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Abstract: One of the main concerns in precision agriculture (PA) is the growth of weeds within a crop
field. Currently, to prevent the spread of weeds, automatic techniques and computational tools are
used to help to identify, classify, and detect the different types of weeds found in agricultural fields.
One of the technologies that can help us to process digital information gathered from the agricultural
fields is high-performance computing (HPC); this technology has been adopted to carry out projects
requiring extra processing and storage in order to execute tasks with a large computational cost.
This paper shows the implementation of an HPC cluster (HPCC), in which image processing (IP)
and analysis are executed using deep learning (DL) techniques, specifically, convolutional neural
networks (CNNs) with the VGG16 and InceptionV3 models, to classify different weed species. The
results show the great benefits of using high-performance computing clusters in PA, specifically
for classifying images. To apply distributed computing within the HPCC, the Keras and Horovod
frameworks were used to train the CNN models, obtaining the best time with the InceptionV3 model
with a value of 37 min 55.193 s using six HPCC cores, obtaining an accuracy of 0.65 as a result.

Keywords: high-performance computing; distributed systems; weed classification; CNN

1. Introduction

The classification of weeds is a problem in agriculture, which is why some methods and
techniques are carried out manually to identify, classify, and eradicate weeds in crop fields;
however, these methods are time-consuming and expensive. For this reason, autonomous
methods have been created to manage the growth of weeds in crop fields. Some of these
methods consist of using robots [1], UAVs [2], remote sensing [3], and the autonomous
identification of weeds to eradicate them at a lower cost, with less effort and time [4].

Currently, algorithms, applications, and methods have been developed that facilitate
the identification and classification of different weed species, with the aim of improving
the precision of their detection and elimination. DL using CNN is one of the most widely
used methods for weed classification. The weed classification process using CNNs is fast
and accurate and can be used as a decision-support tool in agriculture [5].

In recent years, researchers and developer organizations have been concerned with
the storage and processing of different types of data (video, voice, images, audio, etc.), as
storing and processing large amounts of data represent a great challenge. HPC is a way to
solve this challenge since its hardware and software capabilities can be added through the
interconnection of multiple computers. According to the research and working area, the or-
ganizations must choose the technological components that make up the high-performance
system (hardware, network infrastructure, storage devices, servers, applications, etc.) that
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allow data manipulation [6]. Due to the scientific and technological advances in the areas
of digital image processing (DIP) and artificial intelligence (AI), it is possible to implement
complex algorithms that require high power in computer systems that are accessible to
researchers and companies. The architectures or infrastructures that allow exhaustive tasks
for the DIP and AI are HPCCs or supercomputers [7]. The evolution of this technology
has increased to the point of currently integrating hardware acceleration including the
graphics processing unit (GPU) as support in parallel tasks to solve problems with great
complexity and computational cost even faster [8]. A supercomputer or HPCC is made up
of a set of computers (nodes) interconnected through an ethernet network to share storage,
processing, and performance resources, that is, a computer made up of multiple computers.
One of the main purposes of supercomputers is to solve computational problems that on a
personal computer take too long to solve [9]. HPC and autonomous learning techniques,
such as machine learning (ML) and deep learning (DL), are some of the technologies that
have been adopted to solve the problems of the storage and processing of data obtained
from crop fields [10].

Analysis and image classification in AI are some of the topics with great importance
within the scientific community since due to the methods and algorithms used, it is possible
to obtain important data from a certain selection of images that can help us generate
knowledge of any kind [11]. Artificial neural networks (ANNs) are computational models
composed of multiple processing layers that serve to perform automatic learning based on
the use of structures and large amounts of data; convolutional neural networks (CNNs) are
a type of ANN that precisely help us to solve image processing problems that represent
problems we encounter in modern life [12]. The adaptation of AI within PA has been
benefiting farmers for years in its ability to solve some of the frequent problems that occur
in crop fields, such as pest and infestation control, grass control, administration of water
resources, and application of pesticides, among other activities that have been carried out
individually and that can now be automated [13]. One of the most applied new methods or
technologies in this area is ANNs. The main benefit of neural networks (NNs) is that they
can predict, classify, and forecast some behavior patterns in agricultural fields, based on
the data provided to them in training the NN [14].

Specialized devices such as graphics cards allow one to run CNN models or architec-
tures. An NVIDIA graphics card is one such device used to implement HPCC and machine
learning models to take advantage of the parallel processing and performance driven by
GPU nodes [15].

HPCCs allow data to be stored on a large scale, and with the help of some free
software platforms, statistical analysis or learning can be conducted with the data obtained,
in this case, images. Due to the above, the use of technological tools such as CUDA, Open
MPI, and Python has been proposed to implement an HPCC to enable the performance
of the aforementioned tasks and make the processing and analysis of crop field images
more efficient.

Therefore, the decision was made to combine HPC technology with CNNs to classify
weed species in an HPCC. Although there are already implemented HPCC architectures,
such as Fugaku, SUMMIT, SIERRA, Sunway, Perlmutter, and others, which are within the
top of the TOP500 list [16], as well as architectures existing in Mexico, including the LEO
ATROX from the Data Analysis and Supercomputing Center (CADS) of the University of
Guadalajara [17], the National Supercomputing Laboratory of Southeast Mexico (LNS) [18],
the Laboratory National High-Performance Computing (LANCAD) [19], and the Galileo of
the Autonomous University of Zacatecas (UAZ) [20], none of these were used.

For this article, an HPCC was implemented with mid-range desktop computers,
which, due to their characteristics, were useful for the distributed processing of CNNs.
This decision was made as access to current HPC architectures has a high cost, requiring
bureaucratic procedures to request the services they offer, which sometimes take a long
response time [21].
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This article aims to demonstrate that HPC technology can be accessed using idle or
convenient computers to unify their processing and storage capabilities and use them for
AI projects. For the validation of this HPCC, a weed classification process was carried out
through the use of DIP and distributed DL; specifically, a CNN was applied to crop images.
In addition, the processing time between a workstation and the proposed HPCC was also
compared. For this, two pretrained CNN models were used, which were InceptionV3 and
VGG16. We used the “DeepWeeds” dataset [22] to observe the behavior of the processing
speed and the accuracy of the weed classification.

2. Materials and Methods

In this article, a methodology is presented that serves to implement an HPCC made
up mainly of computers that were available in a university computer lab. The results of the
test that was carried out on this HPCC were compared with those obtained from the same
experiment on a workstation.

Figure 1 shows the proposed methodology for the implementation of our HPCC that
was tested, using distributed deep learning and relying on the Python frameworks for deep
learning: TensorFlow [23], Keras [24], and Horovod [25].
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2.1. HPCC Design

Distributed computing refers to the use of multiple computers or processors to work
together on a task. In a distributed computing system, each computer or processor in the
system has its own memory and computational resources, and they communicate and
coordinate with each other to perform a task.

One of the main advantages of distributed computing is that it can provide greater
computing power and scalability than a single computer. By breaking a task into smaller
pieces and distributing them across multiple processors, a distributed computing system
can perform the task faster than a single computer. Additionally, distributed computing
can provide fault tolerance and resilience as the system can continue to function even if
one or more processors fail. However, it requires careful design and management to ensure
that it operates efficiently and securely [26].

An HPCC is a type of distributed computing system that consists of multiple com-
puters or multiple nodes connected through a local area network (LAN), commonly with
ethernet technology. There are several network interconnection options for clusters such as
ethernet, FastEthernet, and GigabitEthernet (some examples of interconnected technologies
used in HPC include InfiniBand and Myrinet) [27]. An ethernet network can be intercon-
nected by devices that enable Gbit ethernet bandwidth speeds. For this article, the master
node, for example, had two network interface cards (NICs), one wireless (wlp4s1) and one
wired (enp0s31f6). The other three computing nodes also had two cards, but it was only
essential to use the wired one (enp0s31f6). All the computers were connected to a CISCO
2960 switch, which allowed connecting the interfaces with Gbit ethernet width (high-speed
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ethernet). Figure 2 shows the network diagram and the IP addressing table of the proposed
HPCC infrastructure.

Appl. Sci. 2023, 14, x FOR PEER REVIEW 4 of 18 
 

fault tolerance and resilience as the system can continue to function even if one or more pro-
cessors fail. However, it requires careful design and management to ensure that it operates 
efficiently and securely [26]. 

An HPCC is a type of distributed computing system that consists of multiple computers 
or multiple nodes connected through a local area network (LAN), commonly with ethernet 
technology. There are several network interconnection options for clusters such as ethernet, 
FastEthernet, and GigabitEthernet (some examples of interconnected technologies used in 
HPC include InfiniBand and Myrinet) [27]. An ethernet network can be interconnected by 
devices that enable Gbit ethernet bandwidth speeds. For this article, the master node, for ex-
ample, had two network interface cards (NICs), one wireless (wlp4s1) and one wired 
(enp0s31f6). The other three computing nodes also had two cards, but it was only essential to 
use the wired one (enp0s31f6). All the computers were connected to a CISCO 2960 switch, 
which allowed connecting the interfaces with Gbit ethernet width (high-speed ethernet). Fig-
ure 2 shows the network diagram and the IP addressing table of the proposed HPCC infra-
structure. 

 
Figure 2. The HPCC network diagram. 

The master node was the only computer that had two interfaces connected; one went to 
the local network and the other to the external network, in this case, the wireless network of 
the building, where the HPCC was positioned. 

It is important to note that the IP addressing of the local network belonged to a type of 
private addressing; that is, the IP addresses used in the devices were unique and exclusive to 
that network. 

The graphics cards installed in each of the PCs, as well as the CUDA library, were con-
figured for practical and experimental purposes, with the purpose of adding extra processing 
in this HPCC. Up to this part, we had the design of the network that represented the HPCC, 
which, over time, could continue to increase the number of connected computers. As the size 
of the cluster increases, so does the complexity of the system, which can make it more difficult 
to manage and keep it running. This is why it is important to scale an HPCC considering the 
budget, installation area, and computing problems that it will solve. Distributed computing 
in weed classification using CNNs can be a challenging task that requires expertise in multiple 
areas, not only in the computing sciences. 

Designing and building an HPCC can be expensive, and the costs can quickly escalate if 
the hardware or software components are not selected carefully. Therefore, cost effectiveness 
must be considered during the design process. 

2.2. HPCC Configuration 
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The master node was the only computer that had two interfaces connected; one went
to the local network and the other to the external network, in this case, the wireless network
of the building, where the HPCC was positioned.

It is important to note that the IP addressing of the local network belonged to a type of
private addressing; that is, the IP addresses used in the devices were unique and exclusive
to that network.

The graphics cards installed in each of the PCs, as well as the CUDA library, were
configured for practical and experimental purposes, with the purpose of adding extra
processing in this HPCC. Up to this part, we had the design of the network that represented
the HPCC, which, over time, could continue to increase the number of connected computers.
As the size of the cluster increases, so does the complexity of the system, which can make
it more difficult to manage and keep it running. This is why it is important to scale an
HPCC considering the budget, installation area, and computing problems that it will solve.
Distributed computing in weed classification using CNNs can be a challenging task that
requires expertise in multiple areas, not only in the computing sciences.

Designing and building an HPCC can be expensive, and the costs can quickly esca-
late if the hardware or software components are not selected carefully. Therefore, cost
effectiveness must be considered during the design process.

2.2. HPCC Configuration

Normally, the master node of an HPCC infrastructure is the one that contains the
servers of the network services since it is the device in charge of the administration of the
local network, users, and applications to be executed; that is why, as observed in Table 1,
the computing nodes have the client services and the master node the servers.

Table 1. The proposed HPCC IP addressing and service assignment table.

Device Interface IP Address Network Services

Master Wlp4s1
enp0s31f6

10.2.49.21/16
192.168.0.254/24

NFS Server, DNS, DHCP, SSH server, CUDA,
OpenMPI, Python, OpenCV, Tensorflow, Keras, and

Horovod
node01 enp0s31f6 192.168.0.1/24 NFS client, SSH server, CUDA 11.7, and OpenMPI
node02 enp0s31f6 192.168.0.2/24 NFS client, SSH server, CUDA 11.7, and OpenMPI

The services in charge of managing the network resources allow communication at
the transport layer level between the HPCC nodes. Usually, the services that the infras-
tructure must have include a domain name system (DNS), a dynamic host control protocol
(DHCP), a network file system (NFS), a secure shell (SSH), the web, and a firewall [21]. The
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configuration of the network services in an HPCC is a critical process that must be carried
out in the proper order to guarantee the correct operation of the system. The configuration
should start with configuring the physical network and continue with configuring the IP
addresses, DNS and DHCP, NFS, SSH, and the firewall.

Another of the fundamental parts that exists within HPC is the middleware, which is
essentially the supplementary software that connects two or more software together [28].
With the help of middleware, it is possible to integrate applications with parallel program-
ming environments.

In addition to the previous services, applications such as OpenMPI and MPICH were
installed, which were the applications that allowed tasks to be executed in parallel within
the HPCC; these were mainly in charge of distributing the processes in each of the nodes
and used programming languages such as Python, Java, Fortran, C, C++, etc. [27].

OpenMPI provides a set of libraries and tools that allow developers to write parallel
programs using MPI. These programs can be used to solve a wide range of scientific and
engineering problems, including simulations, data analysis, and ML.

The software for the HPCC should be optimized for distributed computing and
ML. Popular DL frameworks such as TensorFlow, PyTorch, and Caffe should be used to
implement the CNN models. The software should be designed to take advantage of the
distributed architecture of the HPC by using techniques such as data parallelism and model
parallelism. In this case, Horovod was used to implement the CNN models to classify
images of weeds using this HPCC and distributed DL. The combination of HPC and DL
for weed classification was a good option if we wanted to obtain excellent results in a
shorter time.

Figure 3 represents the minimum logical configuration of the proposed HPCC.
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2.3. HPCC Implementation

Usually, for the construction of an HPCC, devices with server or workstation charac-
teristics are used. As previously mentioned, the choice of devices depends on the budget
and scalability; however, on this occasion, since there was no high budget, we opted for
hardware or devices with the characteristics shown in Table 2. For greater ease of adapt-
ability at the time of configuration, it is recommended that all the equipment be similar or
the same in model, processing, and storage.

Table 2. Characteristics of the computers used to implement the CPU cluster.

Node Node RAM Processor HDD Graphic Card No. CPUs CUDA Cores GC RAM

Master node 16 Intel i7-7700K 240 GB GTX 1050ti 4 768 4 GB
Node01 16 Intel i7-7700K 500 GB GTX 1050ti 4 768 4 GB
Node02 16 Intel i7-7700K 500 GB GTX 1050ti 4 768 4 GB

Workstation 32 AMD Ryzen 9500X 1 TB RTX 3070 12 5888 8 GB
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An HPCC can be made up of different computer or device architectures. For this
implementation, it is important to mention that not all the computers or nodes were of
the same brand model (they were assembled), which is a typical and common situation in
most cases where one wants to assemble or configure an HPCC with equipment or devices
that are no longer used or are collected from different areas of a research center, university,
or company.

Table 2 describes the hardware characteristics of each of the computers used for the
implementation of this HPCC.

The Ubuntu Server 18.04 Operating System was installed on each of the computers,
which allowed users to interact with the tools of the HPCC. In order for the infrastructure
to function correctly, the aforementioned network services were installed and configured
to be able to manage both the users and the applications necessary for user interaction
with the HPCC; it is also important to mention that the applications must co-exist or
must be compatible for the processing to be carried out correctly. In the event that any
of the applications are not compatible or have missing dependencies, the executions or
processes that need to be carried out in a distributed or parallel manner cannot be run
within an HPCC.

2.4. Weed Classification

This section describes the process that was carried out for weed classification using
the HPCC configured in the previous section using the distributed DL.

DL in precision agriculture in recent years has had numerous applications; crop field
monitoring and management, crop field identification and prediction, yield prediction,
disease and pest detection, and development of autonomous farming equipment stand
out. The above provides farmers or the agricultural industry with efficient methods to
maximize the growth of the products and the good administration of the crop fields [29]. In
the case of weed classification, methods that combine image processing and deep learning
are used to optimize a plant control strategy for infestations that may thwart the growth of
the desired plants in crop fields.

A CNN can be used for weed classification by training the model on a dataset of
images of different types or classes. The CNN can learn to recognize patterns and features
in the images that distinguish one type or class from another [12]. The CNNs achieve
a recognition accuracy in images depending on the architecture or model of the neural
network, that is, the number of layers and the depth that it possesses [30].

2.4.1. Data Acquisition CNN

In PA, obtaining the relevant information, such as the vegetation indices, soil adminis-
tration, and weed classification, among others, from crop fields is one of the main objectives.

That is why a weed classification exercise was carried out with DL using a dataset
as input to our proposal and then obtaining the processing time and the accuracy of
the results.

The dataset was composed of images of weed species called “DeepWeeds” [22], which
contained 17,509 images of different plant species obtained from different environments in
northern Australia, as shown in Figure 4. It was created in order to provide an instrument
that would allow the classifying of a variety of weed species through a robotic system.
The dataset can be obtained through the following link: https://github.com/AlexOlsen/
DeepWeeds (accessed on 3 February 2023).

The collection of the images in this dataset was conducted through a platform that con-
sists of the use of a Raspberry Pi, a high-resolution camera (1920 × 1200 px) FLIR Blackfly
23S6C, Fujinon CF25HA-1 computer vision lenses, a SkyTraq GPS receiver Venus638FLPx,
a VTGPSIA-3 GPS antenna, and an Arduino Uno board [22].

https://github.com/AlexOlsen/DeepWeeds
https://github.com/AlexOlsen/DeepWeeds
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2.4.2. Data Preprocessing

For this work, the dataset underwent preprocessing, consisting of applying the color-
based segmentation method to each of the images contained in the dataset in order to
extract the shape of the undergrowth so the CNN models further classified each of the
weed species.

The conversion from an RGB to an HSV color space model is defined by Equations (1)–(3) [31]:

H =



0, si Max = Min(
60◦ × G − B

Max − Min
+ 360◦

)
× mod 360◦, si Max = R

60 ◦ × B − R
Max − Min

+ 120◦, si Max = G

60 ◦ × R − G
Max − Min

+ 240◦, si Max = B

(1)

S =

 0, si Max = 0
Max − Min

Max
, any other value

(2)

V = Max (3)

where Max is the maximum value of the RGB color model components, Min is the minimum
value of those same components, and mod is a modular operation with 360 degrees. Figure 5
represents the process of the color conversion and masking of the preprocessed images.

The procedure to carry out the segmentation of the dataset images consisted of (a)
converting the red–green–blue (RGB) color images to hue saturation value (HSV); once this
was complete, the masking was performed (b), and finally, the shapes of each of the weeds
(c) were obtained. It is important to mention that all the preprocessing of the images was
performed using the OpenCV library; so, only the functions corresponding to each process
were applied, and we considered a vector of features with green hues defined between 50
and 150 [32]. The effectiveness of the color-based segmentation for weed detection depends
on the color properties of the weed and the background, as well as the lighting conditions
and the camera settings used to capture the image. In some cases, other features such as
texture, shape, or size may need to be used in combination with color-based segmentation
for more accurate weed detection.
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2.4.3. Training and Evaluation of the CNN for Weed Classification

Once the preprocessing was complete, two CNN models were used to train and
classify the different classes of weed species found in the “DeepWeeds” dataset, Inception
V3 and VGG16.

The CNN InceptionV3 architecture is one of the widely used image recognition models,
which was shown to achieve greater than 78.1% accuracy on the ImageNet dataset. The
model is made up of symmetric and asymmetric building blocks including convolutions,
average-pooling, max-pooling, concatenations, pullbacks, fully connected layers, batch
normalization, and trigger inputs, and the losses are calculated via a Softmax function [33].
The following image shows an example of the CNN InceptionV3 architecture.

The architecture of the CNN VGG16 is formed by 13 convolutional layers, two fully
connected layers, and a Softmax classifier; this network was created in order to use only
3 × 3 convolutional layers stacked one on top of the other. It is one of the CNNs that offers
the ability to extract features from the images; so, it is widely used when large amounts of
these need to be processed [34].

2.4.4. Distributed DL Using Horovod

Thus far, we have explained how the HPCC was used, the preprocessing of the images,
and the models of convolutional neural networks that were used. Now, we briefly explain
how the distributed DL was conducted, for which the Horovod framework was used. We
decided to use the Horovod framework as, in terms of acceleration, it allows for reducing
processing times when processing large amounts of data in a distributed manner [35].

The Horovod allows training CNN models in distributed systems, using OpenMPI
configurations and the NVIDIA Collective Communications Library (NCCL) to support
communications between GPUs [36]. To adapt the Horovod framework with Keras, it was
necessary to make some modifications in the scripts so that the application ran correctly [37].
The actions that the Horovod performed for the distributed training of the parallel data
were conducted in the following order:

1. Multiple copies of the script were created, and each copy was executed on each of the
processing nodes, calculating the gradients of the models that ran through them.

2. The number of gradients of the copies created was averaged.
3. The model was updated.

The above steps were repeated.
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As mentioned above, OpenMPI was used for the experiment, which has the AllReduce
communication primitive, which, within Horovod, is an operation that is based on the
Ring Allreduce algorithm, where all workers communicate with each other in a network
topology ring. Each worker calculates their own slopes and sends them to their neighbor
in the ring. When a worker receives gradients from their neighbor, it adds them to its own
gradients and sends the result to the next neighbor in the ring. This process continues until
all workers have received the merged gradients.

The Horovod Allreduce uses a combination of MPI and NCCL to optimize communi-
cation and computation for training DL models. By leveraging these libraries, the Horovod
Allreduce can efficiently scale up to thousands of CPUs or GPUs, reducing the training
times and improving performance. In this algorithm, each N nodes communicate with two
of their peers 2 × (N − 1) times. During communication, a node sends and receives some
buffered data frames. In the first iteration (N − 1), it receives values that are added to the
node’s buffer values. In the second iteration, the received values maintained by the node
buffer are replaced [38]. Figure 6 shows the process in which the gradients are calculated
using the Allreduce algorithm.
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For the “DeepWeeds” dataset experiment, 400 images of each weed species class were
considered, giving a total of 3200 images. For the distribution of the data, 70% of the images
(2240) were considered for the training set with the rest 30% (960) for the testing set. Being
a supervised method, the weed species classes were previously labeled in folders.

One of the important settings for CNN models is the batch size, which is the number
of samples taken for each gradient update. For the tests, a batch size of 64 was established
in each CNN model; that is, each gradient update was made from 64 data points.

Another configuration to train the model is the epochs, which represent the iterations
that are performed on the input data and the output data using the batch size value as
the increment factor. For the implemented models, the following value was considered:
epochs = int(math.ceil(100.0/hvd.size())), where the value of the epochs was equal to the value
of 100 divided by the total number of processes in the HPCC defined by the argument –np
of the command horovodrun [36]. The function math.ceil() indicates that if the value was not
an integer, that is, if a value of 12.3 were obtained, the correct value would be 13.

A procedure called stochastic gradient descent (SGD) [39] is widely used in most
projects related to ML and large-scale learning. This method consists of displaying an input
vector for some examples, calculating the outputs and errors, calculating the average gradi-
ent for those examples, and adjusting the weights. The process is repeated for many small
training set instance processes until the average of the average function stops decreasing. It
is called stochastic because each small part of the set of examples provides a noise estimate
of the average of the gradient over all the examples [6]. The learning range is nothing more
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than a value between 0.0 and 1.0 that controls the speed with which a CNN model adapts
to the problem or classification.

There are linear functions used in neural networks including ReLU (rectified linear
unit), which is activated by any value greater than 0, and its mathematical representation is
f (x) = max(0, x) [40].

The activation function used in the code implemented for the CNN Horovod library
for the experiment was that of ReLU since it is one of those commonly used to connect the
convolutional layers.

Another important function used within ML for multiple classifications is Softmax,
also used in fully connected layers. Softmax is a normalized exponential function that
represents the categorical distributions and compresses arbitrary vector values within the
range [0, 1].

Finally, the Keras library has several pretrained CNN models that can be implemented
for classification and feature extraction [41]. Some of the models available are

• Xception.
• VGG16/19.
• ResNet/ResNetV2/50/101/152.
• InceptionV3.
• InceptionResNetV2.
• MobileNet/MobilNetV2.
• DenseNet/121/169/201.
• NASNet/Mobile/Large.

How CNN models work sometimes depends on the version of Keras installed. In
higher versions of Keras 2.2.0, the image size must be the one defined by default for each of
the models or at least 150 × 150 pixels. Since the size of the images used for this project
was 100 × 100 pixels, version 2.4.0 had to be installed.

2.5. Performance Metric on the HPCC and the Workstation

To evaluate an HPCC, different metrics are used that allow measuring the performance
and efficiency with which it solves problems that require high processing power. Some of
the metrics are floating point operations per second (FLOPS), processing time or speedup,
memory bandwidth, energy efficiency, scalability, and network latency, among others [42].
For this research, only FLOPS were considered.

The FLOPS measurement is a way of evaluating the processing capability of a com-
puter system in relation to performing floating point operations. For example, a computer
that can perform 100 teraflops (100 trillion floating-point operations per second) is capable
of processing a large number of mathematical calculations in a relatively short period
of time, which can be important for applications that require large amounts of data. It
measures the number of intensive computations in terms of processing.

To calculate the FLOPS of a computer, we first need to know the specification of the
processor and the number of cores it has. Once we know this information, we apply the
following equation [43]:

FLOPS = number of cores × Clock Frequency × FLOP
Cycle

(4)

where the number of cores is the number of cores per processor, the clock frequency is
the base clock of the processor (usually this value is founded in the specifications of the
fabricant), and the FLOP/cycle depends on the processor architecture and can change from
one model to another.
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For example, if we have a workstation, as used in this research, with an AMD Ryzen 9
5900X processor that has 12 cores and a base clock frequency of 3.7 GHz, and we assume
that the FLOP/cycle is eight [44], then the maximum theoretical FLOPS would be

FLOPS = 12 cores × 3.7 GHz × 8 FLOP/Cycle = 355.2 GFLOPS.

Therefore, this workstation would have a maximum theoretical processing capacity of
355.2 gigaflops. It is important to note that this measurement or performance may vary
depending on the type of workload and other system factors, such as an extra GPU card
integrated into the workstation. For the Nvidia GPU installed, we can also calculate its
FLOPS by conducting the same procedure, knowing that it has a total of 5888 CUDA cores
and a base clock speed of 15,000 MHz [45]:

FLOPS = 5888 cores × 1.5 GHz × 2 FLOP/Cycle = 17.8 TFLOPS.

So, by adding the FLOPS values of the processor and the GPU, we would have an
approximate total theoretical performance of 18.2 TFLOPS.

If we wanted to measure the approximate total performance of the configured HPCC,
we would have to carry out the same procedure. In each of the HPCC devices, such as the
processor and the graphics card of the HPCC, the computing nodes are the same; hence,
calculating the FLOPS of a PC would facilitate the calculation since the value obtained
would only be multiplied by the total number of nodes. Thus, the value of the total
approximate performance of the HPCC would be obtained. Table 3 lists the specification
data for the Intel i7 7700K processor and the Nvidia GTX 1050 ti card, in order to calculate
the total approximate theoretical performance of the configured HPCC.

Table 3. Characteristics of the computers used to implement the proposed HPCC.

Device Number of Cores Base Clock Speed FLOPS/Cycle Total FLOPS

Intel i7 7700K 4 4.2 GHz 16 268.8 GFLOPS
Nvidia GTX 1050ti 768 1290 MHz 2 1981.4 GFLOPS

Total 2250.2 GFLOPS

So, for an HPCC PC, we would have 2.25 TFLOPS, and multiplying the value for each
of the nodes, we would have a total of 6.75 TFLOPS.

Moreover, by way of comparison, for the weed classification using distributed DL, we
performed the procedures mentioned in Section 2.4; differently, only the workstation with
the characteristics shown in Table 2 was used, in which the maximum value used was four
in the horovodrun command in the -np parameter, which is the value of the CPU cores for
which the workstation did not exceed the installed RAM. In this case, more RAM memory
would have been needed to use more CPU cores of the workstation.

3. Results

To carry out the processing required for this research, we used three nodes: the master
node and two computing nodes. The load balancing of the processes on each node was
performed according to Horovod documentation [37], using the horovodrun command to
distribute processes between nodes. It is crucial to have extensive knowledge of the server
configuration and application version control as each component must complement each
other to function correctly. Developing a high-performance and efficient system with high
computational power demands a significant investment of resources and capital. However,
even with limited computational capabilities, the HPCC was able to implement the CNN
models for the analysis and processing of images.
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Results Obtained by Applying the CNN InceptionV3 and VGG16 Models

The CNN models used for this research, InceptionV3 and VGG16, were pretrained to
classify 1000 categories of objects using the ImageNet dataset [46]. This image dataset was
created as a resource for researchers, teachers, and students dedicated to the development
of sophisticated algorithms capable of indexing, retrieving, and organizing and, in the case
of CNNs, classifying multimedia images obtained from the Web.

Our choice of models was based solely on testing the capacity of the HPCC in appli-
cations with CNNs. The metric used to evaluate the CNN models was accuracy, which
allowed for the recognition of the best performance based on how close a measured value
was to the true value.

To test the level of computational processing, the number of processes executed by the
HPCC and the time it took to carry out the processing were considered. A loss function
(or optimization function or objective function) was used during training, cross entropy
or categorical_crossentropy as named in Keras, which allowed defining a feedback signal
during training. In total, twelve processes were executed in the HPCC, four for each
processor or computing node.

While the computational level of the HPCC utilized in this research may not have
been very high, the results obtained from implementing the CNN InceptionV3 and VGG16
models showcased the potential of the system. The physical differences between nodes,
as shown in Figure 4, did not hinder the overall performance of the system, as their
architecture was similar, as described in Table 2.

The evaluation of the infrastructure was based on several key measures, as shown
in the tables below. Tables 4 and 5 present the execution time of the CNN scripts used
for the experimentation, where each execution was carried out with a different number
of processes to determine the optimal configuration. For the InceptionV3 model, the best
execution time was achieved with six processes, while the best accuracy was obtained with
eight processes. Similarly, the VGG16 model performed best for the execution time with six
processes and for the accuracy with one process.

Table 4. Results obtained during training with the CNN InceptionV3 on the HPCC.

Numbers of Processes Processing Time Epochs Accuracy

1 92 min 15.301 s 100 0.59
2 62 min 41.048 s 50 0.58
4 54 min 30.690 s 25 0.62
6 37 min 55.193 s 17 0.65
8 58 min 45.437 s 13 0.67
10 45 min 45.646 s 10 0.63
12 41 min 25.151 s 9 0.65

Table 5. Results obtained during training with the CNN VGG16 on the HPCC.

Numbers of Processes Processing Time Epochs Accuracy

1 277 min 31.435 s 100 0.82
2 145 min 0.912 s 50 0.81
4 147 min 8.656 s 25 0.77
6 132 min 55.584 s 17 0.55
8 207 min 11.721 s 13 0.67
10 158 min 22.549 s 10 0.72
12 146 min 22.581 s 9 0.70

In Table 6, we can see the results obtained by applying four processes to perform the
distributed DL in the workstation and the HPCC. As mentioned above, the value of four
was used as a benchmark because in the experiments where more than four processes were
applied to the workstation, its memory overflowed. Therefore, at least in the HPCC, it was
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possible to take advantage of the twelve processes in total that were available for process-
ing. Even so, it can be noted that the InceptionV3 model had a higher accuracy but less
processing time, while the VGG16 model had a better processing time but lower accuracy.

Table 6. Results obtained during training with four cores on the workstation and HPCC.

CNN Model Numbers of
Processes

Processing
Time (HPCC)

Processing
Time (WS)

Accuracy
(HPCC) Accuracy (WS) Epochs

VGG16 4 147 min 8.656 s 231 min 19.132 s 0.77 0.78 25
InceptionV3 4 54 min 30.690 s 52 min 26.876 s 0.62 0.61 25

Overall, the InceptionV3 model exhibited the best processing time, as shown in
Figure 7, indicating its superior performance in infrastructures such as the one proposed in
this project. By using the InceptionV3 model, we achieved a processing time of 37 min and
55.193 s with an accuracy of 0.65 as shown in Figure 8.
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4. Discussion

Our study demonstrates the crucial role of HPC in image processing specifically using
distributed DL when classifying different types of weeds. By using HPC, we significantly
reduced the processing times and the effort required to train models or implement computa-
tionally demanding algorithms. Compared with the use of a single computer, our proposal
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offers a considerable benefit in terms of efficiency and profitability, making it a valuable
alternative for the university and scientific community that may not have access to an
HPC infrastructure listed within the TOP500 or that can access a service through the cloud.
Our research focused on PDI and AI applications, where we extracted important features
such as characteristic plant greens to improve the weed-type classification. We used the
color-based segmentation method to preprocess the images, which provided good results.

When implementing the HPCC, we ensured the control and correct installation of the
application versions to ensure compatibility with the hardware installed in the computing
nodes. The application versions that worked successfully for this project were CUDA
11.7, NCCL 2.1, CuDNN 7.5, and OpenMPI 4.0. We also ensured that the versions of the
Tensorflow, Keras, and Horovod libraries were compatible with these applications. It is
important to highlight the fact that the implementation process was very complex and took
a long time since when the libraries did not match or were not compatible, the HPCC did
not work correctly.

Our research results showed that in using the HPCC, we achieved a maximum accu-
racy of 82% with a training time of over 4 h, whereas the work of Olsen et al. [22] reported
an average accuracy between 95.1% and 95.7% with a training time of 13 h using a single
graphics card.

One of the critical metrics obtained in our research was accuracy, where we achieved
the highest value of 0.82 using a single process in the proposed HPCC. However, the longer
training times may have been due to the need for more epochs to achieve better loss values
in the CNN VGG16 model. The number of epochs depended on the number of processes
introduced to the HPCC, which explained why the metric values varied, as shown in
Tables 4–6.

An interesting finding was that applying six processes in the HPCC resulted in the
best time for both CNN models. Loading and distributing two processes as a parameter in
each node, we were able to utilize 50% of the processor capacity in each computing node.
This trend suggests that utilizing eight processes in an HPCC with additional computing
nodes could yield even better processing times.

Finally, our research indicates that increasing the number of computing nodes could
improve the model’s performance and execution times. Despite the limitations, our pro-
posal offers a low-cost alternative that can be applied to different research areas that require
HPC, such as PDI and AI.

5. Conclusions

HPC is an accessible tool for the scientific and university communities. The imple-
mentation of an HPCC with the characteristics presented in this proposal helps to use a
small budget to make use of HPC to provide solutions or develop projects that involve PDI
and AI techniques in a distributed way in small laboratories and research centers. This
project demonstrates the benefit of processing time (a reduction of more than 60%) and the
accuracy that is obtained if an application development environment related to PDI and AI
is implemented, which have become very important techniques today.

Although there are much larger high-performance infrastructures in the world than
the one proposed in this article, not all people or the scientific community can access them,
due to the high cost and low accessibility, unless a considerable sum of money is invested.

Based on the experience acquired, it can be added that in an HPCC network, the
resources are a very critical and important part and are essential to guarantee efficient and
secure communication between cluster nodes and with other network resources. HPCCs
require a high-quality network infrastructure to function optimally and achieve the benefits
of high-performance computing.

For this reason, in this project, an accessible infrastructure was proposed that consider-
ably reduced processing times and efforts compared with using a single computer.

As future work, it is proposed to integrate new computing nodes and GPU acceleration,
which, although NCCL was used together with OpenMPI to use the collective communica-



Appl. Sci. 2023, 13, 6007 15 of 16

tion libraries, could only be used by the CPUs and not by the NVIDIA-integrated cards.
Implementing GPU acceleration could further reduce the processing time and could test
multiple CNN models that were not used in this project.
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