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Abstract: With their advantages in wildlife surveys and biodiversity monitoring, camera traps are
widely used, and have been used to gather massive amounts of animal images and videos. The
application of deep learning techniques has greatly promoted the analysis and utilization of camera
trap data in biodiversity management and conservation. However, the long-tailed distribution of the
camera trap dataset can degrade the deep learning performance. In this study, for the first time, we
quantified the long-tailedness of class and object/box-level scale imbalance of camera trap datasets.
In the camera trap dataset, the imbalance problem is prevalent and severe, in terms of class and
object/box-level scale. The camera trap dataset has worse object/box-level scale imbalance, and
too few samples of small objects, making deep learning more challenging. Furthermore, we used
the BatchFormer module to exploit sample relationships, and improved the performance of the
general object detection model, DINO, by up to 2.9% and up to 3.3% in terms of class imbalance
and object/box-level scale imbalance. The experimental results showed that the sample relationship
was simple and effective, improving detection performance in terms of class and object/box-level
scale imbalance, but that it could not make up for the low number of small objects in the camera
trap dataset.

Keywords: camera trap; long-tailed metrics; class imbalance; object/box-level scale imbalance; deep
learning; object detection; sample relationship

1. Introduction

Compared to traditional wildlife monitoring methods, camera traps offer advantages
such as low cost and high concealment, allowing wild animals to be monitored and sur-
veyed automatically and without disturbance [1–4]. Equipped with motion or infrared
sensors, such cameras automatically capture images or videos of passing animals [5,6],
resulting in billions of images/videos being collected annually worldwide [7]. The massive
amount of raw camera trap data contains valuable information on the species, sex, age,
health, number, behaviors, and locations of animals, making camera traps an indispensable
tool for conservation and management efforts [8,9]. However, manual extraction of this
information is a laborious, knowledge-intensive, time-consuming, and expensive endeavor.
To address these challenges, researchers have turned to deep learning—a technique that en-
ables computers to learn multiple levels of abstraction from images [10]. Many researchers
have attempted to use deep learning techniques to detect and classify animals in camera
trap images [11,12], with some yielding promising results that showcase the potential
of these methods, which can speed up complex tasks, such as species recognition and
individual counting [13].

Deep learning models learn the intrinsic features of the training data by updating the
model parameter weights, and subsequently outputting inference results on unseen data;
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therefore, the distribution of data has a crucial impact on the model performance. As a
real-world dataset, the camera trap dataset typically exhibits imbalanced distribution, in
which certain classes contain numerous images, while others contain only a few, resulting
in a long-tailed distribution [14]. Deep learning models often perform well for species that
are frequently captured by the camera trap, but may perform poorly for species that are
rarely captured, especially for rare or endangered species with inherently low population
sizes. Such a class imbalance makes the training of deep learning models in long-tailed
camera trap datasets highly challenging [15]. In recent years, several datasets have been
proposed for different long-tailed learning tasks. For long-tailed image classification,
ImageNet-LT [16], CIFAR-10/100-LT [17], Places-LT [16], and iNaturalist 2018 [18] are four
benchmark datasets. Meanwhile, LVIS0.5/1.0 [19] is the most widely used benchmark
dataset for long-tailed object detection and instance segmentation. To investigate the
long-tailed problem more effectively, researchers have used quantitative metrics, such as
Imbalance Factor [16–18] and the Gini Coefficient [20], to precisely assess the degree of long-
tailedness in the aforementioned datasets. Lu et al. [20] demonstrated the reasonability and
effectiveness of the Gini coefficient, and revealed significant variations in long-tailedness
among the existing long-tailed datasets. This brings us to the following questions: what
is the degree of class imbalance in camera trap datasets; is the class imbalance prevalent
and severe? Until now, there have been no studies investigating the quantitative metrics of
long-tailedness in camera trap datasets.

Object detection is the task of locating and classifying objects in an image, using
bounding boxes [21]. It is a critical problem in computer vision, and has many applications,
such as autonomous driving and pedestrian detection [22–24]. Compared to object detec-
tion in a balanced dataset, long-tailed object detection is more complex and challenging,
primarily due to the presence of an extreme class imbalance [25]. This imbalance often
results in the detection loss or incorrect classification of rare classes, leading to poor overall
detection performance. Thus, long-tailed object detection requires the development of
appropriate strategies to address the imbalance issue. It is common knowledge that species
with similar characteristics—particularly those within the same class, family or genus—
tend to share similar body parts: for instance, squirrels generally share similar body and
tail shapes. Transferring this shared knowledge between images of different species, to
mitigate the effects of class imbalance, can help improve long-tailed object detection ability,
especially for rare classes. Exploiting the invariant features between images belonging
to the same species is also helpful. The diverse and firm sample relationships in camera
trap datasets can be utilized to alleviate the issue of insufficient images for rare classes.
Hou et al. [26,27] devised a simple yet effective batch transformer block that enables deep
recognition and object detection models to explore sample relationships from the perspec-
tive of the batch dimension, facilitating the transfer of knowledge from frequent classes to
rare ones. Though they extensively evaluated the effectiveness of this approach on multiple
benchmark long-tailed datasets, it has not been tested on any camera trap datasets to date.

The distribution of object sizes can also impact the performance of object detection
models, particularly with respect to small objects that usually have indistinguishable
features and limited context information [28–30]. Oksuz et al. [25] observed a skewness in
the distribution in favor of small objects in the MS-COCO dataset, and defined certain sizes
of objects or input bounding boxes over-represented as an object/box-level scale imbalance.
From the perspective of object/box-level scale imbalance, what is the distribution of the
animal objects sizes in camera trap datasets? Is the distribution similar to the MS-COCO
dataset or the long-tailed dataset, in which certain sizes of animal objects have a significant
number of images, while others have very few? Is exploiting sample relationships also
effective at improving the detection performance for different sizes of animal objects? Thus
far, no research has been conducted to answer these questions.

In this work, we focused on the long-tailed metrics and object detection in camera
trap datasets. The main contributions of this paper are as follows: (1) We utilized four
commonly used metrics to quantitatively analyze the class imbalance in several camera
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trap datasets, revealing that it was more severe than in the benchmark long-tailed dataset.
(2) We also quantitatively analyzed the object/box-level scale imbalance in camera trap
datasets, revealing that it too was more severe than in benchmark datasets. Moreover,
the camera trap datasets contained too few small objects, making the object detection
more challenging. (3) For the first time, we utilized a simple yet effective module, named
BatchFormer (Batch transFormer), to explore the effectiveness of sample relationships. The
results demonstrated that exploiting sample relationships can improve object detection
performance in long-tailed camera trap datasets, in terms of class and object/box-level
scale imbalance.

The structure of this paper is as follows. In Section 2, we present the Materials and
Methods used in this study. The camera trap dataset details, several metrics, and object
detection experiments results for multiple camera trap datasets are presented in Section 3.
In Section 4, we discuss our findings, and look ahead to future work. In Section 5, we
present the conclusions.

2. Materials and Methods
2.1. Camera Trap Datasets

In this study, multiple camera trap datasets were used: these were obtained from the
public data of the LILA BC website and the collation of the data collected by camera traps
situated at Chebaling National Nature Reserve in GuangDong, China.

LILA BC, also known as the Labeled Information Library of Alexandria: Biology
and Conservation, is a data repository website that aims to provide rich data, especially
labeled images, for Biology and Conversation-related research, using machine learning
algorithms. The website currently hosts over ten million labeled images, including massive
camera trap labeled images [31]. We selected 11 public camera trap datasets from this
website, including Orinoquia Camera Traps (Orinoquia) [32], SWG Camera Traps 2018-2020
(SWG) [33], Island Conservation Camera Traps (Island) [34], Snapshot Karoo (Karoo) [35],
Snapshot Kgalagadi (Kgalagadi) [36], Snapshot Enonkishu (Enonkishu) [37], Snapshot
Camdeboo (Camdeboo) [38], Snapshot Mountain Zebra (Zebra) [39], Snapshot Kruger
(Kruger) [40], Snapshot Serengeti (Serengeti) [41], and WCS Camera Traps (WCS) [42].
These datasets were collected from conservation projects conducted worldwide. The
number of images ranged from thousands to hundreds of thousands, and the number of
species varied from a few to hundreds. The annotations were organized in COCO Camera
Traps format [43]. For the object detection experiments, we chose SWG Camera Traps
2018–2020 and WCS Camera Traps, based on whether they were labeled with the bounding
box, the number of species or the number of images. SWG Camera Traps 2018–2020 were
collected from 982 locations in Vietnam and Lao. Labels were provided for 120 categories,
containing more than 80,000 bounding box annotations. WCS Camera Traps were collected
from 12 countries. Labels were provided for 675 categories, and contained approximately
360,000 bounding box annotations.

In this study, we constructed one camera trap dataset, named CBL Camera Traps (CBL):
this was obtained from the Chebaling national reserve, and included about 40,000 images
of 69 species. The pipeline of constructing this dataset was as follows: firstly, each image
captured by the camera trap was identified by zoological experts; then, the MegaDetector
pre-trained model was used to obtain the border coordinates of the animal object in the
image; finally, the images with inaccurate border coordinates were manually eliminated.
This dataset was in COCO Camera Traps format. Some examples of some species from the
12 camera trap datasets are shown in Figure 1.
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Figure 1. Examples of some species from the 12 Camera Trap Datasets.

2.2. Long-Tailedness Metrics

Deep learning models need to learn abstract features from large amounts of camera
trap images, for animal classification and detection; therefore, the model performance
heavily depends on the distribution of the dataset. Accurately and objectively quantifying
the degree of long-tailedness in camera trap datasets is an important prerequisite for
research and practical applications. By referring to existing studies [16–18,20], we exploited
four commonly used metrics: the Gini Coefficient (denoted as GC); the Imbalance Factor
(denoted as IF); Standard Deviation (denoted as SD); and the Mean/Median (denoted as
MM), to measure the long-tailedness of multiple camera trap datasets.

2.2.1. Gini Coefficient

As the long-tailed distribution of data is similar to income distribution inequality,
Yang et al. used the Gini coefficient—which was first proposed by Gini [44], and is often
used to evaluate the degree of income imbalance—to quantify long-tailedness. The most
important step in the calculation of the Gini coefficient is to obtain the Lorentz curve
according to the number of samples of each class. Firstly, we sorted the number of samples
of K classes dataset Ci, (i = 1, 2, . . . , K) in ascending order, and calculated the normalized
cumulative distribution Di, as follows:

Di =
1
K

i

∑
j=1

(Ci) (1)

where K represents the number of species, and Ci represents the sampled number of species
i, and is synonymous in Equations (4)–(6). Next, we normalized the x-axis as the ratio of
the category index to the total categories, and obtained the Lorenz curve L(x) through linear
interpolation, as shown in Figure 2. The Lorenz curve L(x) can be expressed as:

L(x) =

{
Di, x = i

K
Di + (Di+1 − Di)(Kx − i), i

K < x < i+1
K

(2)

where i = 1, 2, . . . , K. For the balanced dataset, the Lorenz curve is the line of equality.
Finally, the Gini coefficient can be intuitively calculated as follows:

GC =
A
B

(3)
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where A represents the inequality between the line of equality and the Lorenz curve, and
B is the triangle area representing the equality marked by blue. The Gini Coeffient has a
bounded distribution, which ranges from 0 to 1. Usually, the greater the Gini Coefficient of
one dataset, the more imbalanced the dataset, and vice versa.

Figure 2. Calculation of the Gini coefficient (adapted from [20]).

2.2.2. Imbalance Factor

The imbalance factor refers to the number of samples in the largest class divided by
the smallest:

IF =
Max(C1, C2, · · · , Ck)

Min(C1, C2, · · · , Ck).
(4)

2.2.3. Standard Deviation

The standard deviation can be expressed as

SD =

√√√√1
k

k

∑
i=1

(Ci − µ)2 (5)

where µ represents the mean number of samples.

2.2.4. Mean/Median

The ratio of mean to median can be expressed as

MM =
Mean(C1, C2, · · · , Ck)

Median(C1, C2, · · · , Ck).
(6)

2.3. Object Detection Network

The goal of object detection in camera trap datasets is to determine what and where
animals are in images. Transformer architecture, which relies solely on the attention mecha-
nism, and eliminates the convolution operator, has significantly impacted deep learning,
particularly computer vision [45,46]. Transformer can provide the overall perception of
one image, while the convolution network has limited receptive fields, and lacks a global
understanding of the image. Researchers have introduced Transformer into the field of
computer vision, and some pioneering work, such as ViT (Vision Transformer) and its
follow-ups, has achieved better performance than CNNs in classification tasks [47–50]. The
DETR (DEtection TRansformer) model introduced Transformer into the object detection
task without using hand-designed components, such as anchor design and Non-Maximum
Suppression (NMS), and many follow-up methods, such as Deformable DETR, DN-DETR
(DeNoising-DETR), DAB-DETR (Dynamic Anchor Box DETR), etc., have attempted to
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address slow convergence and limited performance in the detection of small objects [51–54].
Based on the DAB-DTER and DN-DETR, Zhang et al. [55] proposed a DETR-like, end-
to-end object detector, DINO (DETR with Improved deNoising anchOr boxes). DINO
improved over previous DETR-like models in performance and efficiency, by using a
contrastive learning method for denosing training, to stabilize bipartite matching during
training, the mixed query selection method for anchor initialization, and the look forward
twice scheme for box prediction, as shown in Figure 3. For the first time, DINO, as an
end-to-end Transformer detector, achieved the best results against both COCO val2017
(63.2AP) and test-dev (63.3AP) benchmarks; therefore, in this study, we chose DINO as our
baseline applied to the camera trap datasets object detection.

In long-tailed camera trap datasets, the scarcity of images of rare species can result
in insufficient features learning by the object detection model: this often leads to errors or
omissions in the detection of rare species, resulting in poor overall detection performance.
In nature, some species—especially those from the same Class, Family or Genus—tend
to have similar characteristics. Transferring shared knowledge from frequent or common
species to rare species can enhance the features of rare species, helping to overcome the dis-
advantages of the scarcity of samples of rare species. In addition, because images obtained
from the different static cameras have different backgrounds, invariant features between
images of the same species with different backgrounds are crucial for robust representation
learning with limited samples. Thus, the diverse, firm, and complex sample relationships
in camera trap datasets can be used to address the imbalance problem. Hou et al. [27] pro-
posed one simple yet effective module, referred to as BatchFormerV2 (BF), to enable deep
neural networks with the ability to learn the sample relationships from each mini-batch.
Traditionally, Transformer block is applied to pixel/patch-level feature maps, while the BF
transformer block is applied to feature maps where the length of sequence is batch-sized.
An overview of the deep learning network with BF is shown in Figure 4. By integrating the
BF module, the vision transformers network forms a two-stream pipeline that shares the
same training weights. The outputs of the two streams are fed into the same transformer
decoder. With the two-stream design, all shared blocks are trained with shared weights
during training, and the original blocks can work well without BF, to avoid any extra
inference load during testing. Hou et al. integrated the BF into different vision transformer
models, such as DETR and Deformable-DETR, and consistently and significantly improved
them by over 1.3% on the MSCOCO benchmarks, while this was not achieved for any of
the long-tailed camera trap datasets.

Figure 3. Overview of DINO network (adapted from [55]).



Appl. Sci. 2023, 13, 6029 7 of 14

Figure 4. Overview of deep learning network with BatchFormer.

In this study, we evaluated the performance of the original DINO model and a mod-
ified version that integrated the BatchFormer module with multiple real-world camera
trap datasets (SWG, WCS, and CBL), to demonstrate the efficacy of learning sample re-
lationships for long-tailed object detection. We seamlessly inserted the BF module after
the first encoder layer of DINO, and did not change the structure and parameters of the
DINO framework. The original DINO was composed of a ResNet-50 backbone, a 6-layer
Transformer encoder, a 6-layer Transformer decoder, and multiple prediction heads. The
training of the models was based on PyTorch. Experiments were run on NVIDIA TITAN
RTX GPU with 24G VRAM size. We trained 12 epochs with a batch size of 2. We set the
initial learning rate to 1 × 10−4, and adopted a simple learning rate scheduler; we also used
the AdamW optimizer with a weight decay of 1 × 10−4.

3. Results
3.1. Camera Trap Datasets

Before analyzing the data, we directly filtered and deleted images with labels such
as ‘end’, ‘start’, ‘blurred’, ‘car’, etc., that were not related to animals. Due to poor image
quality caused by lighting, motion blur, distance, etc., experts could not accurately judge
the species or even distinguish between animals and background, so the images were
labeled with non-deterministic tags, such as ‘unknown small mammal’, ‘unidentified bird’,
‘unknown’, etc. We also directly filtered and deleted. Some low-quality images are shown
in Figure 5. To protect people’s privacy, we also removed images labeled ’human’.

Figure 5. Examples of low-quality images.
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Details of 12 datasets are shown in Table 1. As shown in this table, the number of
images labeled ‘unrelated’ and ‘uncertain’ was only a small part of the whole, and filtering
out this part did not change the overall distribution of the data. The samples labeled as
‘empty’ in the 12 datasets accounted for the largest proportion, reaching up to 92.17%.
Accurately and effectively distinguishing between blank images and images containing
objects is a very important task in the field of deep learning of the camera trap dataset. Some
images from the SWG and WCS datasets contained bounding box annotations. Finally, we
selected SWG, WCS, and self-constructed CBL datasets as the experimental datasets for
object detection.

Table 1. The details of 12 camera trap datasets.

Dataset No. of Species No. of Total No. of Filtered
Species

No. of Filtered
Samples No. of Blank Percent of

Blank

Orinoquía 57 112,267 18 15,157 20,334 21%
SWG 120 2,039,657 28 885,445 264,755 23%
Island 48 142,341 6 7302 77,670 23%
Karoo 37 142,341 6 363 31,792 58%

Kgalagadi 30 10,402 2 459 7886 79%
Enonkishu 38 30,542 2 1345 19,048 65%
Camdeboo 42 30,717 3 337 13,363 44%

Zebra 53 73,606 4 797 67,115 92.17%
Kruger 45 10,637 2 610 6532 65.14%

Serengeti 60 7,261,545 4 82,384 5,445,842 75.86%
WCS 675 1,369,991 37 203,420 591,874 51%
CBL 70 48,078 0 0 0 0

According to the ratio of 8:2, the three object detection datasets were randomly divided
into the training set and test set, as shown in Table 2.

Table 2. The three object detection datasets: training set and test set assignments.

Dataset Training Set Test Set

SWG 63,722 15,791
WCS 275,514 68,804
CBL 38,391 9687

3.2. The Long-Tailedness Metrics Results

Based on four commonly used metrics, we quantified the long-tailedness of 12 camera
trap datasets and other public benchmark datasets, as shown in Table 3. In the table, we
listed the values of the largest and smallest number of samples of species, named ’Max size’
and ’Min size’.

To better measure the long-tailedness of camera trap datasets, we calculated the four
metrics of the public balanced CIFAR, long-tailed ImageNet-LT, and LVIS 1.0. The sample
size of each category of the CIFAR was equal, the Gini Coefficient and Standard Devian
were 0.0, and the Imbalance factor and Mean/Median were 1.0. According to the calculation
results, we can conclude that the two metrics, imbalance factor and standard deviation,
are easily affected by the extreme species, and cannot reflect the overall long-tailed data
distribution. The ratio of mean to median can reflect the imbalance distribution of data,
including the difference in the number of frequent and rare classes; however, the size of this
indicator has no upper limit, and is susceptible to extreme absolute numbers of samples of
classes. Unlike the other indicators, the Gini Coefficient has a bounded distribution, is not
affected by the extreme differences in the number of samples, and can represent the overall
class imbalance of data and the differing long-tailedness of different datasets. According to
the result of CIFAR, ImageNet-LT, and LVIS 1.0, and similar to the work of Lu et al. [20], the
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Gini Coefficient is the recommended, reasonable, effective, and quantitative indicator by
which to reflect the long-tailedness of the camera trap dataset. Compared to ImageNet-LT
and LVIS 1.0, the imbalance in the public benchmark dataset varies widely, while the
Gini Coefficient of the camera trap datasets is generally very large, reaching over 0.9: this
indicates that the sample size of various species in camera trap datasets is generally and
extremely imbalanced.

Table 3. The metrics results of 12 camera traps datasets, CIFAR, ImageNet-LT, and LVIS 1.0.

Dataset GC IF SD MM Max Size Min Size

Orinoquía 0.824 24,784 4496.7 10.64 24,784 1
SWG 0.875 234,736 30,178.71 42.68 234,736 1
Island 0.817 16,338 3076.35 9.2 16,338 1
Karoo 0.8 1698 363.33 14.68 1698 1

Kgalagadi 0.847 1378 253.77 7.35 1378 1
Enonkishu 0.761 1857 498.75 9.24 1857 1
Camdeboo 0.741 1167.67 744.8 9.49 3503 3

Zebra 0.773 1895 284.48 5.47 1895 1
Kruger 0.792 1379 220.93 8.94 1379 1

Serengeti 0.864 533,478 92,640.68 21.24 533,478 1
WCS 0.905 95,788 4598.39 33.36 95,788 1
CBL 0.872 19,728 2481.93 19.08 19,728 1

CIFAR 0.0 1.0 0.0 1.0 6000 6000
ImageNet-LT 0.524 256 139 1.58 1280 5

LVIS 1.0 0.82 50,552 2789 11.1 50,552 1
Note: GC is the Gini Coefficient; IF is the Imbalance Factor; SD is the Standard Deviation; MM is the Mean/Median.
The values of the largest and smallest number of samples of species were named ’Max size’ and ’Min size’.

The Gini coefficients of several object detection datasets with bounding box annota-
tions are shown in Table 4. The Gini coefficients of three of the object detection datasets
exceeded the Gini Coefficient of the LVIS 1.0. The bounding box annotations of the camera
trap datasets also demonstrated an extreme class imbalance.

Table 4. The Gini coefficient of three object detection datasets, COCO, and LVIS 1.0.

Dataset Gini Coef. Gini Coef. of Area

SWG 0.857 0.614
WCS 0.92 0.521
CBL 0.872 0.621

COCO 0.564 0.361
LVIS 1.0 0.82 0.475

Note: GC of Area is the Gini Coefficient of object/box-level scale imbalance.

According to the definition of small objects in the current benchmark datasets, MS
COCO defines objects less than 32 × 32 pixels as small; LVIS defines less than 32 × 32
as small; between 32 × 32–96 × 96 are defined as medium; greater than 96 × 96 are
defined as large; TinyPerson defines objects between 20 × 20–32 × 32 as small objects,
and 2 × 2–20 × 20 are defined as tiny. We divided the size of the objects of the camera
trap datasets into eight ranges, which were 0–16 × 16 (Very Small, VS), 16 × 16–32 × 32
(Small, S), 32 × 32–64 × 64 (Small Medium, SM), 64 × 64–128 × 128 (Medium, M), 128
× 128–256 × 256 (Medium Large), 256 × 256–512 × 512 (Large), 512 × 512–1024 × 1024
(Very Large, VL), and >1024 × 1024 (Super Large, SL), to study the object/box-level scale
imbalance of the camera trap datasets. The Gini Coefficients of the object/box-level scale
imbalance of the three camera trap datasets were all greater than COCO and LVIS 1.0, so
the object/box-level scale imbalance was also extremely long-tailed. Moreover, according
to the areas of the objects shown in Table 5, we can conclude that there is a huge difference
between camera trap and benchmark datasets.
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Table 5. The number of various sizes of objects of three object detection datasets, COCO, and LVIS 1.0.

Dataset VS S SM M ML L VL SL

SWG 24 6 62 1125 8180 23,710 23,305 7310
WCS 490 2175 9594 30,657 72,885 91,432 56,302 11,979
CBL 0 0 6 331 3991 12,897 14,741 6425

COCO 107,520 160,177 192,171 178,179 137,132 77,814 6468 0
LVIS 1.0 364,697 301,748 272,726 185,982 100,047 41,770 3171 0

3.3. Object Detection

We conducted several experiments on three datasets, using DINO and DINO with BF.
As shown in Table 6, the BF module significantly improved the DINO detection performance
by 2.3% for SWG, by 0.8% for WCS, and by 1.2% for CBL.

Table 6. The overall results for DINO and DINO with BatchFormer Models on SWG, WCS, and CBL.

Dataset Model AP AP50 AP75

SWG DINO 64.8 87.5 70.6
+BF 67.1 88.6 71.3

WCS DINO 70.3 86.7 76.2
+BF 71.1 87.4 77.8

CBL DINO 72.3 94.9 78.2
+BF 73.5 94.9 78.5

Note: AP is the average precision; AP50 is the average precision calculated when IoU is 0.5; AP75 is the average
precision calculated when Iou is 0.75. Bold numbers are used to highlight better results.

According to the study of Scineider et al. [14], we classified the species with sample
sizes of less than 500 as Rare, those between 500 and 1000 as Common, and those greater
than 1000 as Frequent. As illustrated in Table 7, the BF module can also improve the DINO
performance in the following categories: Rare, Common, and Frequent.

As shown in Table 8, BF can also improve the performance of DINO in terms of object
detection of different sizes, but it still cannot make up for the shortcomings of too-few and
too-small objects.

Table 7. The result for DINO and DINO with BatchFormer on different frequency classes of
three datasets.

Dataset Model APr APc APf

SWG DINO 62.5 67.6 70.1
DINO+BF 65.4 69.2 70.9

WCS DINO 69 77 76.7
DINO+BF 69.6 79 78.4

CBL DINO 70.8 72.9 78.9
DINO+BF 72.1 75.3 79.5

Note: Bold numbers are used to highlight better results.
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Table 8. The results for DINO and DINO with BatchFormer on various-sized objects of three datasets.

Dataset Model APVS APS APSM APM APML APL APVL APSL

SWG DINO 0 0 7.2 16.5 43.5 57.3 78.7 84.2
DINO+BF 0 0 9.2 17.4 42.3 60 80 86.7

WCS DINO 1.6 20.4 35.8 51.8 66.6 79.9 86.7 92.2
DINO+BF 1.2 22 38.8 55.1 67.8 81.1 88 93.6

CBL DINO - - 22.3 42.6 57.6 70.9 80.9 87.9
DINO+BF - - 21 43.6 57.7 73.2 82.7 90

Note: Bold numbers are used to highlight better results.

4. Discussion

The application and development of deep learning technologies have revolutionized
the analysis and utilization of camera trap data. However, the imbalanced distribution
of data in these datasets can often lead to the poor performance of deep learning mod-
els. In this study, we analyzed 12 camera trap datasets obtained from various habitats
worldwide. These datasets exhibited significant differences in the number of species and
the size of camera trap images, but the proportion of images with empty labels was the
largest among all classes, reaching up to 92.17% in Snapshot Mountain Zebra. Next, we
utilized four quantitative metrics to objectively and accurately quantify long-tailedness in
camera trap datasets. Based on our results, we recommended the Gini Coefficient as an
effective and appropriate measure of imbalance in camera trap datasets. Compared to the
benchmark balanced CIFAR and long-tailed ImageNet-LT, LVIS 1.0, the class imbalance in
different camera trap datasets was prevalent and very severe, consistently surpassing 0.7 in
12 datasets. Moreover, the GC of three object detection datasets was greater than COCO
and LVIS 1.0, indicating that for various deep learning tasks, such as animal recognition and
detection in a camera trap dataset, long-tailed distribution is a very challenging problem. In
addition, the rarity of samples of some tail species in the camera trap datasets was mainly
due to the fact that tail species are rare or even endangered in the wild. The ongoing global
trend of anthropogenic biodiversity loss, which involves extinction or a dramatic decline in
both species and population size, will further exacerbate the class imbalance in camera trap
datasets; therefore, compared with the head species, which may even be over-represented,
determining whether deep learning can accurately extract the information of tail species is
more difficult and urgent.

Object detection accuracy varies greatly for different-sized objects. Accurate detection
of small objects remains particularly challenging. Because of the different body size of
animals, and different distances from the camera, the size of animal objects varies greatly.
Thus, we also need to pay attention to the object/box-level scale imbalance in camera
trap datasets. In this study, we calculated the GC of area to measure the object/box-
level scale imbalance in three object detection datasets: the results were all greater than
0.5, demonstrating that camera trap datasets exhibit object/box-level scale long-tailed
distribution as well. As shown in Table 5, camera trap datasets exhibit a positive correlation
between the number of samples and object size, which is completely different from a
skewness in the distribution in favor of small objects in the COCO and LVIS 1.0. However,
we also note that the number of very small (0–16 × 16), small (16 × 16–32 × 32), and
small–medium (32 × 32–64 × 64) objects is too few. Even worse, the camera trap images
resolution is generally much higher than in the benchmark dataset, the natural background
of the images is very complex, light conditions are variable, and small animals move quickly,
leading to detection-performance issues for small objects, and making object detection for
the camera trap dataset more challenging.

To exploit the diverse and firm sample relationships, we introduced the simple yet
effective module BatchFormer into the DINO model, to transfer shared knowledge from
head to tail, so as to enhance the representation of tail species. In this experiment, the
BatchFormer module improved the DINO overall detection performance by 2.3% on SWG,
by 0.8% on WCS, and by 1.2% on CBL. On the class imbalance, the BatchFormer module
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improved the performance of DINO by up to 2.9 % on Rare, 2.4% on Common, and 1.7%
on Frequent. On the object/box-level scale imbalance, the BatchFormer module can also
improve the performance of DINO by up to 3.3 % on eight types of object sizes, while
the AP on very small, small, and small–medium objects is too low, demonstrating that it
cannot make up for the shortcoming of too few and too small objects. Exploiting sample
relationships is a simple yet effective way to promote long-tailed deep learning problems
for camera trap dataset solving.

Finally, due to the limitations of the experimental environments, this study did not
make generalization experiments to test the performance on new camera trap data. Prac-
tically, the images from camera traps situated at new locations not included in training
sets have different backgrounds (grasslands, forest, etc.), different prominent objects (tree
stumps, rocks, etc.), and different environmental conditions (day, night, season, etc.), and
should be considered as different domains. The deep learning models generalization
performance declines in new locations [14]. In future, we will leverage the approaches of
few-shot and zero-shot learning, to improve the generalization. Except for the imbalance
and generalization problem, the classification and detection of nocturnal animals, such as
rodents, are considerably more challenging, due to issues such as low light, fast movement,
small body size, etc. Data augmentation methods such as deblur, colorization, low-light
enhancement, etc., can be implemented to increase the quality of night-time images, further
improving classification and detection accuracy [56–58].

5. Conclusions

Camera traps have become a popular method for collecting vast numbers of animal
images. However, manually analyzing the resulting data can be slow, labor intensive, and
tedious. Deep learning has emerged as a solution to overcome these obstacles. However,
the long-tailed distribution of camera trap datasets becomes a barrier to taking advantage
of deep learning. Our paper used four metrics to quantify the long-tailedness of 12 camera
trap datasets obtained from various habitats worldwide. The results showed that long-
tailedness in camera trap datasets is prevalent and very severe. Then, we analyzed the
object/box-level scale imbalance for the first time, and found that object/box-level scale
imbalance is long-tailed and poorer than the benchmark long-tailed dataset. To make
matters worse, the number of small objects is low, making deep learning more challenging
in the camera trap dataset. We employed the BatchFormer module to leverage sample
relationships and enhance the performance of a general object detection model, in terms
of class imbalance and object/box-level scale imbalance. In summary, the severe issue of
imbalance in camera trap datasets is widely prevalent. Nevertheless, the development of
deep learning techniques provides promising solutions for addressing this challenge. With
the aid of deep learning techniques, camera trap data can foster biodiversity conservation.
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