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Abstract: With the rapid increase in bridge spans, the mitigation of risk to flutter (aeroelastic insta-
bility) is of critical importance in the design of long-span bridges, especially considering the more
frequent intense hurricanes under climate change. Although the strong nonlinearities of the aeroelas-
tic (self-excited) forces in wind–bridge interactions can be well captured through either numerical
simulations or experimental tests, both are expensive and time consuming. Hence, it is important
to develop an efficient reduced-order model for the simulations of nonlinear aeroelastic forces on
the bridge decks. This study proposes a reduced-order model based on the long short-term memory
(LSTM) network to simulate the nonlinear aeroelastic forces on bridge decks with various leading
edges, and thus rapidly predict the corresponding post-flutter behaviors of long-span bridges. To
generate the training datasets, computational fluid dynamics (CFD) was employed to simulate the
nonlinear aeroelasticities of bridge decks with a wide range of leading-edge configurations and wind
speeds. Trained on the high-fidelity CFD datasets, the LSTM network takes the motion of a bridge
deck, leading-edge angles and wind speeds as inputs and outputs the nonlinear aeroelastic forces
on the bridge decks. A hybrid loss function utilizing the prediction errors of both aeroelastic forces
simulated by the LSTM network and the bridge deck responses calculated by the Newmark-β algo-
rithm was introduced into the training process to improve the network performance. The prediction
results of the trained LSTM model were compared with the CFD simulations, which demonstrated
that the nonlinear aeroelastic forces of the bridge deck with various leading edges can be accurately
and efficiently acquired by the proposed LSTM model.

Keywords: flutter; long-span bridges; bridge deck; CFD simulation; reduced-order modeling;
LSTM network

1. Introduction

The flutter of long-span bridges is an aeroelastic instability that may lead to catas-
trophic consequences. With the rapid increase in the spans, the bridges are increasingly
flexible and hence vulnerable to the flutter. This situation can even be aggravated by the
increase in hurricane intensity and frequency under climate change. The aeroelastic forces
on long-span bridges are conventionally simulated based on the well-known Scanlan’s
semi-empirical linear model [1], where the self-excited forces are linearly related to the
structural motion through flutter derivatives. Over the past several decades, efforts have
been made to improve the simulation accuracy based on the linear models [2–6]. According
to the linear aeroelastic theory, the bridge deck will undergo divergent vibrations with
a negative damping once the wind speed is higher than a threshold (i.e., critical flutter
wind speed). However, the aeroelastic forces on bridge decks essentially contain nonlinear
components due to the complexity of flow surrounding the bluff bodies. Several nonlin-
ear features of bridge aerodynamics typically observed in the wind tunnel tests include:
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(i) the non-proportional relationship between the input and output amplitudes, (ii) the
single frequency input resulting in multiple frequency outputs, (iii) the amplitude depen-
dency of aeroelastic transfer functions, and (iv) the hysteretic behavior of aeroelastic forces
versus angles of attack [7,8]. Accordingly, the bridge deck vibrations in the post-flutter
wind speed region may not diverge rapidly but shift to a limit cycle oscillation (LCO) with
constant amplitude [9,10].

As a consequence of the rapid development of the computation power and the im-
provement of the computational fluid dynamic (CFD) technology, the numerical simulation
approaches have proved to be a reliable and effective way of simulating the aeroelastic
features of the flexible bridges to complement wind tunnel testing [11,12]. Though the CFD
method performs with great accuracy in simulating the nonlinear bluff body aeroelastic
forces, its computational cost is relatively high for small time steps and a long simulation
duration because of the three-dimensional wakes and intensive flow separations around the
structure. To address the issue of high computational cost in CFD simulations, a number of
reduced-order models of nonlinear aeroelastic forces have been proposed to balance the
simulation fidelity and computational efficiency. A nonlinear analytical self-excited force
model was developed by Náprstek et al. [13] based on the Rayleigh–Duffing and Van Der
Pol–Duffing types of differential equations. Wu et al. [14,15] introduced Volterra series that
consist of linear and higher-order convolutions representing the complex mapping rules
and time lags (fluid memory effects) between the bridge aerodynamics inputs and outputs.
Gao et al. [16] proposed a polynomial function with high-order terms to describe the non-
linear aeroelastic forces on the bridge decks. Zhang et al. [17,18] modified the traditional
Scanlan model to consider the nonlinear aerodynamics effects, where the flutter derivates
are functions of the vibration amplitude and phase difference. While these developments
have advanced the nonlinear bridge aeroelastic modeling, the complexities involved in the
identification of their parameters pose a great challenge for wide applications.

With the fast advances in machine learning techniques, artificial neural networks
(ANNs) have received increasing attention due to their advantages for modeling complex
nonlinear dynamic systems [19]. Compared to the shallow architectures, the deep architec-
tures of networks show better prediction abilities [20]. The applications of deep learning
have been very successful in various fields [21,22], and hence it is reasonable to expect that
it can be used to effectively model nonlinear wind–bridge interactions. Considering the
fluid memory effects, the self-excited forces (and hence aeroelastic responses) of the bridge
deck depend not only on the motion of the current time step, but also on the history of
the previous time steps, which cannot be efficiently captured by conventional feedforward
ANN with a fixed input length [23]. On the other hand, the recurrent neural networks
(RNNs) take the previous outputs as part of the inputs of the current time step. However,
theoretical and empirical evidence have shown that the traditional RNN network cannot
reliably utilize the information of more than 10 previous time steps [24,25]. To overcome
the gradient vanishing or explosion, long short-term memory (LSTM) was introduced to
augment the network. Several studies have shown LSTM as presenting great promise
in modeling the complex nonlinear dynamic systems and the prediction of long-time se-
ries [26–28]. Li et al. [29] used an LSTM neural network to predict the LCO of the airfoil
in transonic flow, indicating that the LSTM network has the ability to learn the complex
nonlinear system with various structural parameters. Li et al. [30] successfully captured
the nonlinear post-flutter behavior of a bridge deck at various wind speeds by utilizing
the LSTM networks. Furthermore, Li and Wu [31] introduced a knowledge-enhanced
LSTM network to enhance the training efficiency and simulation accuracy. Li et al. [32]
and Wang et al. [33] also introduced a new loss function to the original LSTM network for
enhancing the training efficiency and prediction stability. The works mentioned previously
motivated this current study to develop a reduce-order model to capture the nonlinear
features of the post-flutter of the bridge decks under different leading-edge angles.

In this study, CFD was first used to simulate nonlinear aeroelastic forces to investigate
the LCO phenomenon of bridge decks with various aerodynamic configurations. Then, the
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aerodynamics datasets were generated by high-fidelity CFD simulations, where the deck
motion was used as the input and the aeroelastic forces were outputs. With a hybrid loss
function utilizing the prediction errors of both aeroelastic forces simulated by an LSTM
network and bridge deck responses calculated by the Newmark-β algorithm to improve
the network performance, the LSTM network was trained to be a nonlinear aeroelastic force
model for the bridge decks with various leading edges. The simulation results demonstrate
that the nonlinear post-flutter behavior of bridges can be accurately and efficiently predicted
through the developed LSTM network. Due to the low computational cost, the obtained
model can facilitate the aerodynamic optimization of the bridge decks under winds.

2. Numerical Simulation of LCO
2.1. Governing Equations

The simulation of the incompressible, two-dimensional (2D) wind field crossing the
bridge deck was based on the unsteady Reynold-averaged Navier–Stokes (RANS) equa-
tions. Considering the deck section motion, the dynamic mesh is used to accommodate the
moving boundaries. Accordingly, the governing equations of the wind–bridge interaction
system nested in an arbitrary Lagrange–Euler framework can be expressed as:
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where the ui and uj represent the wind velocity components in the along-wind and cross-
wind directions; zi and zj denote the Cartesian spatial coordinates; ρ is the air density; p
is the wind pressure; ub

j is the grid velocity; Si is the additional source contributions; and
µeff is the effective viscosity including both laminar and turbulent effects. The turbulence
was modeled using the shear-stress transport (SST) k-ω scheme, where k is the turbulence
kinetic energy and ω is the specific dissipation. In this study, the commercial CFD software
Fluent 2020R2 was employed to simulate the wind–bridge interactions.

2.2. Computational Domain and Mesh Arrangement

The computational domain and the corresponding boundary conditions are shown in
Figure 1, where the along-wind domain size is set as −5B ≤ Lx ≤ 15B and the cross-wind
domain size −5B ≤ Ly ≤ 5B (B = bridge deck width). The computational domain size
was sufficiently large to avoid the flow obstacle effect. The velocity inlet condition was
set to be the inflow boundary, and the turbulence intensity of the oncoming flow was set
to be 0.5%. The constant pressure outlet condition was set to be the outflow boundary.
The non-slip condition was used for the bridge deck boundary, while the slip condition
was used at the top and bottom boundaries. The hybrid mesh was used to discretize the
computational domain to balance the computational efficiency and accuracy. The structured
quadrangular grid was generated around the bridge deck section to capture the details
of the separation flow, while the unstructured triangular grid was used for the remaining
area. In the computational domain, the mesh of the rigid region followed the bridge deck
motion exactly while the mesh in the dynamic region deformed based on the spring-based
smoothing method at each time step. To accurately simulate the flow in the bridge deck
boundary layer, the distance of the first grid layer to the deck surface was set to be 0.00001B.
Accordingly, the nondimensional wall coordinate y+ was smaller than unity. The mesh cell
number used in the following CFD cases was around 75,000.
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2.3. Wind–Bridge Interaction

The sectional bridge deck motion can be simplified as a two degrees-of-freedom
vibration system with the corresponding governing equations expressed as:

m
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where the h and α respectively represent the vertical and torsional displacements; the
overdot denotes the derivative with respect to time; m and Im are the mass and inertial
moment per unit length of the deck section; ω and ξ are the natural circular frequency and
damping ratio; and L and M are the aeroelastic lift force and torsional moment on the bridge
deck section, respectively. To satisfy the geometrical compatibility and the equilibrium
conditions on the interface between the wind and bridge, the weak coupling method was
employed for the sake of computational efficiency. Once the flow field was initialized
(with a steady state), the basic procedure of solving the wind–bridge interactions could be
summarized as below:

Step 1. The pressure on the bridge deck surface is calculated and used to obtain the
lift force and torsional moment.

Step 2. The bridge deck motion is accordingly solved using the Newmark-β algorithm.
Step 3. The obtained displacements are used to determine the deck section position

for the next time step, and the mesh around the section is accordingly updated.
Step 4. Based on the new deck position and grid (mesh) velocity, the flow field is then

calculated and the corresponding aeroelastic forces is acquired.
Step 5. The Steps 1–4 are repeated until the prescribed motion duration and maximum

displacement conditions are satisfied.

2.4. CFD Validation

The experimental data in Zhang et al. [17] were utilized to validate the CFD simulation
accuracy. The structural parameters of the validation system were the bridge deck width
B = 0.78 m, bridge deck height H = 0.07 m, vertical frequency fh = 2.01 Hz; torsional
frequency fα = 3.79 Hz, m = 12 kg/m, Im = 0.44 kg·m2/m and ξh = ξα = 0.005, and the
corresponding mesh configuration used in the CFD simulations is presented in Figure 2.
The comparison results of the critical flutter wind speeds of the bridge deck under the wind
angle of attack α0 = 0◦ between the CFD simulation and experimental test are shown in
Table 1, and the LCO amplitudes of the bridge deck under wind angle of attack α0 = +5◦
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and mean wind speed U = 12.0 m/s are presented in Table 2. It was noted that the CFD
and experimental results were in an excellent agreement.
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Table 1. Critical flutter wind speed comparison.

CFD Result Experimental Result Relative Error

Critical wind speed
(m/s) 19.3 19.4 0.5%

Table 2. LCO amplitude comparison.

CFD Results Experimental Results Relative Error

Vertical amplitude
(h/B) 0.0092 0.0097 5.1%

Torsional amplitude
(rad) 0.0955 0.0977 2.2%

2.5. CFD Simulation

It is well known that the leading-edge configuration has significant effects on the
critical flutter wind speed and post-flutter LCO amplitudes. The validated CFD method
was utilized to simulate the flutter and post-flutter responses of the bridge decks with
various leading-edge angles αd (as defined in Figure 3), including αd = 120◦, αd = 126◦,
αd = 130◦, αd = 134◦, αd = 140◦, αd = 150◦ and αd = 165◦. The structural parameters of the
bridge deck system with various leading-edge angles are listed in Table 3. The initial wind
angle of attack α0 was set to be +5◦ to ensure that the post-flutter LCO phenomenon can be
observed. A wide range of wind speeds were employed in the CFD simulations to clearly
present the evolvement of the bridge deck LCO amplitudes.
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Table 3. Structural parameters of bridge deck system with various leading edges.

B (m) H (m) m (kg/m) Im
(kg·m2/m) fh (Hz) fα (Hz) ξh = ξα

0.8 0.08 12.00 0.44 2.01 3.79 0.005

The steady-state LCO amplitudes as a function of wind speeds for various leading-
edge angles are shown in Figure 4. The critical flutter wind speed decreased with the
leading-edge angle. Under each wind speed, the LCO amplitude increased with the
leading-edge angle. Both the LCO amplitude and its growth rate increased with the wind
speed in the post-flutter region. To closely examine the aeroelastic forces on the bridge deck,
the time histories of the CFD simulation results with a deck leading-edge angle of 165◦ and
wind speed of 11.5 m/s are shown in Figure 5. It was noted that higher-order harmonics
were observed in both the aeroelastic lift force and torsional moment time histories.
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3. LSTM Network

The recurrent neural network (RNN) was designed for sequential data processing,
such as speech recognition, natural language processing and time series prediction. Unlike
traditional neural networks, RNNs possess loops that allow previous information to be
stored. This loop structure enables RNNs to be naturally suitable for bridge aeroelastic
force simulations involving fluid memory effects. The RNN usually presents issues of
gradient vanishing and gradient explosion for long-term time series predictions. To this
end, the LSTM cell was introduced to replace the conventional neuron in the RNN hidden
layers [24,25].

3.1. Forward Pass of LSTM Network

As shown in Figure 6, the LSTM cell acts like a gated leaky neuron, where xt represents

the input at time t; ht means the cell output; Ct and
∼
Ct denote the cell state and internal

hidden state, respectively; ft, it and ot are the forget gate, input gate and output gate,
respectively; and σ(x) and tanh(x) are the activation functions described using logistic
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sigmoid 1
1+e−x (in the range of [0 1]) and hyperbolic tangent sigmoid 1−e−2x

1+e−2x (in the range
of [−1 1]), respectively. The forget gate essentially empowers the memory cell to forget or
remove outdated information from previous time steps by using the nonlinear activation
function and the multiplication operation. The input gate is used to add new information
to the cell state together with the internal hidden state, and the output gate generates the
output information from the cell state.
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Accordingly, the forward pass of LSTM in Figure 6 can be expressed as:

ft = σ
(

W f · [ht−1, xt] + b f

)
(5)

it = σ(Wi · [ht−1, xt] + bi) (6)

∼
Ct = tan h(WC · [ht−1, xt] + bC) (7)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (8)

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot ∗ tan hCt (10)

where the symbol ∗ denotes the dot product operation, and W~ and b~ are the corre-
sponding weight and biases matrices, whose dimensions are the hyper parameters usually
determined by trial and error. During the calculation, the current input and hidden state
generate the output and new hidden state to be used (together with input) for the calcu-
lation at the next time step. As shown in Figure 7, an LSTM network usually consists of
an input layer, several hidden layers of LSTM cells and an output layer. It is noted that
each LSTM layer has its own initial state that is usually set to zero. For each LSTM layer,
its input is the output of the previous layer and its output will be the input of the next
layer. The last LSTM layer will be the input for the output layer (usually a linear layer) to
generate the final output data

∼
y j (where j denotes the jth training sample).

3.2. Back Pass of LSTM Network with a Hybrid Loss Function

The BPTT (back propagation through time) is an inverse process of the forward pass of
LSTM, which is aimed to determine the proper weight matrices and biases of the network.
As presented in Figure 8, the aeroelastic force output of the current time step was used as
the input of the Newmark-β algorithm to calculate the corresponding bridge deck response,
which became the input of the next time step. During such a process, any small error will be
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accumulated and augmented through time steps, and finally may cause inaccurate results
or divergence.
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To improve the training efficiency and stability, a hybrid loss function was designed as:

Lh = L f + Lr (11)

where L f and Lr respectively represent the loss functions related to the aeroelastic forces
and bridge deck responses. These losses can be expressed as:

L f =
1

2N

N

∑
j=1

(
Fj −

∼
F j)

2 (12)

Lr =
1

2N

N

∑
j=1

(
Rj −

∼
Rj)

2 (13)

where N represents the number of training samples; Fj is the target aeroelastic force (based

on CFD simulations);
∼
F j is the corresponding results generated by the LSTM network; Rj is

the target bridge deck response (based on the CFD simulations); and
∼
Rj is the corresponding

results generated by the Newmark-β algorithm. For each batch of training datasets, as
shown in Figure 9, the network first generated the aeroelastic force time history (and the
corresponding L f ) that were used as the input for the Newmark-β algorithm to calculate
the bridge deck responses (and the corresponding Lr). The Adam method was adopted to
minimize the final hybrid loss function Lh through updating the weight matrix and biases
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of the network. The LSTM network in this study contained three hidden layers, and the
hidden size of each LSTM layer was set to be 32. Other hyperparameters of the LSTM
network, such as the batch size of datasets (200) and the learning rate, were determined by
trial and error.
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3.3. LSTM Training

To design an LSTM network for the simulation of nonlinear aeroelastic forces, it is
crucial to select the proper variables as its inputs. Conventionally, the deck displacements
and velocities are utilized to represent the bridge motion state. To take the mass effects on
bridge aerodynamics into account, the accelerations are also often added into the inputs.
Considering that the major purpose of the present study was to predict the post-flutter LCO
performance of the bridge decks with various leading edges, both the leading-edge angle
and wind speed were part of the inputs. Accordingly, the inputs of the LSTM network
contain the leading-edge angle αd, the wind speed U, the displacements (h, α), velocities
(

.
h,

.
α) and accelerations (

..
h,

..
α). Due to the fluid memory effects, the responses of the bridge

decks under the nonlinear self-excited forces not only depend on the current motion state
but also on the previous motion states. Previous research has pointed out that the fluid
memory fades over time, which means that the responses of the bridge deck are only
impacted by limited time steps in the past [14]. In the LSTM network, the forget gate is
designed to achieve this. Several studies have discussed the input length of the LSTM
network to balance the accuracy and efficiency in the consideration of fading fluid memory
effects [30]. In this study, the length of the training data was determined to be 0.3 s (i.e.,
300 time steps with a time interval of 0.001 s).

The CFD simulation responses of the bridge decks with the leading-edge angles of 120◦,
130◦, 140◦, 150◦ and 165◦ were utilized as the training datasets, while the CFD simulation
data with αd of 126◦ and 134◦ were used as test datasets to verify the effectiveness and
accuracy of the trained LSTM network. It was noted that all the data DT used in the training

were normalized to improve the training efficiency (using
∼
DT = (DT−µT)

σT
where µT and σT

were the mean value and standard deviation of the CFD simulations).

4. LSTM Network Simulation Results

The trained LSTM network was employed to rapidly predict the aeroelastic forces and
accordingly calculate the critical flutter wind speeds and post-flutter LCO amplitudes of
the bridge deck (with various leading-edge angles) based on the Newmark-β algorithm.
Specifically, Figures 10 and 11 respectively present the comparison results of the LCO
amplitudes in the post-flutter wind speed region for the bridge decks with the leading-
edge angles of 126◦ and 134◦. The excellent agreement between the CFD simulations and
LSTM predictions is observed in the figures. The comparison results demonstrated that the
proposed LSTM network could efficiently and accurately predict the complex nonlinear
aerodynamics of the bridge decks with various leading-edge angles. Figures 12–15 present
the time histories of the LSTM-based aeroelastic forces and bridge deck motions (together
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with the corresponding CFD results) for four selected combinations of wind speeds and
leading-edge angles, namely (1) U = 10.5 m/s and αd = 126◦, (2) U = 11.5 m/s and αd = 126◦,
(3) U = 8.5 m/s and αd = 134◦ and (4) U = 11.8 m/s and αd = 134◦. Good agreement was
observed in terms of the amplitudes and phase differences in the growth stage, steady
stage and decay stage (where the wind speed is smaller than the critical flutter wind speed).
High-order harmonics in the aeroelastic lift force and torsional moment time histories
were clearly presented. All these comparison results demonstrate that the proposed LSTM
network has the capability and robustness to predict the complex nonlinear aerodynamics
of the bridge decks with various leading-edge angles.
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and αd = 126◦. (a) Lift force. (b) Torsional moment. (c) Vertical displacements. (d) Torsional angle.
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5. Concluding Remarks

In this study, the computational fluid dynamics (CFD) simulations were first conducted
to investigate the critical flutter wind speeds and post-flutter limit-cycle oscillations (LCOs)
of the bridge decks with various leading-edge angles. Based on the obtained CFD data,
a reduced-order model for the nonlinear, unsteady aeroelastic forces on the bridge decks
was developed by training a deep long short-term memory (LSTM) network. At each time
step, the LSTM-based nonlinear aeroelastic forces were used to calculate the bridge deck
motion (displacements, velocities and accelerations) through the Newmark-β algorithm
and were then fed into the LSTM network as the inputs of the next time step. A hybrid
loss function involving the prediction errors of both aeroelastic forces simulated by the
LSTM network and bridge deck responses calculated by the Newmark-β algorithm was
designed to improve the training efficiency and stability. The LSTM-based predictions of
the critical flutter wind speeds and post-flutter LCO amplitudes presented an excellent
agreement with the CFD simulations. The ability of the LSTM model to efficiently predict
the post-flutter responses of the bridge decks with various leading-edge angles can be
effectively used to facilitate the aerodynamic optimization in wind-resistant bridge design.
In future studies, more design variables that can comprehensively represent the geometry
changes of bridge decks will be input into the LSTM network. The developed LSTM model
can be readily extended to the three-dimensional full-bridge configurations.
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