such as soft tissue, rare Earth materials and
composite materials.

Phase contrast computed tomography (PCCT) provides better image contrast for
weak absorption objects than absorption-based CT [9–14]. Several PCCT techniques have
been developed in the past years, and the results have indicated that PCCT can greatly
improve image quality for weak absorption objects [15–18]. Grating-based PCCT is the
most sensitive and universal approach since a coherent X-ray tube is not required during
imaging. It is based on the Talbot effect. However, limited by the phase stepping principle,
grating-based PCCT usually requires several samplings at each view to extract the contrast
signals, which results in a high radiation dose. Sparse-view sampling is usually performed
to reduce imaging radiation [19,20], while it introduces artifacts and noise in reconstruction.

Appl. Sci. 2023, 13, 6051. https://doi.org/10.3390/app13106051 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106051
https://doi.org/10.3390/app13106051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9070-974X
https://orcid.org/0000-0002-2680-0394
https://doi.org/10.3390/app13106051
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106051?type=check_update&version=1


Appl. Sci. 2023, 13, 6051 2 of 17

In recent years, deep learning (DL) has been popular in image processing [21–26].
DL has also been applied to the field of CT [27–29], which generally is grouped into
two categories. The first category can be classified as enhancement in the projection
sinogram domain. By using the residual network (ResNet) for better convergence and
patch-wise training to reduce memory, Lee et al. proposed a DL framework to in-paint the
missing data in the sparse-view projection sinogram [30]. It significantly outperformed
conventional linear interpolation algorithms. Moreover, their subsequent work that utilized
UNet [31] and residual learning [32] outperformed the existing interpolation methods and
IR approaches [33]. Different from using UNet to correct sparse-view sinograms, Fu et al.
proposed a deep learning filtered back-projection (DLFBP) framework to use differential
forward projection of the image reconstructed with incomplete data as input and a dense
connection net to output a complete sinogram [34]. The results showed that this framework
can generate high-quality reconstructed images with given incomplete data. However,
these approaches may introduce unpredictable artifacts, since the reconstruction process is
extremely susceptible to the inherent consistency of the sinogram.

The second category can be classified as enhancement in the image domain. Chen et al.
developed a deep convolutional neural network (CNN) to map low-dose CT reconstructed
images to their corresponding normal-dose images in a patch-by-patch fashion [35]. The
results demonstrated the great potential of the proposed method for artifact reduction. By
using a directional wavelet transform to extract the directional component of artifacts and to
exploit the intra- and inter-band correlations, Min et al. proposed a DL method that utilized
the wavelet transform coefficients of low-dose images [36]. It could effectively suppress
CT-specific noise. Zhang et al. used Dense Net and deconvolution to remove streaking
artifacts from sparse-view CT images [37]. The results showed that it can effectively
suppress artifacts in reconstructed images. These approaches offer a significant advantage
in reducing artifacts and noise in reconstruction, while they may oversmooth the images.

Several methods working in dual domains (i.e., the projection sinogram domain and
image domain) have been developed [38,39]. They are grouped into two categories, and
each of them has its own limitations: (i) using fully connected layers to connect dual
domains, which incurs a huge computational overhead; (ii) training networks in dual
domains separately, which superimposes the degradation of dual domains. In addition,
most of the studies focus on conventional absorption-based CT, while there is currently
a scarcity of studies on applying DL to low-dose PCCT, and the development of related
techniques is still in great demand. In this paper, we propose an end-to-end DL framework
for PCCT with sparse-view projections. Different from these mentioned methods, the
CNNs of dual domains are trained together, allowing network parameters of both CNNs to
be updated simultaneously for further removal of artifacts. Therefore, the network in this
framework consists of an enhanced network in the projection sinogram domain to restore
the projection structure, an enhanced network in the image domain to reduce artifacts
in reconstruction and a phase contrast Radon inversion layer (PCRIL) to connect them.
PCRIL can achieve PCCT reconstruction, and it allows for backpropagation of the gradients
from the image domain to the projection sinogram domain, which enables CNNs in dual
domains to be trained simultaneously. In addition, the differential forward projections of
the images reconstructed with sparse-view projections are used as input of the network,
and the reconstructed images with complete-view projections are used as the targets. Once
trained, the network is fixed and can reduce artifacts in the reconstructed images. The
experiments with the simulated datasets and experimental datasets are performed to
validate the effect of this framework. The results show that the proposed framework can
output high-quality reconstructed images with incomplete PCCT projections.

2. Materials and Methods
2.1. Framework Overview

Figure 1 shows the end-to-end DL reconstruction framework for PCCT with sparse-
view projections. The network in the framework can update parameters of the CNNs in dual
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domains synchronously, which is indicated with the green dotted rectangle. This framework
is referred to as DDPC-Net. The differential forward projection operator combined with
the PCCT filtered back-projection (FBP) algorithm is required to transform the size of
the sparse-view sinogram to be the same as the complete sinogram. In addition, a PCCT
reconstruction layer allowing the gradients to backpropagate from the image domain to
the projection sinogram domain is needed to achieve the mapping between dual domains
and to output the reconstructed image while taking the projection sinogram as input.
Therefore, the proposed framework has five components: (i) the FBP reconstruction for
PCCT, (ii) the differential forward projection, (iii) the enhanced network in the projection
sinogram domain, (iv) the PCCT reconstruction layer allowing for the backpropagation of
gradients, and (v) the enhanced network in the image domain.

Figure 1. The architecture of the proposed DL framework for PCCT. It consists of the FBP algorithm
for PCCT, the differential forward projection operation, and the neural network that allows the
network parameters in dual domains to be synchronously updated.

Equations (1) and (2) present the fan-beam FBP algorithm for PCCT, where δ(x, y)
represents the reconstructed image, U represents the geometrical weight factor, αθ(s)
represents the sinogram, s represents the sinogram index, h represents the Hilbert filter, v
represents the frequency, and θ represents the rotation angle.

δ(x, y) =
1
2

∫ 2π

0
U · αθ(s) ∗ h(v)dθ (1)

h(v) =
1

2π
isgn(v) (2)

Equations (3) and (4) present the three-point differential forward projection operator
in the proposed framework to generate PCCT sinograms, where P(s, θ) represents the
forward projection, and l represents the forward projection path.

αθ(s) ≈
P(s + 1, θ)− P(s− 1, θ)

2
(3)

P(s, θ) =
∫

l
δ(x, y)dl (4)
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Equation (5) presents the end-to-end neural network. The information-missing sino-
gram is transmitted into the network, and then, the corresponding high quality recon-
structed image rec is output.

rec = DDPC(αθ(s)) (5)

2.2. Neural Network Architecture
2.2.1. The Enhanced Network in the Projection Sinogram Domain

As shown in Figure 1, the enhanced network in the projection sinogram domain is
indicated with the larger blue solid rectangle, which adopts a multi-scale feature extraction
network. PCCT is commonly used in medical diagnosis, where medical images often consist
of tissue, organs, and structures of different scales. After projection, these different scales of
information are distributed in the projected sinogram. Therefore, the network can effectively
capture information at different scales from the projected sinogram, improving the accuracy
of image feature extraction. Here, initialization is performed as the first step. Then, four
downsamplings of different scales are performed for multi-scale feature extraction. Finally,
the multi-scale features are fused using the concatenate block represented by the gray
rectangle to output the restored sinogram.

Initialization: Initialization is performed with the convolution filter to convert the
corrupted PCCT projection sinogram into its feature image, which is represented with
the green cuboid. Increasing the size of the convolution kernel could improve the effect
of feature extraction, while it exponentially increases the learning parameters and even
causes overfitting. Studies have shown that multi-layer convolutional filters with smaller-
sized convolution kernels could enlarge the receptive field and decrease the parameters.
Therefore, the convolution filter with a size of 3× 3 is used as the feature extractor. The
stride is set to 1 to ensure that the sinogram has the same size as its feature. Rectified linear
units (ReLU) and batch normalization (BN) techniques are integrated into initialization, so
as to overcome the problem of vanishing gradients and to greatly speed up training.

Multi-scale feature extraction: Multi-scale feature extraction is performed by four
downsampling branches, where each branch contains a different number of downsampling
blocks and the subsequent ResNets. Each downsampling block has a convolution kernel
size of 3 × 3 and a stride of 2, as represented with the pink cuboid in Figure 1. The
downsampling convolution intersects the conventional downsampling methods in DL,
such as max-pooling or mean-pooling operations, to achieve higher learning accuracy
and efficiency.

However, the multi-scale feature extraction may cause degradation problems due to
the network depth. ResNet provides an effective solution to the degradation problem of
deep neural networks and accelerates convergence. Therefore, ResNets are introduced for
the multi-scale feature extraction to enable the convergence and the acceleration of network
training. As shown in Figure 1, four ResNets labeled “ResNet1”, “ResNet2”, “ResNet3” and
“ResNet4” are used, and each of them is connected after the previous downsampling blocks.

ResNet consists of four layers of convolutions with the linear rectification function
(ReLU) and batch normalization (BN), where each layer has the structure as shown in the
lower right corner of Figure 1. It adopts the highway network architecture for introducing
an additional identity mapping transmission, which is performed by directly transmitting
each layer’s input to its subsequent layer’s outputs. ResNet keeps the integrity of infor-
mation to a certain extent, ensuring that the performance of the deep network is at least
the same as the performance of the shallow one, not worse. Moreover, it only requires
learning the difference between the input and output to speed up the learning process by
simplifying its objectives and difficulty.

Feature restoration: Upsampling is required to restore low-resolution features of the
downsampling branches, since the previous step yields features with four proportionally
decreased sizes. As represented with the yellow cuboid, upsampling is performed with
the deconvolution operation referred to as the transpose convolution (ConvTranspose),
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which is the reverse operation of convolution. In addition, features of different scales match
upsampling of different multiples. Finally, the concatenation layer is used to merge features
of these ConvTransposes.

2.2.2. Phase Contrast Radon Inversion Layer

The PCCT reconstruction is required since it can achieve mapping from the projection
sinogram domain to the image domain. However, conventional reconstruction algorithms
do not allow for the backpropagation of gradients, resulting in that only parameters of
the enhanced networt in the image domain are updated. The Radon inversion layer (RIL)
proposed by Lin [40], acting as an efficient and differentiable variant of FBP, allows for
the backpropagation of gradients. It is adopted in the absorption-based CT and obtains
excellent performance on reducing metal artifacts. Based on RIL, the PCRIL is derived in
this work, which consists of the phase contrast filter, the back-projection derivation and
the gradients of the backpropagation. The fan-beam back-projection is required since the
grating-based PCCT allows for the use of the laboratory source.

Hilbert Transform Filter: The phase contrast filter is performed with the Hilbert
transform in the PCCT reconstruction. It can provide a phase shift of 90◦ without affecting
the amplitude. Therefore, the Hilbert transform is equivalent to the quadrature phase shift
of the signal, making them quadrature pairs [41]. As presented in Equations (6) and (7),
the sinogram is filtered with the Hilbert transform filter, where H represents the filter,
ω represents the frequency, x represents the initial sinogram, X represents the filtered
sinogram, F and F−1 represent the discrete Fourier transform (DFT) and inverse discrete
Fourier transform (iDFT), respectively.

H(ω) = −i · sgn(ω) =

{
−i, ω ≥ 0
i, ω < 0

(6)

X = F−1[−i · sgn(ω) · F(x)] (7)

Back-projection Module: Back-projection is when the value of each pixel in the recon-
structed image is regarded as the sum of all projections passing through it.
Equations (8) and (9) present the back-projection process, where Y represents the re-
constructed image with a size of row × col, θ represents the rotation angle, D and D0,
respectively, represent the distance between the source and detector and that between the
source and object, o f f set represents the offset between the rotation center and the detector
center, i represents the sinogram index, and de and bc represent the round up and round
down operators. Moreover, the computation can be highly parallel since the back-projection
at each view is independent.

Y =
∫ 2π

0
X(θ,

D0 ∗ (row · cos θ + col · sin θ)

D− row · sin θ + col · cos θ
+ o f f set)dθ

≈ ∆θ ∑i X(θi,
D0 ∗ (row · cos θ + col · sin θ)

D− row · sin θ + col · cos θ
+ o f f set)

≈ ∆θ ∑i(dtie − ti)X(θi, btic) + (ti − btic)X(θi, dtie)

(8)

ti =
D0 ∗ (row · cos θ + col · sin θ)

D− row · sin θ + col · cos θ
+ o f f set (9)
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Backpropagation gradients: While backpropagating, the gradients from the image
domain to the projection sinogram domain are presented as Equation (10), where the
symbols have the same representation as those of Equation (8).

∂Y
∂X

=


∆θ(dtie − ti), t = btic
∆θ(ti − btic), t = dtie
0, otherwide

(10)

2.2.3. The Enhanced Network in the Image Domain

The enhanced network in the image domain adopts an improved UNet. UNet is
a classic CNN that is particularly suitable for image processing tasks due to its special
symmetric downsampling and upsampling structure. In addition, skip connections are used
to connect the downsampling module and the symmetric upsampling module, allowing
UNet to simultaneously utilize features at different levels. As shown in Figure 1, the
enhanced network in the image domain is indicated with the smaller blue solid rectangle.
By cascading a ResNet, advanced feature extraction can be performed while reducing the
depth of the UNet.

Primary feature extraction: The primary features of the reconstructed images opti-
mized in the sinogram domain are extracted by a UNet. The architecture of the UNet refers
to [31].

Advanced feature extraction: Advanced features of the reconstructed images opti-
mized in the sinogram domain are extracted by a series of convolution layers. High-quality
reconstructed images are then generated as output. It consists of two convolutional layers
with a size of 3× 3, a stride of 1 and a filter of 32, four residual blocks, one convolutional
layer with a size of 3× 3, a stride of 1, and a filter of 32. The output is obtained by adding
the result to the primary feature. The enhanced network in the image domain aims to
eliminate artifacts while preserving the image structure as much as possible.

3. Experiments
3.1. Data Preparation
3.1.1. Simulation

The simulated datasets are generated by performing the differential fan-beam forward
projection operation to images in the head and neck CT image database of The Cancer
Imaging Archive (TCIA) [42,43], as shown in Figure 2. TCIA is a large-scale open-access
database that contains medical images of common tumors and the corresponding clinical
information, such as magnetic resonance imaging (MRI), positron emission computed
tomography (PET), and CT. While performing the differential forward projection operation,
the sampling step is set to 0.5, 2, 3, 4, and 6 with complete scanning of 360◦, corresponding
to 720, 180, 120, 90, and 60 views, respectively. Projection sinograms with 720 views are
considered as complete and others as sparse-view. The distance between the source and
detector and that between the source and object are set to 20,000 and 18,000 pixels. The
offset is set to 0.600 CT images from 30 patients, and a size of 368× 368 pixels is used to
generate the simulated datasets, where 400 CT images are used to train the network and
200 CT images to test the network. Each patient provides 20 CT images.

Specifically, the differential forward projection as expressed in Equations (3) and (4) of
the mentioned sampling factors are performed on the phantoms, where complete projection
sinograms are used as the labels of the enhanced network in the projection sinogram
domain. The PCCT FBP reconstruction as expressed in Equations (1) and (2) is executed
on these sinograms to obtain the reconstructed images, where the images reconstructed
with complete projection sinograms are used as the labels of the enhanced network in the
image domain. Finally, the differential forward projection of 720 views is performed on
the degraded images reconstructed with sparse-view projection sinograms, and the results
are used as the input of the network. In addition, the projection sinograms used in this
network have a size of 720× 368 pixels and the CT images 368× 368 pixels.
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Figure 2. The data preparation process of the simulated datasets.

3.1.2. Experimental

The experimental datasets were generated by performing the fan-beam PCCT experi-
ments on the mouse paw, which was provided by Institute of High Energy Physics, Chinese
Academy of Sciences. The used mouse was kept in a pathogen-free environment and was
fed ad lib. The procedures for care and use of this mouse were conducted in accordance
with the “Guiding Principles in the Care and Use of Animals” [44] and were approved
by the Ethics Committee of the Institute of High Energy Physics, Chinese Academy of
Sciences. While scanning, 720 views were acquired within 360 degrees using the laboratory
fan-beam X-ray source to obtain complete projections. Four phase steppings occurred at
each sampling view. Then, sparse sampling was carried out on the complete projections to
obtain sparse-view projections with 180, 120, 90, and 60 views. The distances between the
source and detector and that between the source and object were 22,400 and 20,200 pixels.
The offset was four pixels. The acquired projection images had a size of 512× 512 pixels,
and the corresponding sinograms and reconstructed images had sizes of 720× 512 and
512× 512 pixels, respectively. In the experiments, 600 tomographic images were obtained,
where the first 400 images from top to bottom were chosen for training and the remaining
200 images for testing.

3.2. Implementation

The proposed DDPC-Net was implemented by Python 3.5.2 and Tensorflow 1.8, and
the Adam [45] optimizer with a mini-batch size of 2 was applied to train this framework.
All the models were trained for 100 epochs on Nvidia GTX 1080Ti graphics processing
unit (GPU).

Equations (11)–(13) present the loss function of this framework containing the penalties
on the dual domains, where the subscripts 1 and 2 represent the projection sinogram domain
and the image domain, and α and α̂ represent the learning result and the ground truth. The
loss function in each domain is the same, composed of the weighted sum of the mean square
error (MSE) and the multi-scale structure similarity (MS-SSIM). MSE helps to reduce the
difference in pixel values, and MS-SSIM is closer to subjective quality evaluation methods.
The learning rate gradually decreased from 1× 10−4 to 1× 10−6 while training.

loss = loss1 + loss2 (11)
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loss1 = MSE(α1, α̂1) + 0.2 · (1−MS_SSIM(α1, α̂1)) (12)

loss2 = MSE(α2, α̂2) + 0.2 · (1−MS_SSIM(α2, α̂2)) (13)

3.3. Comparison Methods

Several existing DL-based CT approaches are used as comparisons for DDPC-Net,
including the denseness-deconvolution network (DD-Net) [37], the DLFBP framework [34],
and the hybrid domain neural network (HD-Net) [38], which respectively represent
the enhanced network in the projection sinogram domain, the image domain, and the
dual domains.

3.4. Image Evaluation

Image evaluation consisted of qualitative and quantitative evaluation. Qualitative
evaluation was achieved by observing the reconstructed images and the regions of inter-
est (ROI). The feature similarity (FSIM) and the information weighted SSIM (IW-SSIM)
were used for quantitative evaluation, which outperforms other evaluation methods on
accuracy [46].

In addition, the relative improvement ratios (rel I) for the above two evaluation indexes
are defined in Equation (14), where MFBP and M represent the image evaluation indexes of
the results from FBP and other methods.

rel I =
M−MFBP

MFBP
(14)

3.5. Efficiency

The efficiency of the used deep learning methods was evaluated based on the number
of parameters included in each framework and the runtime with the same epochs. The
number of parameters was calculated by adding one of each layer in the network, as
presented in Equation (16), where Nl p represents the number of parameters in each layer, Ni
represents the number of input feature images, No represents the number of output feature
images, and fh and fw respectively represent the height and width of the convolutional
filter. The runtime was obtained by subtracting the end time and start time.

Nlp = (Ni × fh × fw + 1)× No (15)

3.6. Results
3.6.1. Simulation

Figure 3 presents the results of the simulated testing datasets with 60 views. The ROI
is indicated with the dashed square, which is enlarged and shown for better visualization.
The image profiles along the blue line in Figure 3 are drawn and shown in Figure 4.

As expected, severe streak artifacts introduced by sparse-view sampling exist in FBP
reconstruction and much less in the results of other methods. However, for DD-Net, the
image is blurred, and some image structure still vanishes. For DLFBP, great unpredictable
artifacts exist, which affect the visual observation of the image structure. HD-Net and
DDPC-Net efficiently suppress artifacts and restore the vanished structure, while the result
of HD-NET is a little more blurred compared with DDPC-Net. As presented in Figure 4,
the intensity curves in the images from DLFBP and DDPC-Net are noticeably closer to the
ground truth, while the intensity curve of DLFBP is relatively more undulating. Table 1
lists the FSIM and IW-SSIM values of the images in Figure 3. DDPC-Net achieves at least
5% higher values in terms of FSIM and IW-SSIM, which support the conclusion of the
visual observation.
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Figure 3. The reconstructed images of one of the results of the simulated testing datasets. This
sinogram has 60 sampling views, and the reconstructed images were obtained by five methods.

Figure 4. The profiles along the blue solid line in Figure 3.

Table 1. The FSIM and IW-SSIM values of the images in Figure 3.

Evaluation FBP DD-Net DLFBP HD-Net DDPC-Net

FSIM 0.5632 0.8922 0.8780 0.9153 0.9652
IW-SSIM 0.5673 0.9278 0.8922 0.9300 0.9793

Table 2 lists the average FSIM and IW-SSIM values of the results of the mentioned five
methods. It can be observed that as the number of sampling views increases, the average
FSIM and IW-SSIM values increase, and the methods except for FBP obtain values higher
than 90%. In addition, DDPC-Net achieves slightly better values than the other methods.
The rel I of the average values of the average FSIM and IW-SSIM values are drawn in
Figure 5. The same conclusion can be drawn that DDPC-Net outperforms other methods.
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Moreover, Figure 5 shows that the image quality of the results decreases drastically with
the decrease in number of the sampling views. Table 3 lists the efficiency of the four
deep learning methods. As expected, the efficiency of the dual-domain reconstruction
frameworks is slightly lower than that of the single-domain reconstruction framework,
both in terms of the number of parameters and runtime. However, compared to HD-Net,
which trains enhancement networks in the projection sinogram domain and image domain
separately and cascades them, DDPC-Net is more efficient. This indicates that the proposed
method can balance image quality and efficiency.

Table 2. The average values of FSIM and IW-SSIM for the results of the simulated testing datasets.

Evaluation Methods Cases
60 90 120 180

FSIM

FBP 0.5851 0.6387 0.6671 0.7495
DD-Net 0.9168 0.9234 0.9333 0.9475
DLFBP 0.9037 0.9139 0.9221 0.9432
HD-Net 0.9234 0.9357 0.9552 0.9604

DDPC-Net 0.9722 0.9772 0.9874 0.9884

IW-SSIM

FBP 0.5879 0.6831 0.7961 0.9074
DD-Net 0.9174 0.9254 0.9439 0.9589
DLFBP 0.8955 0.9109 0.9360 0.9528
HD-Net 0.9233 0.9318 0.9470 0.9616

DDPC-Net 0.9795 0.9876 0.9957 0.9978

Figure 5. The relI curves of the average values of FSIM and IW-SSIM of the simulated testing datasets.

Table 3. The efficiency of the used methods with simulated datasets.

Efficiency DD-Net DLFBP HD-Net DDPC-Net

Parameters (million) 1.06 1.36 4.14 3.28
Runtime (s) 0.17 0.21 0.47 0.41

3.6.2. Experimental

Figure 6 shows the results of the experimental testing datasets with 60 views. The
ROI is indicated with the dashed square, which is enlarged and shown to obtain better
visualization. The analysis of the experimental datasets was performed as the same as that
of the simulation datasets. The corresponding curves and index values are presented in
Figures 7 and 8 and Tables 4–6. The same conclusion can be drawn as that of the simulation
datasets. The images of DD-Net and HD-Net are blurred and lose some structure. There
are severe artifacts existing in the images of DLFBP. Furthermore, DDPC-Net outperforms
the comparison methods. In addition, the FSIM and IW-SSIM values of the experimental
datasets are significantly worse than those of the simulation datasets, since noise introduced
during the experiment degrades the experimental datasets.
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Figure 6. The reconstructed images of the results of the experimental testing datasets. This sinogram
has 60 sampling views, and the reconstructed images were obtained by five methods.

Figure 7. The profiles along the blue solid line in Figure 5.

Table 4. The FSIM and IW-SSIM values of the images in Figure 6.

Evaluation FBP DD-Net DLFBP HD-Net DDPC-Net

FSIM 0.7272 0.8957 0.8751 0.9026 0.9584
IW-SSIM 0.5957 0.8844 0.8750 0.9168 0.9690
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Table 5. The average values of FSIM and IW-SSIM of the results of the experimental testing datasets.

Evaluation Methods Cases
60 90 120 180

FSIM

FBP 0.7279 0.7756 0.8172 0.8858
DD-Net 0.8922 0.8979 0.9006 0.9265
DLFBP 0.8707 0.8841 0.8901 0.9138
HD-Net 0.8959 0.9063 0.9145 0.9350

DDPC-Net 0.9453 0.9564 0.9642 0.9791

IW-SSIM

FBP 0.5812 0.7052 0.7994 0.8753
DD-Net 0.8758 0.8820 0.8988 0.9299
DLFBP 0.8626 0.8784 0.8917 0.9287
HD-Net 0.9047 0.9196 0.9294 0.9482

DDPC-Net 0.9574 0.9697 0.9779 0.9915

Figure 8. The relI curves of the average values of FSIM and IW-SSIM of the experimental test-
ing datasets.

Table 6. The efficiency of the used methods with experimental datasets.

Efficiency DD-Net DLFBP HD-Net DDPC-Net

Parameters (million) 1.46 2.04 5.91 4.48
Runtime (s) 0.22 0.29 0.61 0.52

4. Discussion

After the network architecture is determined, the loss function has a great effect on
the results. In this work, the weighted sums of MSE and MS-SSIM are adopted as the loss
function, as shown in Equation (16), where ω1 and ω2 represent the weight of MSE and
MS-SSIM. ω1 of 1 and ω2 of 0.2 are adopted in the experiments. To discuss the influence
of the weight values on the image quality and to validate that the best weight values
are adopted, the experiments are repeated with different ω1 and ω2. Considering the
experimental datasets as examples, the network is trained with several commonly used
loss functions (i.e., Loss1, Loss2, Loss3, Loss4, Loss5, and Loss6), as presented in Table 7.

loss = ω1MSE(α, α̂) + ω2(1−MS_SSIM(α, α̂)) (16)

Table 7. The weight values of loss functions used in this work.

Weight Loss1 Loss2 Loss3 Loss4 Loss5 Loss6

ω1 1 1 1 1 1 0
ω2 0 0.1 0.2 0.5 1 1
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Figure 9 shows one of the results of the experimental testing datasets with 60 views,
and the ROI is indicated with a dashed square, which is enlarged and shown for better
visualization. It can be observed that Loss2 and Loss3 help to obtain high-quality results,
and the result with Loss3 has a relatively clearer structure. Table 8 lists the FSIM and
IW-SSIM values of the images in Figure 9. These values provide evidence that the network
trained with Loss3 outperforms those trained with other loss functions mentioned.

Figure 9. The reconstructed images of one of the results of the experimental testing datasets with
different loss functions. This sinogram has 60 sampling views, and the reconstructed images are
obtained by DDPC-Net with loss functions as presented in Table 7.

Table 8. The weight values of loss functions used in this work.

Evaluation Loss1 Loss2 Loss3 Loss4 Loss5 Loss6

FSIM 0.9301 0.9348 0.9509 0.9340 0.9339 0.9270
IW-SSIM 0.9531 0.9573 0.9676 0.9558 0.9535 0.9458

Table 9 lists the average FSIM and MS-SSIM values of the results with different
loss functions. Figure 10 presents the rel I of the average values of FSIM and IW-SIIM.
Furthermore, regarding the number of the sampling view, DDPC-Net with Loss3 enables
the best performance in imaging. It also indicates that the CNNs with a combination of
several losses may outperform that with a single loss of the applications in the field of CT.
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Table 9. The average values of FSIM and IW-SSIM of the results of the experimental testing datasets.

Evaluation Methods Cases
60 90 120 180

FSIM

Loss1 0.9262 0.9359 0.9448 0.9662
Loss2 0.9300 0.9374 0.9520 0.9666
Loss3 0.9403 0.9514 0.9582 0.9741
Loss4 0.9293 0.9430 0.9522 0.9684
Loss5 0.9275 0.9427 0.9491 0.9642
Loss6 0.9207 0.9369 0.9462 0.9554

IW-SSIM

Loss1 0.9353 0.9492 0.9606 0.9789
Loss2 0.9402 0.9501 0.9662 0.9797
Loss3 0.9524 0.9647 0.9729 0.9866
Loss4 0.9400 0.9560 0.9667 0.9806
Loss5 0.9382 0.9561 0.9632 0.9796
Loss6 0.9295 0.9502 0.9615 0.9782

Figure 10. The relI curves of the average values of FSIM and IW-SSIM of the experimental testing
datasets with loss functions as presented in Table 7.

5. Conclusions

In this paper, we reported a DL reconstruction framework for PCCT with sparse-view
projections and validated it with experiments of the simulation datasets and experimental
datasets. The proposed framework consists of CNNs in dual domains and PCRIL as the
connection between them. PCRIL can achieve PCCT reconstruction, and it allows for the
backpropagation of gradients from the image domain to the projection sinogram domain.
Therefore, this framework enables the CNNs in dual domains to be trained simultaneously
for further reduction of artifacts and to restore the missing structure introduced by sparse-
view sampling. In addition, the differential forward projection of the image reconstructed
with the sparse-view projection sinogram is adopted as the input of the network, instead of
the interpolation of the sparse-view projection sinogram. It efficiently improves the image
quality of the images reconstructed with given sparse-view PCCT projections. This work
has the potential to push PCCT techniques to applications in the field of composite imaging
and biomedical imaging.
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