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Abstract: Noise is ubiquitous in the real-world environment. At present, most scholars only include 
the stage of Gaussian white noise when applying noise in neural networks and regard white noise 
as a tool to optimize the network model, which is far from enough, because noise not only affects 
the optimization ability of the Hopfield neural network but can also better fit the needs of the actual 
use of the scene. Therefore, according to the problems in the existing research, a method is proposed 
to combine the neural network with colored noise according to the signal-to-noise ratio. Taking blue 
noise as an example, the anti-interference ability of the Hopfield neural network regarding colored 
noise is studied. The results show that for the Hopfield neural network driven by blue noise, by 
adjusting the neural network step size, excitation function and signal-to-noise ratio, it not only 
provides ideas for adding colored noise to the neural network but also enables the neural network 
model to have better optimization-seeking ability. The research results have some reference 
significance for improving the practical application of neural networks in noisy environments. 
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1. Introduction 
In today’s ubiquitous artificial intelligence, various types of neural networks are 

being used more and more widely in various industries. If the interference of noise on a 
neural network is not considered, it is possible that no matter how perfect the 
performance of the network model is in training, when it is put into use, the model will 
always be disturbed by different levels of noise due to the difference in the usage 
environment and will thus face the “failure” situation caused by excessive noise influence 
in certain situations [1,2]. 

Hopfield is a feedback neural network model (HNN, Hopfield neural network), 
which is mainly used to solve various optimization problems [3,4] and also has a wide 
range of uses in real-world applications, such as image processing [5–7], predictive 
classification [8–10], and communication [11,12], and Hopfield neural networks are prone 
to generating random noise due to their physical properties. Based on this common 
phenomenon in real-world applications, the paper introduces blue noise into Hopfield 
neural networks to simulate the noise in real-world applications. Simulation experiments 
show that it is feasible to incorporate colored noise into a neural network, and by 
controlling the signal-to-noise ratio and noise spectrum, the researcher can use any real-
world usage environment as a background to optimize the neural network and allow the 
neural network model to achieve more desirable results. Additionally, the construction of 
the colored noise generator tests how much interference immunity Hopfield neural 
networks can have in specific real-world applications without distortion, providing a 
theoretical basis for practical applications. 
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Chaotic neural networks are regarded as intelligent information processing systems 
which are able to realize real-world computation because of their highly nonlinear 
dynamic systems and close relationship with chaos. Therefore, this paper takes chaotic 
neural networks as the entry point. On the one hand, the feasibility of noise fusion can be 
verified; on the other hand, disturbance can be generated by noise to enhance the chaos 
of the chaotic neural network and improve the optimization rate. 

The contributions of this study include demonstrating the technical feasibility of 
using noise fusion in conjunction with neural networks, as well as highlighting the 
potential applications of this approach in training neural networks and other models. This 
study also examines several specific neural network models that are subject to specific 
noise disturbances and used in optimization problems. The findings of this study may 
lead to the development of more effective and personalized neural network training plans, 
ultimately improving both the training set and algorithm accuracy. 

2. Related Works 
Noise exists widely in every part of nature, and in practical data processing, Gaussian 

white noise is generally used to approximate the stochastic rise and fall of a system, while 
white noise is only an ideal situation, as judged by the definition and statistical properties 
of white noise. Since the assumptions are based solely on Gaussian white noise, the effect 
of actual colored noise is not considered. As a consequence, there is a risk that data 
processing theories and methods may not be sufficient to guarantee the reliability of the 
estimation results [13]; therefore, many researchers are committed to eliminating the 
influence of noise [14,15]. However, it is difficult to eliminate the influence of colored noise 
due to the complex and changeable condition of noise. Therefore, in practical models, 
people use colored noise to accurately describe the behavioral system of objects [16–18]. 
For example, Nelson et al. [19] investigated adaptive grayscale compressive spectral 
imaging using optimal blue noise coding patterns. The importance of noise color in 
simulations of evolutionary systems was demonstrated by Matt et al. [20]. Zhang [21] 
discussed wavelet analysis of red noise and its application in climate diagnosis. Hatayama 
et al. [22] analyzed the effect of pink noise on EEG and memory performance in memory 
tasks. Liao et al. [23] studied the phase-locking of ultra-low power consumption stochastic 
magnetic bits induced by colored noise. Although much work has been carried out by 
researchers on colored noise, there is a slight lack of research regarding adding colored 
noise to neural networks in order to achieve a close fit to real-world usage cases. 

Caglar et al. [24] introduced a novel approach that involves adding noise to the 
activation function of neural networks. It has been found that replacing this saturated 
activation function with noisy variants helps optimization in many cases, producing the 
most advanced or competitive results in different datasets and tasks, especially when 
training seems to be the most difficult. Shao et al. [25] investigated an intelligent fault 
diagnosis method based on a multi-scale deep convolutional neural network (MSD-CNN) 
model and strong noise data enhancement. Through the data enhancement method for 
strong noise, the number and diversity of training samples of the MSD-CNN model are 
improved, so that the model is able to learn deeper features in the training stage. Yang et 
al. [26] proposed an automated vision-based method for the surface condition recognition 
of concrete structures. An improved Dempster–Shafer (DS) algorithm was designed for 
decision-level image fusion. The robustness of the proposed method was verified by using 
images contaminated by various types and intensifies of noise. 

After years of development, the solution rate of the neural network has reached a 
satisfactory effect on the optimization of the problem [27–29]. However, for the complex 
and changeable noise situation in the real environment, if the noise interference situation 
in the specific environment is not considered, the solution rate may be biased when the 
model is applied to the actual situation, so adding noise to neural network training is 
indeed necessary. 
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3. Materials and Methods 
In this section, the generation process of colored noise and the model of noise fusion 

with the neural network will be explained. Firstly, various typical colored noises and their 
generation methods are introduced. Then, the fusion method of the noise and neural 
network is described in detail. Finally, an improved method of the network model is 
proposed. 

3.1. Constructing Colored Noise Generators 
Noise signals are signals generated by random processes and can be generally 

classified as white noise and colored noise. White noise is a noise signal whose power 
spectral density (PSD, power spectral density) is constant in the whole frequency domain 
and has been widely used in the noise correlation test of various models; however, white 
noise as a purely theoretical construct will inevitably have deviations when simulating 
realistic application scenarios [30], so taking various types of spectral situations of colored 
noise becomes relevant. Some of the typical colored noise signals are shown in Table 1. 

Table 1. Example of typical colored noise. 

Noise Type PSD Examples of Applications 

Red noise 2
1
f

∝  
Identifying steady-state 

transitions in the integrated 
analysis of climate records 

Pink noise 
1
f

∝  Promotes neural oscillatory 
activity 

Blue noise f∝  Multi-class blue noise sampling 

Violet noise 2f∝  
Acoustic thermal noise signal of 

water 

There are many colored noise generation methods, but in the face of the complex N-
dimensional vector situation of neural networks, most of them cannot be directly applied 

to neural networks, so the article improves the typical PSD f α∝  (α∈R) colored noise 
sequence generator [31] based on these typical colored noise types, the original noise 
generator can only generate colored noise sequences satisfying the one-dimensional case. 
After the improvement, colored noise networks matching the ranks of neural networks 
will be generated when the size of the ranks of neural networks is obtained and will meet 
the requirements of Gaussian noise distribution, based on the fusion scheme proposed in 
the paper, and the colored noise network will directly perturb the neural network and 
generate the output. Since the improved noise generator can freely choose the colored 
noise network dimension according to the rank value size of the neural network, the noise 
generator also supports the output of N-dimensional noise sequences with a single point, 
which is convenient for the subsequent fusion work with the neural network. Based on 
the original generator [32], the dimension reconstruction function is added to this 
generator, which is composed of fast Fourier transform (FFT), inverse fast Fourier 
transform (IFFT), divisor, and multipliers. The digital input signal is input continuously 
point by point, and the FFT transform is made first, and according to the desired colored 
noise, the frequency characteristic H(n) is divided in the frequency domain; then, the IFFT 
transform is made, and the output is reconstructed according to the desired dimension, 
the output of the colored noise generator is obtained cumulatively, and the colored noise 
after reconstruction still obeys the Gaussian distribution, so it does not cause the 
probability density to change, and its difference is mainly reflected in the sequence power 
spectral density. The difference is mainly reflected in the sequence power spectral density 
and its own numerical distribution. Taking blue noise as an example, the constructed 
noise sequence of its own characteristics and white noise is shown in Figure 1, the 
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generated blue noise still meets the requirements of Gaussian noise distribution. 
However, it can be obviously seen in the gray figure that the gray value of the blue noise 
after spectrum transformation is higher than that of the original white noise, while the 
autocorrelation function and power spectral density are a Fourier transform pair, and it 
can be seen that the noise amplitude after re-construction is significantly reduced. 

 
Figure 1. Blue noise and white noise characteristics comparison chart. 

The specific construction process is as follows: 
Let the Fourier transform of the white noise energy signal s(t) be S(f), then the power 

spectral density is as follows: 

21( ) lim | ( )|
T

P f S f
T→∞

= , (1) 

Taking blue noise as an example, the spectral density after the divider is as follows:  

21 ( )( ) lim | | ( 1,2,3......)1T

S fP f n
T

n
→∞

= = , (2) 

where n ∈ N+: 

2( ) lim | ( ) | ( 1, 2,3......)
T

nP f S f n
T→∞

= = , (3) 

where n is the frequency index, and instead of the true frequency f, S(f) is constant in the 
whole frequency domain; thus, it is easy to see that the blue noise power spectral density 
P(f) is proportional to f. Since the spectral density is generally symmetric, the complete 
spectrum amplitude of blue noise is obtained via conjugate flip copy after the half 
spectrum is processed by the divisor. Other types of noise can be constructed by referring 
to the spectrum information presented in Table 1 and Formula (2). The spectrum change 
process is shown in Figure 2. The two pictures in the upper half are the noise and spectrum 
distribution under white noise, while the two pictures in the lower half are the spectrum 
distribution after the divisor processing and the complete blue noise spectrum 
distribution after the conjugate flip copy. 
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Figure 2. The process of spectral change during the construction of blue noise. 

After obtaining the N-dimensional colored noise sequence, the colored noise and the 
original neural network sequence can be fused. Since the noise sequence has been 
processed, it has now become a pattern of N-dimensional vectors, which is 
mathematically described as follows: if the input data sequence is {A}, the observation 
sequence L1, L2, ..., Lt has the observation equation at moment t:  

Lt AtXt et= ＋ , (4) 

et k Gt= × , (5) 

where Xt is the parameter vector at moment t; At is the column full rank design matrix; et 
is the true error vector; Gt is the Gaussian colored noise sequence; and k is the required 
noise ratio for the actual environment. Where k determines the value according to the 
required Signal Noise Ratio (SNR), and according to the SNR calculation formula [33], the 
derivation process is as follows: 

10lg( ) At

et

S P
P

NR = , (6) 

It is clear that:  

(lg )
1010 At
SNRP

etp
−

= , (7) 

or written as:  

1010

At
et SNR

pP = , (8) 

where SNR is the signal-to-noise ratio of the sequence At to et at moment t, PAt is the power 
of the sequence At and Pet is the power of the sequence et. The power density of the noise 
signal Pet can be measured according to the power density formula:  
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2 2

0 0 0 02 2

( ) ( )
m n m n

ij ij
i j i j

et Gt

k x x
p k k p

N N
= = = =

×
= = × = ×
 

, 
(9) 

where: m and n represent the number of rows and columns of the matrix, N represents the 
number of matrix elements, PGt is the Gaussian colored noise power density, as the mean 
value of the constructed colored noise is 0 and the variance is 1, so it is easy to know that 
the PGt power density is 1 through the variance Formula (10).  

2

2 1 )  is the matrix m n
(

( e
)

a

n

i
i
x x

S where
N

x=

−
=


, 
(10) 

From Equations (9) and (10) it is easy to see that:  

2 2
et Gtp k p k= × = , (11) 

The conjunction of Equations (8) and (11) yields:  

2

1010

At
et SNR

pp k= = , (12) 

It is clear that:  

1010

At
SNR
pk = , (13) 

In this paper, the reason why SNR is used as the basis for the fusion of neural network 
and colored noise in this paper is that this method is undoubtedly the most friendly and 
helpful to understand for researchers who want to study noise. Blue noise is chosen as the 
sample of article fusion because blue noise, as a typical noise, is undoubtedly 
representative. Subsequent researchers can simulate the real noise environment by means 
of probability sampling [34] and attribute noise monitoring [35]. 

3.2. Blue Noise Hopfield Neural Network Model 
Construct the Hopfield neural network model with blue noise as:  

= ( )cU CnU , (14) 

c

0

1 (1 tanh( ))
2

UV
ε

= + , (15) 

( )cV CnV= , (16) 

( ) ( , , , )Cn ABGN SNR m nξ ξ= , (17) 

U and V in this network model are the input and output of the Hopfield network [36], 
Uc and Vc are the input and output perturbed by colored noise, 𝜀଴  is the steepness 
parameter of the excitation function, and ABGN is the blue noise combined with the 
original signal function, where m and n are the row and column values of the input and 
output matrix. The output V of the Hopfield network is generated using a nonlinear 
function. In this network model, the input and output of the neural network are 
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contaminated by colored noise, the purpose of which is to study the anti-interference 
ability of colored noise in the Hopfield neural network. 

3.3. Improvement of Neural Network Model Based on Colored Noise 
Through the above experiments, this paper proves that colored noise can improve 

the optimization of the neural network. To verify that the colored noise neural network 
model can meet the needs of more scenarios, the original Hopfield neural network model 
is improved, and the excitation function of the original neural network model is 
transformed from Sigmoid function to a combination of continuous wavelet and Sigmoid 
excitation function. The chaos generation mechanism of the improved neural network is 
also introduced through the exponential decreasing of the self-feedback terms. Since the 
excitation function of the wavelet chaotic neural network does not monotonically increase 
but generally increases, the addition of wavelet function can not only cause the excitation 
function non-monotonically to increase but also to allow the excitation function to have 
wavelet function advantages. The improved model is applied to the traveling salesman 
problem in 30 cities through the segmented simulated annealing mechanism and the 
disturbance of blue noise. Comparing the data from previous experiments, it can be 
intuitively felt that the network model, adding the wavelet function and the segmented 
simulated annealing mechanism, has significantly improved the solving rate. Even in the 
face of more complex combinatorial optimization problems, colored noise perturbation 
can still improve the solution of chaotic neural networks. 

The improved Hopfield neural network model is as follows:  

= ( )cU CnU , (18) 

c 0 1( , ) ( , )cV S U coef M Uε ε= + ⋅ , (19) 

( )cV CnV= , (20) 

( ) ( , , , )Cn ABGN SNR m nξ ξ= , (21) 

00 /
1( , )

1 cc US U
e εε −=

+
, (22) 

2
2 1

1
1

( / )2( , ) (1 ( ) ) exp( )
23

c c
c

U U
M U

εε
επ

= − − , (23) 

Equation (19) is the excitation function of wavelet chaotic neural network, which is 
composed of Sigmoid function and Mexican_Hat function. Where S represents Sigmoid 
function and M represents Mexican_Hat function; 𝜀଴ and 𝜀ଵ are steepness parameters of 
Sigmoid function and Mexican_Hat wavelet function; coef is a coefficient (coef ≥  0); and 
other parameters have the same meaning as the parameters of Hopfield neural network 
model chaos with blue noise. 

4. Results and Discussion 
4.1. Blue Noise Hopfield Neural Networks in Optimization Problems 

Optimization problems are divided into two kinds of function optimization and 
combinatorial optimization. Many practical problems can be categorized into one of these 
for solving [37,38]. To verify the immunity of Hopfield neural network to colored noise, 
blue noise was selected to perturb the input and output, respectively, and the effect of 
noise on Hopfield function optimization and combinatorial optimization problems was 
explored. 
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The essence of solving optimization problems with Hopfield is in the process of 
solving the extremum of the energy function E of that neural network, so the constraints 
of the problem need to be expressed in the form of a function of that energy. 

The algorithm flow is as follows: 
(1) The problem to be solved is described in computer language, where the output of the 

neural network corresponds to the solution of the problem. 
(2) Construct the energy function of the neural network so that its minimum value 

corresponds to the optimal solution of the problem. 
(3) The initial states of the neurons are generated, and the weights W and bias inputs I 

between the neurons are corrected via the output values of each iteration after noise 
perturbation. 

(4) In the case that the energy function has converged, and the output accuracy is 
satisfied, the steady state of its operation is the optimal solution under certain 
conditions. 

4.1.1. The Effect of Blue Noise on the Ability of Neural Networks to Optimize  
Continuous Functions 

The statistical analysis of the Hopfield neural network’s ability to optimize Equation 
(24) [39,40] under blue noise perturbations with different signal-to-noise ratios.  

2 2 2 2
1 2 1 2 2 1( , ) ( 0.7) [( 0.6) 0.1] ( 0.5) [( 0.4) 0.15]f x x x x x x= − + + + − + + , (24) 

It is easy to see that the function has a minimum value of 0, corresponding to the 
coordinates (0.7, 0.5), and is the global minimum of the objective function. There are three 
of these local minima, namely (0.6, 0.4), (0.6, 0.5), and (0.7, 0.4). 

The function is solved using the network model in this paper with the set parameters: 
step t = 0.1 and excitation function coefficient = 0.5. The evolution of the energy function 
of the Hopfield neural network solution function with x1, x2 under a different signal-to-
noise ratio of blue noise perturbation is shown in Figures 3–6. 

 
Figure 3. Changes of ×1 and ×2 and energy evolution in a noiseless environment. 
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Figure 4. Changes of ×1 and ×2 and energy evolution in a noisy environment (SNR = 30). 

 
Figure 5. Changes of ×1 and ×2 and energy evolution in a noisy environment (SNR = 50). 
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Figure 6. Changes of ×1 and ×2 and energy evolution in a noisy environment (SNR = 90). 

Figure 3 shows the noise-free scenario, and the solution process of the neural network 
is as follows: the network reaches an unstable state after the search, at which time the 
network starts gradient descent and soon reaches a stable state, searching for the global 
minimum point (0.7, 0.5) with a minimum value of 0. 

It can be seen from Figure 4 that when the SNR is 30, it has a great impact on the 
neural network and never reaches a stable state, and after 1000 iterations, the global 
minimum point (0.6917, 0.5043) is searched for at this time, with a minimum value of 
1.1537× 10−4 and a minimum value of 1.12× 10−2 in the literature [41]. 

Figure 5 shows the solution of the neural network when the SNR is 50. Although after 
500 iterations, a stable state is still not reached, the floating range is very close to the correct 
solution, and at this point, the global minimum point (0.7014, 0.5002) is searched for, with 
a minimum value of 2.5668× 10−6  and the minimum value of 5.3560× 10−6  in the literature 
[41]. 

It can be seen from Figure 6 that when the SNR is 90, the interference of noise for the 
neural network is basically negligible and achieves the same effect as when there is no 
noise, when the global minimum point (0.7000, 0.5000) is searched for with a minimum 
value of 6.0226× 10−10  and a minimum value of 6.2693× 10−10  in the literature [41]. 

From the above experiments, it can be seen that the presence of noise has an impact 
on the optimization ability of Hopfield neural network; in particular, when the signal-to-
noise ratio is less than 50, the convergence speed of the energy function is greatly affected, 
and the impact on the solution ability is also great, but when the signal-to-noise ratio is 
greater than 90, the noise has little effect on the network model, and the optimization 
performance of this network model reaches the same degree as the ideal noise-free 
environment. The comparison with the optimization results conducted in the literature 
[41] also shows the superiority of this model, and the range of the anti-interference ability 
of the Hopfield neural network under the influence of blue noise is sought. 

4.1.2. The Effect of Blue Noise on the Optimization Power of Neural Networks for  
Combinatorial Problems 

In this paper, the colored noise Hopfield neural network is applied to the 10-city 
traveling salesman problem (TSP) [42–44]. The traveling salesman problem is described 
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as the shortest loop required to visit each city once and return to the starting city, given 
the distance between two cities. 

The energy function to take the shortest path and satisfy all constraints [45,46] is 
shown in Equation (25). Where Vxi denotes that the xth city is visited on the ith order and 
dxy is the distance between cities x and y. Therefore, the global minimum E value reached 
after several iterations represents the shortest effective path.  

n
2 2

, 1
1 1 1 1 1 1 1

= ( 1) ( 1)
2 2 2

n n n n n n

xi xi xy xi y i
x i i x x y i

A B DE V V d V V +
= = = = = = =

− + − +      (25) 

In this paper, we use 10 cities after classical normalization, with the following 
coordinates: (0.4, 0.4439); (0.2439, 0.1463); (0.1707, 0.2293); (0.2293, 0.716); (0.5171, 0.9414); 
(0.8732, 0.6536); (0.6878, 0.5219); (0.8488, 0.3609); (0.6683, 0.2536); and (0.6195, 0.2634). The 
shortest path for these 10 cities is 2.6776, as shown in Figure 7. 

 
Figure 7. The optimal 10-city path. 

When solving the TSP problem with the Hopfield neural network model with blue 
noise perturbation, the parameters were initialized as [47]: A = B = 1, D = 1, 𝜀଴ = 0.02, and 
randomly generated U. The solution was performed in simulation experiments using 
different signal-to-noise ratios, and the experimental results were compared and 
analyzed. 

Table 2 shows the simulation test data for 200 randomly assigned initial values when 
the colored noise parameter is taken to different values and compared with the simulation 
results from the literature [41]. 

Table 2. Experimental simulation results for different values of the parameter SNR. 

 SNR 
Legal 
Path 

Optimal 
Path 

Legal 
Ratio 

Optimal 
Ratio 

 Noiseless 163 118 81.5% 59.0% 
This paper 

40 
40 7 20.0% 3.5% 

Reference [41] 84 13 42.0% 6.5% 
This paper 50 118 54 59.0% 27.0% 
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Reference [41] 126 64 63.0% 32.0% 
This paper 

60 
156 111 78.0% 55.5% 

Reference [41] 144 92 72.5% 47.0% 
This paper 

70 
162 116 81.0% 58.0% 

Reference [41] 145 94 80.0% 56.0% 
This paper 

80 
163 117 81.5% 58.5% 

Reference [41] 160 112 75.5% 53.0% 
This paper 

90 
169 128 84.5% 64.0% 

Reference [41] 151 106 74.5% 51.5% 
This paper 

120 
161 109 80.5% 54.5% 

Reference [41] 149 103 74.5% 51.5% 
This paper 

150 
164 113 82.0% 55.5% 

Reference [41] 149 104 74.5% 52.0% 
This paper 

180 
166 114 83.0% 57.0% 

Reference [41] 152 103 76.0% 51.5% 

As shown in Table 2, it is completely feasible to introduce noise into the neural 
network using the method of this paper. Moreover, the moderate introduction of noise 
signals does not have much impact on the solving ability of Hopfield neural network, and 
it can be seen through extensive testing that when the SNR is less than 50, the ability of 
this network model to solve the TSP problem is decreasing significantly, while when the 
SNR is greater than 90, the noise on the neural network’s ability to influence is basically 
negligible or even beneficial. When compared with the literature [41], it is found that by 
introducing blue noise and properly correcting the parameters, Hopfield obtains better 
optimization ability when the SNR is greater than 60, but due to the intrinsic 
characteristics of blue noise, which allow the network model to obtain better solution 
effects in white noise when the SNR is less than 60, it also provides a reference interval for 
subsequent researchers to ensure the SNR of the input signal sequence and the range in 
which the parameters are best controlled when using the Hopfield neural network. 

4.2. Chaotic Neural Network Model Based on Blue Noise 
Energy function selection is the same as before, 𝜀଴ = 0.6 , 𝜀ଵ = 125  remains 

unchanged, and coef is equal to 0 and 1/250, respectively. Let the simulation program take 
the 30 cities after classical normalization. Let the emulator take the classic 30 cities [48], 
and the coordinates are as follows: (41,94); (37,84); (54,67); (25,62); (7,64); (2,99); (68,58); 
(71,44); (54,62); (83,69); (64,60); (18,54); (22,60); (83,46); (91,38); (25,38); (24,42); (58,69); 
(71,71); (74,78); (87,76); (18,40); (13,40); (82,7); (62,32); (58,35); (45,21); (41,26); (44,35); and 
(4,50). The shortest path of the 30-city TSP problem is 423.7406, and its shortest path is 
shown in Figure 8. 

When using the Hopfield neural network model with blue noise perturbation to solve 
the TSP problem, a self-feedback term 𝑧௜(𝑡)  with a piece-wise simulated annealing 
mechanism is introduced, where the formula is as follows: 

1

2

(1 ) ( ), ( ) 0.4
( 1)

(1 ) ( ),
i i

i
i

β z t z t
z t

β z t otherwise
− >

+ =  −
, (26) 

Let 𝛽ଵ = 0.01, 𝛽ଶ = 0.02, and 𝑧௜(1) = 0.1. This enables the neural network not only to 
give full play to the chaotic search ability but also to maintain a reasonable convergence 
rate. In the simulation experiment, different SNR and excitation function coefficients coef 
are used, and the experimental results are compared and analyzed.  
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Figure 8. The optimal 30-city path. 

Table 3 shows the simulation test data of 100 times randomly assigned initial values 
when different values of colored noise parameters are taken. The program simulation 
results are shown in the table below: 

Table 3. Simulation results of the solved 30-city travel salesman problem. 

coef SNR Legal Path Optimal Path Legal Ratio Optimal Ratio 

coef = 0 

0 91 21 91.0% 21.0% 
30 87 12 87.0% 12.0% 
60 99 26 99.0% 26.0% 
90 93 22 93.0% 22.0% 

coef = 1/250 

0 100 27 100% 27.0% 
30 100 21 100% 21.0% 
60 100 31 100% 31.0% 
90 100 27 100% 27.0% 

As can be seen from the above table, the improved neural network model performs 
perfectly when solving the legal path, which is significantly improved compared with the 
previous neural network model. As noise will affect network optimization within a certain 
range, it can be seen that when SNR = 30, the noise interference is too strong and the 
performance of the neural network on the optimal path is not as good as that without 
noise interference. However, when SNR = 60, the noise disturbance enhances the chaos of 
the neural network, revealing better solving performance. By transforming the original 
neural network model’s excitation function into a combination of the Mexican_Hat 
function e and Sigmoid excitation function, the solving performance of the neural network 
model can also be improved. When coef = 1/250, the solving ability of the excitation 
function is the best. 

The performance index J in is used to compare various algorithms, including chaotic 
simulated annealing algorithms (CSA) [49] and hysteretic chaotic neural network 
algorithms, in the literature (HCNN) [50]. The index J can be described as: 

Avg OptJ
Opt

−= , (27) 

where Avg represents the average solution and Opt represents the optimal solution. The 
smaller the value of index J, the better the network optimization performance. The 
experiment was repeated 100 times. The simulation results are shown in Table 4. 
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Table 4. Comparison of TSP algorithms in 30 cities. 

Algorithm Optimal Solution Index J 
SCA 14 5.37% 

HCNN 20 3.45% 
CNNBN 31 2.53% 

With the increase in the scale of the problem city, the performance of various 
algorithms decreases. Compared with other algorithms, the chaotic neural network based 
on blue noise has a great advantage in solving the 30-city traveling salesman problem. 
Because the improved neural network uses the piece-wise simulated annealing strategy, 
it not only fully guarantees that the neural network can carry out sufficient chaotic search 
but also does not excessively reduce the convergence rate. Moreover, the new excitation 
function is used to enhance the ergodic degree of the network chaotic rough search and 
enrich the dynamic characteristics of chaotic rough search. However, although the 
introduction of self-feedback connection causes the Hopfield neural network to display 
chaotic phenomena, it is often not stable, and stability is an important index for measuring 
the performance of a network. Although the chaotic simulated annealing strategy 
improves this defect and gives the network good stability, its chaotic search area is usually 
a local area or fragment area, and it is easy for it to fall into the local minimum point. 
Although the random simulated annealing strategy can be searched for in the whole state 
region, it is too slow. Therefore, random blue noise is introduced into the improved 
network model, which combines the advantages of chaotic simulated annealing strategy 
and random simulated annealing strategy well, and further improves the solving ability 
of the neural network. 

4.3. Discussion 
This method can effectively address the issue of fusing neural networks and colored 

noise. Moreover, the chaotic neural network, due to its intrinsic characteristics, exhibits 
better solving ability when subject to noise disturbance. The proposed method in this 
paper eliminates the need for extensive human and material resources to sample specific 
scenes. Instead, it only requires a dataset that includes the noise detected in a particular 
environment, thus achieving the simulation goal without incurring additional costs. 
However, the proposed method is currently limited to the simulation stage and can only 
demonstrate the effectiveness of the noise fusion method. To validate its performance in 
real-world scenarios, further research is needed to train and test the error rate in such 
environments. 

Although this paper only tests the simulation on continuous function optimization 
and TSP problems, the proposed method can also yield excellent results for other 
optimization problems. Although it remains to be seen whether the data with added noise 
can truly replace the samples in a specific environment, it has been verified that the chaos 
of chaotic neural networks can be enhanced by adding noise, leading to improved solution 
rates. 

5. Conclusions 
In this paper, the color noise generation scheme with custom spectral slope is 

improved so that the improved generator can meet the needs of neural networks. A novel 
method combining colored noise and an original signal sequence according to signal-to-
noise ratio is proposed, and the effect of noise on the Hopfield neural network is 
systematically analyzed by introducing blue noise into a simulation experiment. 
Moreover, the paper improves the original neural network by changing the excitation 
function and introducing the piece-wise simulated annealing mechanism to improve the 
performance of the neural network in the face of more complex combinatorial 
optimization problems. In the simulation results, applying the Hopfield neural network 
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based on colored noise in function optimization and combinatorial optimization, it can be 
seen that the Hopfield neural network has very good robustness in noise resistance ability, 
and the appropriate addition of noise can also help the neural network improve 
optimization ability. In conclusion, this study presents a new approach to training neural 
networks that can actively simulate real-world noise environments. This allows models to 
be trained in laboratory settings to account for noise disturbances in specific scenarios, 
which can prevent models from performing well in the laboratory but failing in real-world 
applications, ultimately improving the overall accuracy of the neural network. However, 
to establish the reliability and effectiveness of this method, further research is needed to 
evaluate its performance in real-world environments and to expand its training range and 
application. 

The research results indicate that it is possible to consider the noise conditions in 
specific environments during training for fusion in order to avoid a significant amount of 
repetitive sampling work. A training dataset can be created for models in various 
scenarios, provided that different noise characteristics are incorporated. Furthermore, 
adding noise perturbations can also be beneficial for improving the accuracy of neural 
networks. While the study evaluated the accuracy of the model under noise perturbations, 
further research is required to explore how to construct a more realistic spectral noise 
scenario and how to combine this approach with other neural network techniques, such 
as cyclic and graph neural networks. Our next research focus will be the examination of 
the corresponding noise perturbation of neural networks in different application fields by 
considering the noise characteristics specific to each scenario. 

Author Contributions: Conceptualization, Y.Z.; methodology, Y.X.; formal analysis, Y.X.; 
investigation, L.L.; data curation, S.W. and Y.W.; writing—original draft, B.C.; writing—review and 
editing, Y.Z.; supervision, Y.X. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was funded by the Nature Science Foundation of Heilongjiang Province, 
grant number LH2022F036. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Ran, X.; Zhou, X.; Lei, M.; Tepsan, W.; Deng, W. A Novel K-Means Clustering Algorithm with a Noise Algorithm for Capturing 

Urban Hotspots. Appl. Sci. 2021, 11, 11202. 
2. Gupta, S.; Gupta, A. Dealing with noise problem in machine learning data-sets: A systematic review. Procedia Comput. Sci. 2019, 

161, 466–474. 
3. Fung, C.H.; Wong, M.S.; Chan, P.W. Spatio-Temporal Data Fusion for Satellite Images Using Hopfield Neural Network. Remote 

Sens. 2019, 11, 2077. 
4. Rezapour, S.; Kumar, P.; Erturk, V.S.; Etemad, S. A Study on the 3D Hopfield Neural Network Model via Nonlocal Atangana–

Baleanu Operators. Complexity 2022, 2022, 6784886. 
5. Xu, X.; Chen, S. Single Neuronal Dynamical System in Self-Feedbacked Hopfield Networks and Its Application in Image 

Encryption. Entropy 2021, 23, 456. 
6. Citko, W.; Sienko, W. Inpainted Image Reconstruction Using an Extended Hopfield Neural Network Based Machine Learning 

System. Sensors 2022, 22, 813. 
7. Xu, Y.Q.; Zhen, X.X.; Tang, M. Dynamical System in Chaotic Neurons with Time Delay Self-Feedback and Its Application in 

Color Image Encryption. Complexity 2022, 2022, 2832104. 
8. Xiao, Y.; Zhang, Y.; Dai, X.; Yan, D. Clustering Based on Continuous Hopfield Network. Mathematics 2022, 10, 944. 
9. Hillar, C.; Chan, T.; Taubman, R.; Rolnick, D. Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield 

Networks. Entropy 2021, 23, 1494. 



Appl. Sci. 2023, 13, 6028 16 of 17 
 

10. Mohd Jamaludin, S.Z.; Mohd Kasihmuddin, M.S.; Md Ismail, A.I.; Mansor, M.A.; Md Basir, M.F. Energy Based Logic Mining 
Analysis with Hopfield Neural Network for Recruitment Evaluation. Entropy 2021, 23, 40. 

11. Yang, H.; Liu, Z. An optimization routing protocol for FANETs. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 120. 
12. Kandali, K.; Bennis, L.; Bennis, H. A new hybrid routing protocol using a modified K-means clustering algorithm and 

continuous hopfield network for VANET. IEEE Access 2021, 9, 47169–47183. 
13. Yang, Y.X.; Cui, X.Q. Dynamic positioning colored noise influence function—A first order ar model as an example. J. Surv. 

Mapp. 2003, 2003, 6–10. 
14. Aviles-Espinosa, R.; Dore, H.; Rendon-Morales, E. An Experimental Method for Bio-Signal Denoising Using Unconventional 

Sensors. Sensors 2023, 23, 3527. 
15. Peng, J.; Xu, Y.; Luo, L.; Liu, H.; Lu, K.; Liu, J. Regularized Denoising Masked Visual Pretraining for Robust Embodied PointGoal 

Navigation. Sensors 2023, 23, 3553. 
16. Jiang, X.; Yan, H.; Huang, T. Optimal tracking control of networked systems subject to model uncertainty and additive colored 

Gaussian noise. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3209–3213. 
17. Li, X.Y.; Wang, Y.H.; Wang, N.F.; Zhao, D. Stochastic properties of thermoacoustic oscillations in an annular gas turbine 

combustion chamber driven by colored noise. J. Sound Vib. 2020, 480, 115423. 
18. Maggi, C.; Gnan, N.; Paoluzzi, M.; Zaccarelli, E.; Crisanti, A. Critical active dynamics is captured by a colored-noise driven field 

theory. Commun. Phys. 2022, 5, 55. 
19. Diaz, N.; Hinojosa, C.; Arguello, H. Adaptive grayscale compressive spectral imaging using optimal blue noise coding patterns. 

Opt. Laser Technol. 2019, 117, 147–157. 
20. Matt, G.; Lucy, T.; Ben, J.; Fiona, P.; James, M. The importance of noise colour in simulations of evolutionary systems. Artif. Life 

2021, 27, 164–182. 
21. Zhang, Z. Wavelet Analysis of Red Noise and Its Application in Climate Diagnosis. Math. Probl. Eng. 2021, 2021, 5462965. 
22. Hatayama, A.; Matsubara, A.; Nakashima, S.; Nishifuji, S. Effect of Pink Noise on EEG and Memory Performance in Memory 

Task. In Proceedings of the 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan, 12–15 October 
2021; pp. 238–241. 

23. Liao, Z.; Ma, K.; Tang, S.; Sarker, M.S.; Yamahara, H.; Tabata, H. Phase locking of ultra-low power consumption stochastic 
magnetic bits induced by colored noise. Chaos Solitons Fractals 2021, 151, 111262. 

24. Gulcehre, C.; Moczulski, M.; Denil, M. Noisy Activation Functions. Proc. Mach. Learn. Res. 2016, 48, 3059–3068. 
25. Shao, Z.; Li, W.; Xiang, H. Fault Diagnosis Method and Application Based on Multi-scale Neural Network and Data 

Enhancement for Strong Noise. J. Vib. Eng. Technol. 2023, 2023, 2523–3939. 
26. Yang, Y.; Bijan, S.; Maria, R.; Masoud, M. Vision-based concrete crack detection using a hybrid framework considering noise 

effect. J. Build. Eng. 2022, 61, 2352–7102. 
27. Nagamani, G.; Soundararajan, G.; Subramaniam, R.; Azeem, M. Robust extended dissipativity analysis for Markovian jump 

discrete-time delayed stochastic singular neural networks. Neural Comput. Appl. 2020, 32, 9699–9712. 
28. Ramasamy, S.; Nagamani, G.; Radhika, T. Further Results on Dissipativity Criterion for Markovian Jump Discrete-Time Neural 

Networks with Two Delay Components Via Discrete Wirtinger Inequality Approach. Neural Process. Lett. 2017, 45, 939–965. 
29. Ramasamy, S.; Nagamani, G.; Gopalakrishnan, P. State estimation for discrete-time neural networks with two additive time-

varying delay components based on passivity theory. Int. J. Pure Appl. Math. 2016, 106, 131–141. 
30. Shi, X.; Wang, Z. Stability analysis of fraction-order Hopfield neuron network and noise-induced coherence resonance. Math. 

Probl. Eng. 2020, 2020, 3520972. 
31. Zhivomirov, H. A Method for Colored Noise Generation. Rom. J. Acoust. Vib. 2018, 15, 14–19. 
32. Huang, X.H.; Wang, Z.H.; Wu, G.Q. Full-phase filtered white noise generates colored noise and its power spectrum estimation. 

J. Circuits Syst. 2005, 2005, 31–34. 
33. Luo, Y.H.; Liu, Y.Y.; Chen, K. A review of detection signal-to-noise ratio calculation methods and principles. Electroacoust. 

Technol. 2016, 40, 37–43+57. 
34. Yuan, W.; Guan, D.; Ma, T.; Khattak, A.M. Classification with class noises through probabilistic sampling. Inf. Fusion 2018, 41, 

57–67. 
35. Khoshgoftaar, T.M.; Van Hulse, J. Empirical case studies in attribute noise detection. IEEE Trans. Syst. Man Cybern. Part C (Appl. 

Rev.) 2009, 39, 379–388. 
36. Liu, J.; Fan, H.X.; Jiao, Y.H.; Xu, Y.Q.; Qin, F. Wavelet chaotic neural network with white noise and its application. J. Harbin 

Univ. Commer. (Nat. Sci. Ed.) 2011, 27, 177–181. 
37. Boykov, I.; Roudnev, V.; Boykova, A. Approximate Methods for Solving Problems of Mathematical Physics on Neural Hopfield 

Networks. Mathematics 2022, 10, 2207. 
38. Rubio-Manzano, C.; Segura-Navarrete, A.; Martinez-Araneda, C.; Vidal-Castro, C. Explainable Hopfield Neural Networks 

Using an Automatic Video-Generation System. Appl. Sci. 2021, 11, 5771. 
39. Xu, N.; Ning, C.X.; Xu, Y.Q. A segmental annealing strategy for radial basis chaotic neural networks and applications. Comput. 

Appl. Softw. 2014, 31, 158–161. 
40. Xu, Y.Q.; He, S.P.; Zhang, L. Research on chaotic neural networks with perturbation. Comput. Eng. Appl. 2008, 44, 66–69. 



Appl. Sci. 2023, 13, 6028 17 of 17 
 

41. Xu, Y.; Li, Y. The White Noise Impact on the Optimal Performance of the Hopfield Neural Network. In Advanced Intelligent 
Computing Theories and Applications ICIC 2010; Huang, D.S., Zhao, Z., Bevilacqua, V., Figueroa, J.C., Eds.; Lecture Notes in 
Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6215. 

42. Dhouib, S. A new column-row method for traveling salesman problem: The dhouib-matrix-TSP1. Int. J. Recent Eng. Sci. 2021, 8, 
6–10. 

43. Huerta, I.I.; Neira, D.A.; Ortega, D.A.; Varas, V.; Godoy, J.; Asín-Achá, R. Improving the state-of-the-art in the traveling 
salesman problem: An anytime automatic algorithm selection. Expert Syst. Appl. 2022, 187, 0957–4174. 

44. Wang, L.; Cai, R.; Lin, M. Enhanced List-Based Simulated Annealing Algorithm for Large-Scale Traveling Salesman Problem. 
IEEE Access 2019, 7, 144366–144380. 

45. Xu, Y.; Liu, X.; He, R.; Zhu, Y.; Zuo, Y.; He, L. Active Debris Removal Mission Planning Method Based on Machine Learning. 
Mathematics 2023, 11, 1419. 

46. Xu, Y.Q.; Sun, Y.; Hao, Y.L. A chaotic Hopfield network and its application in optimization computing. Comput. Eng. Appl. 2002, 
38, 41–42. 

47. Xu, N.; Liu, G.Y.; Xu, Y.Q. Chaotic neural networks with Gaussian perturbations and applications. J. Intell. Syst. 2014, 9, 444–
448. 

48. Fogel, D.B. Applying evolutionay programming to selected traveling salesman problems. Cybern. Syst. 1993, 24, 27–36. 
49. Chen, L.; Aihara, K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 1995, 8, 915–

930. 
50. Liu, X.; Xiu, C. A novel hysteretic chaotic neural network and its applications. Neurocomputing 2007, 70, 2561–2565. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 
to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


