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Abstract: Noise is ubiquitous in the real-world environment. At present, most scholars only include
the stage of Gaussian white noise when applying noise in neural networks and regard white noise
as a tool to optimize the network model, which is far from enough, because noise not only affects
the optimization ability of the Hopfield neural network but can also better fit the needs of the actual
use of the scene. Therefore, according to the problems in the existing research, a method is proposed
to combine the neural network with colored noise according to the signal-to-noise ratio. Taking
blue noise as an example, the anti-interference ability of the Hopfield neural network regarding
colored noise is studied. The results show that for the Hopfield neural network driven by blue
noise, by adjusting the neural network step size, excitation function and signal-to-noise ratio, it
not only provides ideas for adding colored noise to the neural network but also enables the neural
network model to have better optimization-seeking ability. The research results have some reference
significance for improving the practical application of neural networks in noisy environments.

Keywords: neural network; optimization problem; colored noise generator; blue noise

1. Introduction

In today’s ubiquitous artificial intelligence, various types of neural networks are being
used more and more widely in various industries. If the interference of noise on a neural
network is not considered, it is possible that no matter how perfect the performance of the
network model is in training, when it is put into use, the model will always be disturbed
by different levels of noise due to the difference in the usage environment and will thus
face the “failure” situation caused by excessive noise influence in certain situations [1,2].

Hopfield is a feedback neural network model (HNN, Hopfield neural network), which is
mainly used to solve various optimization problems [3,4] and also has a wide range of uses in
real-world applications, such as image processing [5–7], predictive classification [8–10], and
communication [11,12], and Hopfield neural networks are prone to generating random
noise due to their physical properties. Based on this common phenomenon in real-world
applications, the paper introduces blue noise into Hopfield neural networks to simulate
the noise in real-world applications. Simulation experiments show that it is feasible to
incorporate colored noise into a neural network, and by controlling the signal-to-noise
ratio and noise spectrum, the researcher can use any real-world usage environment as a
background to optimize the neural network and allow the neural network model to achieve
more desirable results. Additionally, the construction of the colored noise generator tests
how much interference immunity Hopfield neural networks can have in specific real-world
applications without distortion, providing a theoretical basis for practical applications.

Chaotic neural networks are regarded as intelligent information processing systems
which are able to realize real-world computation because of their highly nonlinear dynamic
systems and close relationship with chaos. Therefore, this paper takes chaotic neural
networks as the entry point. On the one hand, the feasibility of noise fusion can be verified;
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on the other hand, disturbance can be generated by noise to enhance the chaos of the
chaotic neural network and improve the optimization rate.

The contributions of this study include demonstrating the technical feasibility of using
noise fusion in conjunction with neural networks, as well as highlighting the potential
applications of this approach in training neural networks and other models. This study
also examines several specific neural network models that are subject to specific noise
disturbances and used in optimization problems. The findings of this study may lead to the
development of more effective and personalized neural network training plans, ultimately
improving both the training set and algorithm accuracy.

2. Related Works

Noise exists widely in every part of nature, and in practical data processing, Gaussian
white noise is generally used to approximate the stochastic rise and fall of a system, while
white noise is only an ideal situation, as judged by the definition and statistical properties
of white noise. Since the assumptions are based solely on Gaussian white noise, the effect of
actual colored noise is not considered. As a consequence, there is a risk that data processing
theories and methods may not be sufficient to guarantee the reliability of the estimation
results [13]; therefore, many researchers are committed to eliminating the influence of
noise [14,15]. However, it is difficult to eliminate the influence of colored noise due to
the complex and changeable condition of noise. Therefore, in practical models, people
use colored noise to accurately describe the behavioral system of objects [16–18]. For
example, Nelson et al. [19] investigated adaptive grayscale compressive spectral imaging
using optimal blue noise coding patterns. The importance of noise color in simulations of
evolutionary systems was demonstrated by Matt et al. [20]. Zhang [21] discussed wavelet
analysis of red noise and its application in climate diagnosis. Hatayama et al. [22] analyzed
the effect of pink noise on EEG and memory performance in memory tasks. Liao et al. [23]
studied the phase-locking of ultra-low power consumption stochastic magnetic bits induced
by colored noise. Although much work has been carried out by researchers on colored
noise, there is a slight lack of research regarding adding colored noise to neural networks
in order to achieve a close fit to real-world usage cases.

Caglar et al. [24] introduced a novel approach that involves adding noise to the
activation function of neural networks. It has been found that replacing this saturated
activation function with noisy variants helps optimization in many cases, producing the
most advanced or competitive results in different datasets and tasks, especially when
training seems to be the most difficult. Shao et al. [25] investigated an intelligent fault
diagnosis method based on a multi-scale deep convolutional neural network (MSD-CNN)
model and strong noise data enhancement. Through the data enhancement method for
strong noise, the number and diversity of training samples of the MSD-CNN model are
improved, so that the model is able to learn deeper features in the training stage. Yang
et al. [26] proposed an automated vision-based method for the surface condition recognition
of concrete structures. An improved Dempster–Shafer (DS) algorithm was designed for
decision-level image fusion. The robustness of the proposed method was verified by using
images contaminated by various types and intensifies of noise.

After years of development, the solution rate of the neural network has reached a
satisfactory effect on the optimization of the problem [27–29]. However, for the complex
and changeable noise situation in the real environment, if the noise interference situation
in the specific environment is not considered, the solution rate may be biased when the
model is applied to the actual situation, so adding noise to neural network training is
indeed necessary.

3. Materials and Methods

In this section, the generation process of colored noise and the model of noise fu-
sion with the neural network will be explained. Firstly, various typical colored noises
and their generation methods are introduced. Then, the fusion method of the noise and
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neural network is described in detail. Finally, an improved method of the network model
is proposed.

3.1. Constructing Colored Noise Generators

Noise signals are signals generated by random processes and can be generally classi-
fied as white noise and colored noise. White noise is a noise signal whose power spectral
density (PSD, power spectral density) is constant in the whole frequency domain and has
been widely used in the noise correlation test of various models; however, white noise
as a purely theoretical construct will inevitably have deviations when simulating realistic
application scenarios [30], so taking various types of spectral situations of colored noise
becomes relevant. Some of the typical colored noise signals are shown in Table 1.

Table 1. Example of typical colored noise.

Noise Type PSD Examples of Applications

Red noise ∝ 1
f 2

Identifying steady-state transitions in the
integrated analysis of climate records

Pink noise ∝ 1
f Promotes neural oscillatory activity

Blue noise ∝ f Multi-class blue noise sampling
Violet noise ∝ f 2 Acoustic thermal noise signal of water

There are many colored noise generation methods, but in the face of the complex
N-dimensional vector situation of neural networks, most of them cannot be directly ap-
plied to neural networks, so the article improves the typical PSD ∝ f α (α∈R) colored
noise sequence generator [31] based on these typical colored noise types, the original noise
generator can only generate colored noise sequences satisfying the one-dimensional case.
After the improvement, colored noise networks matching the ranks of neural networks will
be generated when the size of the ranks of neural networks is obtained and will meet the
requirements of Gaussian noise distribution, based on the fusion scheme proposed in the
paper, and the colored noise network will directly perturb the neural network and generate
the output. Since the improved noise generator can freely choose the colored noise network
dimension according to the rank value size of the neural network, the noise generator
also supports the output of N-dimensional noise sequences with a single point, which is
convenient for the subsequent fusion work with the neural network. Based on the original
generator [32], the dimension reconstruction function is added to this generator, which is
composed of fast Fourier transform (FFT), inverse fast Fourier transform (IFFT), divisor,
and multipliers. The digital input signal is input continuously point by point, and the FFT
transform is made first, and according to the desired colored noise, the frequency charac-
teristic H(n) is divided in the frequency domain; then, the IFFT transform is made, and
the output is reconstructed according to the desired dimension, the output of the colored
noise generator is obtained cumulatively, and the colored noise after reconstruction still
obeys the Gaussian distribution, so it does not cause the probability density to change, and
its difference is mainly reflected in the sequence power spectral density. The difference is
mainly reflected in the sequence power spectral density and its own numerical distribution.
Taking blue noise as an example, the constructed noise sequence of its own characteristics
and white noise is shown in Figure 1, the generated blue noise still meets the requirements
of Gaussian noise distribution. However, it can be obviously seen in the gray figure that
the gray value of the blue noise after spectrum transformation is higher than that of the
original white noise, while the autocorrelation function and power spectral density are a
Fourier transform pair, and it can be seen that the noise amplitude after re-construction is
significantly reduced.
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The specific construction process is as follows:
Let the Fourier transform of the white noise energy signal s(t) be S(f ), then the power

spectral density is as follows:

P( f ) = lim
T→∞

1
T
|S( f )|2, (1)

Taking blue noise as an example, the spectral density after the divider is as follows:

P( f ) = lim
T→∞

1
T
|S( f )

1/√n
|2(n = 1, 2, 3 . . . . . .), (2)

where n ∈ N+:
P( f ) = lim

T→∞

n
T
|S( f )|2(n = 1, 2, 3 . . . . . .), (3)

where n is the frequency index, and instead of the true frequency f, S(f ) is constant in
the whole frequency domain; thus, it is easy to see that the blue noise power spectral
density P(f ) is proportional to f. Since the spectral density is generally symmetric, the
complete spectrum amplitude of blue noise is obtained via conjugate flip copy after the half
spectrum is processed by the divisor. Other types of noise can be constructed by referring
to the spectrum information presented in Table 1 and Formula (2). The spectrum change
process is shown in Figure 2. The two pictures in the upper half are the noise and spectrum
distribution under white noise, while the two pictures in the lower half are the spectrum
distribution after the divisor processing and the complete blue noise spectrum distribution
after the conjugate flip copy.
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After obtaining the N-dimensional colored noise sequence, the colored noise and
the original neural network sequence can be fused. Since the noise sequence has been
processed, it has now become a pattern of N-dimensional vectors, which is mathematically
described as follows: if the input data sequence is {A}, the observation sequence L1, L2,. . . ,
Lt has the observation equation at moment t:

Lt = AtXt + et, (4)

et = k× Gt, (5)

where Xt is the parameter vector at moment t; At is the column full rank design matrix; et is
the true error vector; Gt is the Gaussian colored noise sequence; and k is the required noise
ratio for the actual environment. Where k determines the value according to the required
Signal Noise Ratio (SNR), and according to the SNR calculation formula [33], the derivation
process is as follows:

SNR = 10lg(
PAt
Pet

), (6)

It is clear that:
pet = 10(lgPAt− SNR

10 ), (7)

or written as:
Pet =

pAt

10
SNR

10
, (8)

where SNR is the signal-to-noise ratio of the sequence At to et at moment t, PAt is the power
of the sequence At and Pet is the power of the sequence et. The power density of the noise
signal Pet can be measured according to the power density formula:

pet =

m
∑

i=0

n
∑

j=0
(k× xij)

2

N
= k2 ×

m
∑

i=0

n
∑

j=0
(xij)

2

N
= k2 × pGt, (9)
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where: m and n represent the number of rows and columns of the matrix, N represents the
number of matrix elements, PGt is the Gaussian colored noise power density, as the mean
value of the constructed colored noise is 0 and the variance is 1, so it is easy to know that
the PGt power density is 1 through the variance Formula (10).

S2 =

n
∑

i=1
(xi − x)2

N
(where x is the matrix mean), (10)

From Equations (9) and (10) it is easy to see that:

pet = k2 × pGt = k2, (11)

The conjunction of Equations (8) and (11) yields:

pet = k2 =
pAt

10
SNR

10
, (12)

It is clear that:
k =

√
pAt

10
SNR

10
, (13)

In this paper, the reason why SNR is used as the basis for the fusion of neural network
and colored noise in this paper is that this method is undoubtedly the most friendly and
helpful to understand for researchers who want to study noise. Blue noise is chosen as the
sample of article fusion because blue noise, as a typical noise, is undoubtedly representative.
Subsequent researchers can simulate the real noise environment by means of probability
sampling [34] and attribute noise monitoring [35].

3.2. Blue Noise Hopfield Neural Network Model

Construct the Hopfield neural network model with blue noise as:

Uc = Cn(U), (14)

V =
1
2
(1 + tanh(

Uc

ε0
)), (15)

Vc = Cn(V), (16)

Cn(ξ) = ABGN(ξ, SNR, m, n), (17)

U and V in this network model are the input and output of the Hopfield network [36],
Uc and Vc are the input and output perturbed by colored noise, ε0 is the steepness parameter
of the excitation function, and ABGN is the blue noise combined with the original signal
function, where m and n are the row and column values of the input and output matrix.
The output V of the Hopfield network is generated using a nonlinear function. In this
network model, the input and output of the neural network are contaminated by colored
noise, the purpose of which is to study the anti-interference ability of colored noise in the
Hopfield neural network.

3.3. Improvement of Neural Network Model Based on Colored Noise

Through the above experiments, this paper proves that colored noise can improve
the optimization of the neural network. To verify that the colored noise neural network
model can meet the needs of more scenarios, the original Hopfield neural network model is
improved, and the excitation function of the original neural network model is transformed
from Sigmoid function to a combination of continuous wavelet and Sigmoid excitation
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function. The chaos generation mechanism of the improved neural network is also intro-
duced through the exponential decreasing of the self-feedback terms. Since the excitation
function of the wavelet chaotic neural network does not monotonically increase but gener-
ally increases, the addition of wavelet function can not only cause the excitation function
non-monotonically to increase but also to allow the excitation function to have wavelet
function advantages. The improved model is applied to the traveling salesman problem in
30 cities through the segmented simulated annealing mechanism and the disturbance of
blue noise. Comparing the data from previous experiments, it can be intuitively felt that
the network model, adding the wavelet function and the segmented simulated annealing
mechanism, has significantly improved the solving rate. Even in the face of more complex
combinatorial optimization problems, colored noise perturbation can still improve the
solution of chaotic neural networks.

The improved Hopfield neural network model is as follows:

Uc = Cn(U), (18)

V = S(Uc, ε0) + coe f ·M(Uc, ε1), (19)

Vc = Cn(V), (20)

Cn(ξ) = ABGN(ξ, SNR, m, n), (21)

S(Uc, ε0) =
1

1 + e−Uc/ε0
, (22)

M(Uc, ε1) =
2√

3
√

π
(1− (

Uc

ε1
)

2
) exp(− (Uc/ε1)

2

2
), (23)

Equation (19) is the excitation function of wavelet chaotic neural network, which is
composed of Sigmoid function and Mexican_Hat function. Where S represents Sigmoid
function and M represents Mexican_Hat function; ε0 and ε1 are steepness parameters of
Sigmoid function and Mexican_Hat wavelet function; coef is a coefficient (coef ≥ 0); and
other parameters have the same meaning as the parameters of Hopfield neural network
model chaos with blue noise.

4. Results and Discussion
4.1. Blue Noise Hopfield Neural Networks in Optimization Problems

Optimization problems are divided into two kinds of function optimization and
combinatorial optimization. Many practical problems can be categorized into one of these
for solving [37,38]. To verify the immunity of Hopfield neural network to colored noise,
blue noise was selected to perturb the input and output, respectively, and the effect of noise
on Hopfield function optimization and combinatorial optimization problems was explored.

The essence of solving optimization problems with Hopfield is in the process of solving
the extremum of the energy function E of that neural network, so the constraints of the
problem need to be expressed in the form of a function of that energy.

The algorithm flow is as follows:

(1) The problem to be solved is described in computer language, where the output of the
neural network corresponds to the solution of the problem.

(2) Construct the energy function of the neural network so that its minimum value
corresponds to the optimal solution of the problem.

(3) The initial states of the neurons are generated, and the weights W and bias inputs
I between the neurons are corrected via the output values of each iteration after
noise perturbation.
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(4) In the case that the energy function has converged, and the output accuracy is satisfied,
the steady state of its operation is the optimal solution under certain conditions.

4.1.1. The Effect of Blue Noise on the Ability of Neural Networks to Optimize
Continuous Functions

The statistical analysis of the Hopfield neural network’s ability to optimize
Equation (24) [39,40] under blue noise perturbations with different signal-to-noise ratios.

f (x1, x2) = (x1 − 0.7)2[(x2 + 0.6)2 + 0.1] + (x2 − 0.5)2[(x1 + 0.4)2 + 0.15], (24)

It is easy to see that the function has a minimum value of 0, corresponding to the
coordinates (0.7, 0.5), and is the global minimum of the objective function. There are three
of these local minima, namely (0.6, 0.4), (0.6, 0.5), and (0.7, 0.4).

The function is solved using the network model in this paper with the set parameters:
step t = 0.1 and excitation function coefficient = 0.5. The evolution of the energy function of
the Hopfield neural network solution function with x1, x2 under a different signal-to-noise
ratio of blue noise perturbation is shown in Figures 3–6.
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Figure 3 shows the noise-free scenario, and the solution process of the neural network
is as follows: the network reaches an unstable state after the search, at which time the
network starts gradient descent and soon reaches a stable state, searching for the global
minimum point (0.7, 0.5) with a minimum value of 0.

It can be seen from Figure 4 that when the SNR is 30, it has a great impact on the neural
network and never reaches a stable state, and after 1000 iterations, the global minimum
point (0.6917, 0.5043) is searched for at this time, with a minimum value of 1.1537 × 10−4

and a minimum value of 1.12 × 10−2 in the literature [41].
Figure 5 shows the solution of the neural network when the SNR is 50. Although

after 500 iterations, a stable state is still not reached, the floating range is very close to the
correct solution, and at this point, the global minimum point (0.7014, 0.5002) is searched
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for, with a minimum value of 2.5668 × 10−6 and the minimum value of 5.3560 × 10−6 in
the literature [41].

It can be seen from Figure 6 that when the SNR is 90, the interference of noise for the
neural network is basically negligible and achieves the same effect as when there is no
noise, when the global minimum point (0.7000, 0.5000) is searched for with a minimum
value of 6.0226 × 10−10 and a minimum value of 6.2693 × 10−10 in the literature [41].

From the above experiments, it can be seen that the presence of noise has an impact on
the optimization ability of Hopfield neural network; in particular, when the signal-to-noise
ratio is less than 50, the convergence speed of the energy function is greatly affected, and
the impact on the solution ability is also great, but when the signal-to-noise ratio is greater
than 90, the noise has little effect on the network model, and the optimization performance
of this network model reaches the same degree as the ideal noise-free environment. The
comparison with the optimization results conducted in the literature [41] also shows the
superiority of this model, and the range of the anti-interference ability of the Hopfield
neural network under the influence of blue noise is sought.

4.1.2. The Effect of Blue Noise on the Optimization Power of Neural Networks for
Combinatorial Problems

In this paper, the colored noise Hopfield neural network is applied to the 10-city
traveling salesman problem (TSP) [42–44]. The traveling salesman problem is described as
the shortest loop required to visit each city once and return to the starting city, given the
distance between two cities.

The energy function to take the shortest path and satisfy all constraints [45,46] is
shown in Equation (25). Where Vxi denotes that the xth city is visited on the ith order and
dxy is the distance between cities x and y. Therefore, the global minimum E value reached
after several iterations represents the shortest effective path.

E =
A
2

n

∑
x=1

(
n

∑
i=1

Vxi − 1)2 +
B
2

n

∑
i=1

(
n

∑
x=1

Vxi − 1)2 +
D
2

n

∑
x=1

n

∑
y=1

n

∑
i=1

dxyVxiVy,i+1 (25)

In this paper, we use 10 cities after classical normalization, with the following co-
ordinates: (0.4, 0.4439); (0.2439, 0.1463); (0.1707, 0.2293); (0.2293, 0.716); (0.5171, 0.9414);
(0.8732, 0.6536); (0.6878, 0.5219); (0.8488, 0.3609); (0.6683, 0.2536); and (0.6195, 0.2634). The
shortest path for these 10 cities is 2.6776, as shown in Figure 7.
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When solving the TSP problem with the Hopfield neural network model with blue
noise perturbation, the parameters were initialized as [47]: A = B = 1, D = 1, ε0 = 0.02,
and randomly generated U. The solution was performed in simulation experiments using
different signal-to-noise ratios, and the experimental results were compared and analyzed.

Table 2 shows the simulation test data for 200 randomly assigned initial values when
the colored noise parameter is taken to different values and compared with the simulation
results from the literature [41].

Table 2. Experimental simulation results for different values of the parameter SNR.

SNR Legal
Path

Optimal
Path

Legal
Ratio

Optimal
Ratio

Noiseless 163 118 81.5% 59.0%
This paper

40
40 7 20.0% 3.5%

Reference [41] 84 13 42.0% 6.5%
This paper

50
118 54 59.0% 27.0%

Reference [41] 126 64 63.0% 32.0%
This paper

60
156 111 78.0% 55.5%

Reference [41] 144 92 72.5% 47.0%
This paper

70
162 116 81.0% 58.0%

Reference [41] 145 94 80.0% 56.0%
This paper

80
163 117 81.5% 58.5%

Reference [41] 160 112 75.5% 53.0%
This paper

90
169 128 84.5% 64.0%

Reference [41] 151 106 74.5% 51.5%
This paper

120
161 109 80.5% 54.5%

Reference [41] 149 103 74.5% 51.5%
This paper

150
164 113 82.0% 55.5%

Reference [41] 149 104 74.5% 52.0%
This paper

180
166 114 83.0% 57.0%

Reference [41] 152 103 76.0% 51.5%

As shown in Table 2, it is completely feasible to introduce noise into the neural network
using the method of this paper. Moreover, the moderate introduction of noise signals does
not have much impact on the solving ability of Hopfield neural network, and it can be seen
through extensive testing that when the SNR is less than 50, the ability of this network
model to solve the TSP problem is decreasing significantly, while when the SNR is greater
than 90, the noise on the neural network’s ability to influence is basically negligible or even
beneficial. When compared with the literature [41], it is found that by introducing blue
noise and properly correcting the parameters, Hopfield obtains better optimization ability
when the SNR is greater than 60, but due to the intrinsic characteristics of blue noise, which
allow the network model to obtain better solution effects in white noise when the SNR is
less than 60, it also provides a reference interval for subsequent researchers to ensure the
SNR of the input signal sequence and the range in which the parameters are best controlled
when using the Hopfield neural network.

4.2. Chaotic Neural Network Model Based on Blue Noise

Energy function selection is the same as before, ε0 = 0.6, ε1 = 125 remains unchanged,
and coef is equal to 0 and 1/250, respectively. Let the simulation program take the 30 cities
after classical normalization. Let the emulator take the classic 30 cities [48], and the
coordinates are as follows: (41,94); (37,84); (54,67); (25,62); (7,64); (2,99); (68,58); (71,44);
(54,62); (83,69); (64,60); (18,54); (22,60); (83,46); (91,38); (25,38); (24,42); (58,69); (71,71);
(74,78); (87,76); (18,40); (13,40); (82,7); (62,32); (58,35); (45,21); (41,26); (44,35); and (4,50).
The shortest path of the 30-city TSP problem is 423.7406, and its shortest path is shown in
Figure 8.
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When using the Hopfield neural network model with blue noise perturbation to
solve the TSP problem, a self-feedback term zi(t) with a piece-wise simulated annealing
mechanism is introduced, where the formula is as follows:

zi(t + 1) =
{
(1− β1)zi(t), zi(t) > 0.4
(1− β2)zi(t), otherwise

, (26)

Let β1 = 0.01, β2 = 0.02, and zi(1) = 0.1. This enables the neural network not only to
give full play to the chaotic search ability but also to maintain a reasonable convergence
rate. In the simulation experiment, different SNR and excitation function coefficients coef
are used, and the experimental results are compared and analyzed.

Table 3 shows the simulation test data of 100 times randomly assigned initial values
when different values of colored noise parameters are taken. The program simulation
results are shown in the table below:

Table 3. Simulation results of the solved 30-city travel salesman problem.

coef SNR Legal Path Optimal Path Legal Ratio Optimal Ratio

coef = 0

0 91 21 91.0% 21.0%
30 87 12 87.0% 12.0%
60 99 26 99.0% 26.0%
90 93 22 93.0% 22.0%

coef =
1/250

0 100 27 100% 27.0%
30 100 21 100% 21.0%
60 100 31 100% 31.0%
90 100 27 100% 27.0%

As can be seen from the above table, the improved neural network model performs
perfectly when solving the legal path, which is significantly improved compared with
the previous neural network model. As noise will affect network optimization within a
certain range, it can be seen that when SNR = 30, the noise interference is too strong and the
performance of the neural network on the optimal path is not as good as that without noise
interference. However, when SNR = 60, the noise disturbance enhances the chaos of the
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neural network, revealing better solving performance. By transforming the original neural
network model’s excitation function into a combination of the Mexican_Hat function e and
Sigmoid excitation function, the solving performance of the neural network model can also
be improved. When coef = 1/250, the solving ability of the excitation function is the best.

The performance index J in is used to compare various algorithms, including chaotic
simulated annealing algorithms (CSA) [49] and hysteretic chaotic neural network algo-
rithms, in the literature (HCNN) [50]. The index J can be described as:

J =
Avg−Opt

Opt
, (27)

where Avg represents the average solution and Opt represents the optimal solution. The
smaller the value of index J, the better the network optimization performance. The experi-
ment was repeated 100 times. The simulation results are shown in Table 4.

Table 4. Comparison of TSP algorithms in 30 cities.

Algorithm Optimal Solution Index J

SCA 14 5.37%
HCNN 20 3.45%

CNNBN 31 2.53%

With the increase in the scale of the problem city, the performance of various algorithms
decreases. Compared with other algorithms, the chaotic neural network based on blue
noise has a great advantage in solving the 30-city traveling salesman problem. Because the
improved neural network uses the piece-wise simulated annealing strategy, it not only fully
guarantees that the neural network can carry out sufficient chaotic search but also does not
excessively reduce the convergence rate. Moreover, the new excitation function is used to
enhance the ergodic degree of the network chaotic rough search and enrich the dynamic
characteristics of chaotic rough search. However, although the introduction of self-feedback
connection causes the Hopfield neural network to display chaotic phenomena, it is often
not stable, and stability is an important index for measuring the performance of a network.
Although the chaotic simulated annealing strategy improves this defect and gives the
network good stability, its chaotic search area is usually a local area or fragment area, and it
is easy for it to fall into the local minimum point. Although the random simulated annealing
strategy can be searched for in the whole state region, it is too slow. Therefore, random blue
noise is introduced into the improved network model, which combines the advantages of
chaotic simulated annealing strategy and random simulated annealing strategy well, and
further improves the solving ability of the neural network.

4.3. Discussion

This method can effectively address the issue of fusing neural networks and colored
noise. Moreover, the chaotic neural network, due to its intrinsic characteristics, exhibits
better solving ability when subject to noise disturbance. The proposed method in this paper
eliminates the need for extensive human and material resources to sample specific scenes.
Instead, it only requires a dataset that includes the noise detected in a particular environ-
ment, thus achieving the simulation goal without incurring additional costs. However, the
proposed method is currently limited to the simulation stage and can only demonstrate
the effectiveness of the noise fusion method. To validate its performance in real-world
scenarios, further research is needed to train and test the error rate in such environments.

Although this paper only tests the simulation on continuous function optimization and
TSP problems, the proposed method can also yield excellent results for other optimization
problems. Although it remains to be seen whether the data with added noise can truly
replace the samples in a specific environment, it has been verified that the chaos of chaotic
neural networks can be enhanced by adding noise, leading to improved solution rates.



Appl. Sci. 2023, 13, 6028 14 of 16

5. Conclusions

In this paper, the color noise generation scheme with custom spectral slope is improved
so that the improved generator can meet the needs of neural networks. A novel method
combining colored noise and an original signal sequence according to signal-to-noise ratio is
proposed, and the effect of noise on the Hopfield neural network is systematically analyzed
by introducing blue noise into a simulation experiment. Moreover, the paper improves the
original neural network by changing the excitation function and introducing the piece-wise
simulated annealing mechanism to improve the performance of the neural network in
the face of more complex combinatorial optimization problems. In the simulation results,
applying the Hopfield neural network based on colored noise in function optimization
and combinatorial optimization, it can be seen that the Hopfield neural network has very
good robustness in noise resistance ability, and the appropriate addition of noise can also
help the neural network improve optimization ability. In conclusion, this study presents
a new approach to training neural networks that can actively simulate real-world noise
environments. This allows models to be trained in laboratory settings to account for noise
disturbances in specific scenarios, which can prevent models from performing well in the
laboratory but failing in real-world applications, ultimately improving the overall accuracy
of the neural network. However, to establish the reliability and effectiveness of this method,
further research is needed to evaluate its performance in real-world environments and to
expand its training range and application.

The research results indicate that it is possible to consider the noise conditions in
specific environments during training for fusion in order to avoid a significant amount of
repetitive sampling work. A training dataset can be created for models in various scenarios,
provided that different noise characteristics are incorporated. Furthermore, adding noise
perturbations can also be beneficial for improving the accuracy of neural networks. While
the study evaluated the accuracy of the model under noise perturbations, further research
is required to explore how to construct a more realistic spectral noise scenario and how to
combine this approach with other neural network techniques, such as cyclic and graph
neural networks. Our next research focus will be the examination of the corresponding
noise perturbation of neural networks in different application fields by considering the
noise characteristics specific to each scenario.
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