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Abstract: Traffic congestion is a significant challenge in modern cities, leading to economic losses,
environmental pollution, and inconvenience for the public. Identifying critical road links in a city
can assist urban traffic management in developing effective management strategies, preserving
the efficiency of critical road links, and ensuring the smooth operation of urban transportation
systems. However, the existing road link importance evaluation metrics mostly rely on complex
network metrics and traffic metrics, which may lead to biased results. In this paper, we propose
a critical road link identification framework based on the fusion of dynamic and static features.
First, we propose a directed dual topological traffic network model that considers the subjectivity
of road links, traffic circulation characteristics, and time-varying characteristics, which addresses
the limitations of existing traffic network topology construction. Subsequently, we employ a novel
graph representation learning network to learn the road link node low-dimensional embeddings.
Finally, we utilize clustering algorithms to cluster each road link node and evaluate critical road
links using the average importance evaluation indicator of different categories. The results of
comparison experiments using real-world data demonstrate the clear superiority and effectiveness
of our proposed method. Specifically, our method is able to achieve a reduction in traffic network
efficiency of 70–75% when less than 25% of the road links are removed. In contrast, the other baseline
methods only achieve a reduction of 50–70% when removing the same proportion of road links.
These findings highlight the significant advantages of our approach in identifying the critical links.

Keywords: urban traffic network; critical links; network representation learning; intelligent
transportation system; data mining

1. Introduction

The phenomenon of urbanization has led to a surge in travel demand in urban areas,
which poses a significant challenge to urban traffic. However, the infrastructure develop-
ment in these areas is constrained by the limitations of urban land, resulting in an inability
to meet the changing traffic demand. Traffic congestion is emerging as a major urban
problem, posing various challenges in terms of environmental pollution, time wastage, and
reduced productivity. The urban traffic network is a time-varying, directed, and weighted
network that should account for both its topological structure and travel characteristics.
Given the vast size of the urban traffic network, it is not feasible to manage each road link
during traffic control. Due to resource and funding limitations, we can only manage a
limited number of urban road links. Therefore, it is crucial to determine which road links
should be controlled to maintain the normal operation of urban traffic. Additionally, in the
event of natural disasters, it is necessary to prioritize which road links to restore or control
first to improve the operational efficiency of the urban traffic network. By evaluating the
importance of urban road links, we can identify critical road links in the city and prioritize
their control and maintenance to ensure the smooth operation of the urban traffic network.

The urban road network serves as the foundation of the urban transportation system
and is a crucial component of transportation infrastructure. Research [1] indicates that a
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cascading failure phenomenon exists in urban road networks, whereby the failure of a few
links can lead to the failure of other links and ultimately affect the efficiency of surrounding
local networks. Critical links refer to those links that, when failed due to traffic congestion
or accidents, have a significant impact on network operating efficiency. Therefore, it is
imperative to identify such critical links and devise management strategies to address the
issue of traffic congestion and ensure transportation efficiency. Evaluating the importance
of links in the traffic network is significant to solving this problem. By analyzing urban
road network topology and traffic data to identify bottlenecks and congestion hotspots,
urban traffic management can focus their efforts on the most critical links in the network.
This targeted approach can improve traffic flow and reduce congestion, ultimately leading
to a more efficient and sustainable transportation system.

In the traffic system, traffic travel has been widely linked to the urban spatial struc-
ture, and the connection has been extended to the field of urban science theory by many
researchers. Some researchers have explored the urban operation mechanism and analyzed
the causes of traffic congestion [2] by using large-scale spatio-temporal data. Their analysis
involves identifying urban activity hotspot areas [3], urban spatial density [4], and urban
spatial structure [5]. Meanwhile, some researchers have combined complex network theory
and traffic travel characteristics to explain traffic phenomena. They use quantitative indi-
cators commonly used in complex networks and graph theory, such as degree, centrality,
and network efficiency, and analyze the relationship between these indicators and traffic
travel to measure the importance of links in the traffic network [6,7]. Such research efforts
can provide valuable insights into the urban traffic phenomenon and pave the way for the
development of effective traffic management strategies.

In this study, we propose a traffic link importance evaluation method based on com-
bining road network topology with traffic demand and traffic state through network
representation learning. Firstly, we establish a directed dual traffic network model using
the dual mapping method based on a directed road network, where road links are repre-
sented as nodes and the connection relationships between them as edges. Secondly, we
employ a novel representation learning method to obtain the embedding vectors of the
link nodes in the network and utilize machine learning techniques to cluster the acquired
embedding vectors. Finally, we define importance evaluation indicators by combining
traffic demand and traffic state and analyze the importance of different categories of link
nodes after clustering in order to identify the critical link nodes in the network.

The main contributions of this paper are as follows:

• We propose a method for constructing a traffic network with a directed dual topology.
The method emphasizes the main position of urban road links in the traffic system.
It also reflects the circulation characteristics between urban road links and the time-
varying characteristics of the importance of urban road links.

• We propose a novel representation learning method. The method combines urban
traffic network structure and urban traffic demand to jointly control the random
walk procedure and learn low-dimensional representations of road link nodes using
skip-gram models.

• We design an efficient method for evaluating the importance of urban road links.
Combining the embedding vectors of road link nodes, the clustering algorithm and
the road link importance evaluation indicators are used to evaluate the road link
importance, which can accurately identify the important road links in the city.

• To validate the effectiveness of the proposed method, we designed and compared
experiments combining real-world data to analyze the performance of each method.
The experimental results validate the effectiveness and superiority of the proposed
methods.
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2. Literature Review

In recent years, the evaluation of road link importance has been mostly based on
the construction of road network topology using the primal method for undirected road
networks. Two primary research approaches are commonly used in this field: quantita-
tive evaluation using importance indicators and assessing changes in network efficiency
following road link failures.

In terms of quantitative evaluation using importance indicators, some researchers com-
bine complex network theory indicators and traffic information for quantitative analysis.
Girvan et al. [8] introduced the concept of edge betweenness, which is based on between-
ness centrality. This concept suggests that road links with higher edge betweenness have a
greater transmission capacity and a more significant role in the network. Wang et al. [9] pro-
posed a node importance discrimination method based on local features, which considers
the importance of neighboring nodes in addition to the node itself. Tu et al. [10] introduced
the minimum cut frequency vector to construct road link importance evaluation indicators
for road link vulnerability identification evaluation between OD pairs. Wang et al. [11]
used the Fuzzy C-means (FCM) clustering algorithm to analyze the importance of road
links by combining betweenness, PageRank, and traffic flow. Yi-Run et al. [12] combined
node degree and node local similarity to evaluate the importance of road links. Su et al. [13]
proposed a model for evaluating the importance of road links under different time delays
by considering the spatio-temporal correlation between multi-order neighboring road links.
Chen et al. [14] proposed a method to identify the importance of road links in the “effective
impact area” by considering that the failure of a road link mainly affects the surrounding
neighboring areas and calculating the efficiency of the regional network in this way to
reduce computation time. When dealing with smaller transportation networks, importance
indicators can provide satisfactory results for quantitative evaluation. However, as the size
of the network increases, the calculation of indicators based on complex network theory
can become a time-consuming process and the evaluation results may not accurately reflect
the actual traffic conditions.

In terms of assessing variation in network efficiency following road link failures. Some
researchers have employed traffic assignment theory to quantify the impact of road link
failures on traffic network efficiency. The critical road links are then identified by comparing
the change in traffic network operation efficiency before and after the failure of these links.
Scott et al. [15] proposed the network robustness index (NRI) measure to identify the
importance of road links by combining network capacity, road network traffic flow, and
topology. Jenelius et al. [16] used the user equilibrium (UE) model to reassign network
traffic flow after road link failure and identified the importance of road links by comparing
the cost of travel on the network after the failure of different road links. Sun et al. [17]
combined link failure probability and comprehensive indicators of network efficiency and
total travel time of the road network after traffic reassignment to evaluate the importance
of road links. Zhang et al. [18] developed a model for link importance assessment that
considers various factors such as road network structure, traffic demand, travel behavior
characteristics, and multi-link failures by using the travel time of all users in the system as
a measure of traffic network performance.

The current research on link importance evaluation in traffic networks faces two main
challenges. Firstly, most road network modeling is based on undirected graphs using the
primal method [19], which maps intersections as nodes and connecting links as edges. The
approach ignores the circulation relationship between road links and the time-varying
characteristic of road link importance. In urban transportation, the circulation relationship
between road links is a fundamental aspect of the traffic system, as it characterizes the traffic
sources and destinations of each link. Moreover, the importance of each direction of a road
link varies over time, particularly during peak hours such as morning and evening rush
periods. Consequently, road links may have vastly different levels of significance depending
on the time of day, necessitating distinct control strategies. Secondly, extracting indicators
for evaluating the importance of road links mainly relies on complex network theory and
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traffic indicators. However, complex network theory indicators require manual effort and
are time-consuming. As the size of the network increases, the feature matrix becomes
high-dimensional and sparse, making it unsuitable for further analysis. Additionally, prior
research typically utilizes a single traffic indicator without considering the combination
of multiple traffic characteristics. The work presented in this paper aims to address and
overcome these deficiencies.

3. Methodology
3.1. Directed Dual Traffic Network Constructing

Most existing research on traffic network modeling typically represents intersections
as nodes and the connections between intersections as edges. However, in the field of
traffic, the road link plays a crucial role, serving as the primary location of traffic accidents
and traffic control measures in traffic networks. To address this limitation, we construct
a directed traffic road network model using the dual method [20], which preserves the
connection and circulation relationships within the traffic network. Specifically, in this
method, links are mapped as nodes, and the connection relationships between different
links are represented as edges, while the circulation relationship of traffic flow between
links is captured as connections. To capture the traffic demand and state in the city, we
calculated the traffic flow and average speed of road links within a specific time interval.
The directed dual traffic network is defined as follows:

G = (V, E, ST , FT) (1)

where V = {v1, v2, . . . , vn} is the set of link nodes which means the road links, and n
is the number of road links. E =

{
(vi, vj), vi, vj ∈ V

}
is the set of edges in the network.

ST = {s1, s2, . . . , sn} is the set of average speeds of link nodes in a specific time interval T.
FT = { f1, f2, . . . , fn} is the set of traffic flow of link nodes in a specific time interval T. T is
a constant, such as 30 min.

Compared to the traffic network with the primal method, the directed dual traffic
network emphasizes the significant role of links in the traffic system. The approach
enhances the clarity of the topological relationship between different links. In the directed
dual traffic network model, the static and dynamic characteristics of road links can be
captured. The structure of the traffic network displays the connection relationship between
different links, which depicts the static characteristics of road links. Meanwhile, the traffic
flow and average speed of the road links reflect the dynamic characteristics of the traffic
network. Where the traffic flow characterizes the traffic demand, and the average speed
characterizes the traffic state. It is crucial to note that a small traffic flow during congested
times may not necessarily indicate low traffic demand.

Based on the connection relationships between road links in the directed road network,
the original topology of the road network can be well represented as the directed dual
traffic network. Figure 1 illustrates the original directed traffic network topology and its
corresponding directed dual traffic network topology. In the figure, letters A-H represent
different intersections, while numbers 1–7 represent different road links. The direction
of the road links indicates the direction of traffic flow. For instance, in the original traffic
network, road link 1 and road link 4 have a flow connection, whereas road link 1 and
road link 2 do not. Consequently, in the directed dual traffic network, road link node 1 is
connected to road link node 4, but not to road link node 2.
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Figure 1. Example of directed dual traffic network.

3.2. Traffic Link Representation Learning

After constructing the directed dual traffic network G, various indicators can be calcu-
lated to evaluate the importance of links. However, the extraction of importance indicators,
such as adjacency matrix, degree, betweenness centrality, and network efficiency, from
complex networks is a time-consuming process. Additionally, as the size of the network
increases, the feature matrix obtained from these methods exhibits high dimensionality
and sparsity, rendering clustering-based evaluations of link importance barely satisfactory.

Graph representation learning (GRL) can address these limitations well, which is a
technique that enables the extraction of effective features from graph information. One
model that is widely used for feature extraction in GRL is Node2vec. Based on the Deep-
walk model [21], Node2vec [22] integrates walk bias, which incorporates depth-first search
(DFS) and breadth-first search (BFS) balance coefficients to consider both local and global
features of nodes. Node2vec, introduced in 2016, takes the network structure as input and
outputs the embedding vector of each node. Its objective is to map the node information
in the network to a low-dimensional, continuous, and dense feature space. The embed-
ding vectors both preserve the neighborhood features of the original node and facilitate
subsequent data mining.

In this paper, we propose a novel representation learning model named TraLink2vec,
which extends the Node2vec method by integrating both static and dynamic features in the
traffic network. TraLink2vec inherits the walk bias of Node2vec for the static road network
structure from the perspectives of BFS and DFS, while also incorporating the dynamic
travel features of the traffic system to construct dynamic travel bias from the perspective
of traffic demand. To sample the directed dual traffic network G, TrLink2vec simulates a
random walk process of fixed length l for r times. Given a current node ci−1, the next node
ci is generated based on the following distribution:

P(ci = x | ci−1 = v) =
{ πvx

Z if (v, x
)
∈ E

0 otherwise
(2)

where πvx is the unnormalized transition probability between nodes v and x, and Z is the
normalization constant.

In order to balance the dynamic and static features in the traffic network, we use a
second-order random walk procedure to guide the walk. Suppose the current random walk
passes through the edge (t, v) to reach v. We set the unnormalized transition probability
πvx = π(x | t, v) as follows:

π(x | t, v) =


α× 1

p × wvx + β× ε f low_x
εspeed_x

if dtx = 0

α× wvx + β× ε f low_x
εspeed_x

if dtx = 1

α× 1
q × wvx + β× ε f low_x

εspeed_x
if dtx = 2

(3)
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ε f low_x =
f lowx

f lowv
(4)

εspeed_x =
speeddesign

speedx
(5)

where π(x | t, v) is the unnormalized transition probability of the next link node x through
the edge (t, v). dtx is the shortest path distance between link node t and link node x. wvx
is the weight between link node v and link node x, which means the length between the
midpoints of the two link nodes. Parameter p is the return parameter, which controls the
probability of returning to the previous link node. Parameter q is an in-out parameter,
which controls the probability of returning to the previous link node or exploring far-away
link nodes. Parameter α is the control weight of static features and parameter β is the
control weight of dynamic features. ε f low_x is the traffic demand coefficient, f lowx is the
traffic flow of link node x and f lowv is the traffic flow of link node v. εspeed_x is traffic state
coefficient, speedx is the average speed of link node x and speeddesign denotes the design
speed of link node x.

As shown in Figure 2, the traffic flow and traffic speed on the nodes represent the
dynamic attributes of the link nodes. The connection relationship between nodes represents
the static attributes of the link nodes. In terms of static features that affect the walk, the
label values on the edges characterize the control parameters of the next link node x passing
link node v. Where the control parameter for returning to the previous link node t is 1

p . The

control parameter for exploring further nodes such as link node x2 and x3 is 1
q . The control

parameter for exploring other link nodes such as link node x1 is 1. In terms of dynamic
features that affect the walk, link nodes with higher traffic flow and lower traffic speed are
found to have a higher transition probability. For instance, in the case of link nodes x2 and
x3, the transition probability from v to x2 is higher than from v to x3. Conversely, for link
nodes t and x3, the transition probability from v to t is higher than from v to x3.
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Therefore, with vi(i = 1, 2, . . . , n) as the starting link node, the walk sequence
Wvi =

{
w1

vi
, w2

vi
, . . . , wl

vi

}
can be obtained by simulating a random walk through the

transition probability function, where wj
vi (j = 1, 2, . . . , l) denotes the jth link node passed

in the walk procedure with vi as the starting link node, l denotes the length of the walk.
Repeat r times for each node in the traffic network, and finally obtain r walk sequences
W =

{
Wvi ,1, Wvi ,2, . . . , Wvi ,r

}
of length l for each node, where Wvi ,k denotes the kth repeat

of the walk sequence with vi as the starting link node. Finally, the walk sequences obtained
from each node in the traffic network are utilized as input, and the skip-gram model, which
is commonly used in natural language processing (NLP), is employed for training. This
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allows for the mapping of road links with dynamic and static attributes into d-dimensional
vectors.

3.3. Traffic Link Importance Evaluation

In previous studies, clustering was often used to evaluate the importance of road
links after obtaining some link importance characteristics. The importance of road links is
typically classified into three categories: critical, normal, and unimportant [11]. Following
this concept, the embedding vectors obtained by TraLink2vec are clustered in this paper.
Generally speaking, the importance of a road link is positively related to its traffic demand,
with higher traffic demand indicating greater importance. Traffic demand is directly
reflected by the traffic flow of the road link, and higher traffic flow indicates higher traffic
demand. Additionally, the traffic state of the road link can also characterize its traffic
demand. When a road link is congested, its traffic flow may be small, but this does not
necessarily mean that its traffic demand is also small. Therefore, the importance evaluation
indicator of road link is defined as follows:

Iv = f lowv ×
speeddesign

speedv
(6)

where f lowv is the traffic flow of link node v, speedv is the average speed of link node v,
speeddesign is the design speed of link node v. This indicator represents the ratio of traffic
demand to traffic state in a road link. The larger Iv means that the traffic demand on the
road link is greater as well as the road link is more important.

After computing the importance evaluation indicator of each link node, the average
importance of each clustering category is then calculated based on the clustering results,
which serve as the evaluation index of road link importance. The traffic link importance
evaluation process is demonstrated in Algorithm 1.

Algorithm 1 Traffic Link Importance Evaluation

Input: Link node, V; Link length, W; Traffic flow, FT ; Average speed of road, ST ; Link design
speed, Sdesign; Time interval, T;
Output: Nodes label and important rating, IR
1: G = Constructing Directed Dual Traffic Network (V, E, ST , FT);
2: Calculating embedding vectors of link nodes E(V) = TraLink2vec(G);
3: Clustering embedding vectors of traffic networks C = clustering(E(V));
4: Calculating the importance evaluation indicator i = index(EV)
5: Initializing the importance of link, IR = list();
6: for v in V do
7: for c in C do
8: if cluster results of v ∈ c then
9: v.ir = calculating the average importance of link of all V ∈ c;
10: end if
11: end for
12: end for
13: for v in V do
14: Calculating importance rank result r = sort by v.ir
15: IR. append (v, r)
16: end for

In this paper, we utilized the K-means clustering algorithm [23] to cluster the em-
bedding vectors due to its simplicity and efficiency. The algorithm initiates by randomly
selecting k samples as cluster centers and then computes the distance between each sample
and the cluster center. Subsequently, each sample is assigned to the closest cluster center,
and the samples assigned to each center form a cluster. After all samples are allocated, the
centroid within each cluster is recalculated and reassigned until it converges to a stationary
position. This clustering method is well-suited for datasets with clusters of arbitrary shapes.
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4. Experimental Setup
4.1. Dataset Description

In this paper, the central area of Huangpu District in Shanghai was selected as the
study area, and the basic data included two data sources. The first one was the GIS map of
the urban area of Huangpu District in Shanghai, which included road direction, road level,
design speed, number of lanes, and other relevant information. The second one was the
automatic vehicle identification (AVI) data in Shanghai during January, which contained
the AVI device number, the desensitized license plate of the vehicle, vehicle type, passing
time, driving direction, lane number, and other relevant information. We reconstructed the
travel trajectories of all vehicles based on the travel time estimation method and mapped
individual travel behavior to the road network for calculation. This process enabled us to
obtain the traffic flow and average speed of each road link during a specific time interval.

We constructed a directed dual traffic network in the central area of Huangpu District
using the data sources described above, as illustrated in Figure 3. This network comprised
277 road link nodes and 769 edges. By integrating the AVI data, we were able to obtain the
traffic flow and average speed of each road link during a specific time interval.
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4.2. Evaluation Metrics

(1) In this study, we adopt the Calinski–Harabaz Index (CHI) [24] to evaluate the per-
formance of the clustering results and to identify the optimal parameters for the
representation learning algorithm. The CHI is calculated as follows:

CHI =
tr(Bk)(m− k)
tr(Wk)(k− 1)

(7)

where m is the number of link nodes, k is the number of clusters, Bk is the covariance matrix
between different clusters, Wk is the covariance matrix between data within clusters, tr(·)
is the traces of matrix. This indicator is the ratio of all inter-class distances to intra-class
distances. A higher value of CHI indicates that the intra-classes are more tightly packed,
and the inter-classes are more widely separated, which leads to a better clustering effect.

(2) The transportation network is a typical open and complex system. The failure of
a few links can have a cascading effect, ultimately impacting the efficiency of the
surrounding local networks. Therefore, we consider using the variation of network
efficiency [25] to evaluate the performance of the proposed method in this study.
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In the urban transportation system, the traffic demand of each road link is different.
Generally speaking, road links with higher traffic demand have a greater impact on the
surrounding road links. Based on this principle, we propose a method for calculating
traffic network efficiency that considers urban travel demand. We define the traffic network
efficiency as follows:

ei =
1

(n− 1)∑
i 6=j

1
dij
× Ii (8)

E(G) =
1
n ∑

i∈V
ei (9)

where ei is the link node efficiency of link node vi, dij is the shortest path distance between
link node vi and link node vj, Ii is the importance evaluation indicator of the link node vi.
E(G) is the overall traffic network efficiency, which is the average link node efficiency of all
link nodes in the traffic network. n is the number of link nodes. The link node efficiency
characterizes the importance of nodes in urban traffic networks, with a larger ei indicating
a greater importance of link node vi in the traffic network. E(G) is used to evaluate the
overall efficiency of the traffic network, with a larger E(G) indicating a more efficient urban
traffic network.

In the urban transportation network, the critical link nodes have a more significant
impact on the overall traffic network efficiency. Therefore, after obtaining the importance
of each road link, a certain percentage (such as 10%, 30%, 50%, or 70%) of critical road link
nodes can be removed from the original network with an overall traffic network efficiency
E to obtain the overall traffic network efficiency E′ after removing the road link nodes. The
traffic network efficiency ratio is calculated as follows:

η =
E′

E
(10)

where E is the original traffic network efficiency, E′ is the traffic network efficiency after
removing a certain percentage of critical road link nodes. This indicator indicates the
change in urban traffic network efficiency. When removing the same proportion of link
nodes, a smaller value of η indicates a greater impact of the removed link nodes on the
traffic network, thereby emphasizing the higher importance of the removed road links in
the urban traffic system.

4.3. Baselines

In order to verify the effectiveness of the proposed method, different methods are
selected and evaluated in comparison with the proposed method in this study on a uniform
dataset:

• Sorted by traffic flow (SF)

This method sorts all link nodes by their traffic flow, as it is widely acknowledged that
road links with higher traffic flow are more crucial in the traffic system. By comparing this
method, we can evaluate the effectiveness of using solely traffic metrics for link importance
evaluation. Additionally, we can investigate how the representation learning and clustering
process impact the final results.

• Degree and clustering coefficients index (DCI)

This method based on degree and clustering coefficient was proposed by Yan et al. [26]
for measuring the node importance evaluation of aviation networks. The method combines
the direct influence of the nodes in the network and the closeness of the connection between
the node neighbors. The formula of DCI of link node vi in the traffic network is shown as
follows:

DCI(i) = ki × α−C(i)(α > 1) (11)



Appl. Sci. 2023, 13, 5994 10 of 15

where ki is the degree of link node vi, C(i) is the clustering coefficient of link node vi, α
is an adjustable parameter, which is set to 3 in this paper. In this method, the larger DCI
means the link node is more important in the traffic network.

• Deepwalk

Deepwalk, proposed by Perozzi et al. [21] in 2014, utilizes the concept of word2vec to
generate node sequences by uniformly sampling nodes through random walk in the graph
structure. The resulting node sequences are used as the corpus for word2vec, combined
with the skip-gram model to learn the d-dimensional embedding vectors of the nodes.
The obtained embedding vectors are then clustered using the K-means method, and their
importance in each category is evaluated based on the importance evaluation indicator. The
average importance evaluation indicator of each category reflects the importance of road
links within that category, allowing for the identification of critical road link categories.

• Node2vec

Node2vec, proposed by Grover et al. [22] in 2016, modifies the node sampling method
of Deepwalk by incorporating BFS and DFS. The resulting node sequences are then used
as a corpus for the word2vec algorithm to learn d-dimensional embedding vectors of the
nodes using the skip-gram model. The obtained embedding vectors are then clustered
using the K-means method, and their importance in each category is evaluated based
on the importance evaluation indicator. The average importance evaluation indicator of
each category reflects the importance of road links within that category, allowing for the
identification of critical road link categories.

5. Experimental Results
5.1. Parameter Sensitivity Analysis

The TraLink2vec model is composed of four key hyperparameters: p, q, α, and β.
To investigate the impact of these hyperparameters on the clustering results, we analyze
different time periods (morning and evening rush hours) and time intervals (T = 5 min,
T = 15 min, T = 30 min). For simplicity, we fixed the dimension of embedding vectors
(d = 3), random walk length (l = 50), the number of walks (r = 10), and window size
(w = 5). Research data were collected on 12 January 2022.

Figure 4 shows the change of the CHI with the change of the return parameter p and
in-out parameter q in static attributes. The figure shows that as the parameter q increases,
the CHI decreases regardless of the time period, suggesting that smaller values of q result in
better clustering results with higher CHI values. Moreover, the different colored curves in
the figure correspond to different values of the parameter p. As the parameter p increases,
the overall CHI curve shifts downward, indicating that CHI becomes smaller, and the
clustering results worsen. This indicates that smaller values of p lead to better clustering
results with higher CHI values.

Figure 5 displays the variation of CHI as the static and dynamic characteristic control
parameters α and β change. These parameter variations reflect the model’s attention to
the traffic network structure and traffic information during the random walk. For T = 5
min and T = 30 min, the CHI curve generally increases as the static control parameter α
increases, indicating that larger values of α lead to better clustering effects and higher CHI
values. However, for T = 15 min, the curve shows fluctuations, indicating that parameter
adjustments are necessary to achieve optimal results. The curves of different colors in the
figure represent different parameters β. In general, the models obtain better clustering
effects when β < 1, and no significant shift in the curve is observed when β > 1. The same
dynamic control parameter β has different CHI values at different time intervals during
different time periods, indicating that the effect of clustering changes with time periods and
intervals. These findings demonstrate that the proposed model successfully captures the
dynamic features in the urban traffic system during the learning of road link information.
In practical applications, the optimal β value needs to be determined by adjusting the
parameters.
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5.2. Performance and Comparison

To evaluate the effectiveness of the proposed method, we compared four road link
importance evaluation methods, including the sorted by traffic flow method (SF), degree
and clustering coefficients index (DCI), Deepwalk, and Node2vec. A directed dual traf-
fic network model was constructed using urban AVI data with different time periods
and different time interval sizes, which is shown in Table 1. All data were collected on
12 January 2022.
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Table 1. Illustration of different time periods and different time intervals.

Time
During Time

5 min 15 min 30 min

Morning Rush 8:30–8:05 8:30–8:45 8:30–9:00
Hollow 10:30–10:05 10:30–10:45 10:30–11:00

Evening Rush 18:30–18:05 18:30–18:45 18:30–19:00

This study selected the road links in the top 33% of importance as destructible road
links for the importance evaluation using different methods. Moreover, for the destructible
road links, the same proportion (10%, 30%, 50%, 70%) of link nodes were removed using
random selection. The performance of the method was evaluated by comparing the
magnitude of the traffic network efficiency ratio η of the urban road network before and
after the road link removal. Where the smaller road network efficiency ratio η means that
its method performs better. Each experiment was repeated 10 times to ensure the validity
of the results in this paper.

For the selection of the set of destructible road links, the study obtained them in
two ways:

(1) For the method based on importance ranking (SF, DCI), the study used the nodes
ranked in the top 33% as the set of destructible road links.

(2) For the graph representation learning model (TraLink2vec, Deepwalk, Node2vec),
the selection was based on the clustering results. If the number of link nodes in the
category of critical links was greater than 33% of the total number of link nodes, the
link nodes were randomly removed from it. If the number of link nodes was less
than 33% of the total number of link nodes, the remaining link nodes were randomly
selected from the category of normal road links after all the link nodes in the category
of critical road links were selected.

For TraLink2vec, we set parameter α to 0.5, parameter β to 1, parameter p to 1,
parameter q to 0.25, and maintained the other parameter settings as previously defined.
For Deepwalk and Node2vec, the same parameter settings were used as in TraLink2vec.

Tables 2–4 present the performance of various methods for different time intervals
during different time periods. The bold numbers indicate the optimal performance for each
condition. The results show that the proposed methods in this study demonstrate superior
performance in most cases, indicating that the integration of dynamic and static features of
road links can effectively identify critical road links.

Table 2. Performance of road link node importance evaluation in different methods (T = 5 min).

Time
Proportion

of Links
Removed

The Traffic Network Efficiency Ratio

DCI SF Deepwalk Node2vec TraLink2vec

Morning
Rush

10% 0.883 0.912 0.836 0.861 0.785
30% 0.727 0.74 0.635 0.611 0.604
50% 0.392 0.568 0.452 0.477 0.406
70% 0.288 0.467 0.266 0.303 0.268

Hollow

10% 0.939 0.915 0.868 0.872 0.859
30% 0.677 0.76 0.691 0.545 0.673
50% 0.614 0.588 0.479 0.471 0.466
70% 0.44 0.454 0.444 0.412 0.271

Evening
Rush

10% 0.857 0.925 0.844 0.844 0.837
30% 0.786 0.648 0.66 0.684 0.639
50% 0.537 0.585 0.465 0.477 0.523
70% 0.417 0.396 0.402 0.395 0.318
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Table 3. Performance of road link node importance evaluation in different methods (T = 15 min).

Time
Proportion

of Links
Removed

The Traffic Network Efficiency Ratio

DCI SF Deepwalk Node2vec TraLink2vec

Morning
Rush

10% 0.917 0.946 0.915 0.82 0.805
30% 0.683 0.714 0.607 0.697 0.442
50% 0.558 0.578 0.439 0.379 0.384
70% 0.382 0.43 0.312 0.326 0.292

Hollow

10% 0.917 0.918 0.846 0.917 0.865
30% 0.65 0.741 0.653 0.7 0.611
50% 0.583 0.571 0.562 0.455 0.477
70% 0.45 0.501 0.443 0.436 0.376

Evening
Rush

10% 0.877 0.952 0.9 0.826 0.848
30% 0.676 0.766 0.709 0.643 0.573
50% 0.49 0.611 0.542 0.473 0.431
70% 0.378 0.462 0.421 0.392 0.332

Table 4. Performance of road link node importance evaluation in different methods (T = 30 min).

Time
Proportion

of Links
Removed

The Traffic Network Efficiency Ratio

DCI SF Deepwalk Node2vec TraLink2vec

Morning
Rush

10% 0.876 0.923 0.82 0.88 0.801
30% 0.739 0.778 0.587 0.593 0.483
50% 0.526 0.573 0.432 0.455 0.366
70% 0.319 0.391 0.331 0.297 0.274

Hollow

10% 0.946 0.931 0.854 0.906 0.857
30% 0.773 0.798 0.674 0.662 0.599
50% 0.553 0.596 0.527 0.509 0.505
70% 0.403 0.472 0.486 0.404 0.261

Evening
Rush

10% 0.918 0.936 0.898 0.907 0.845
30% 0.744 0.77 0.682 0.647 0.592
50% 0.517 0.63 0.497 0.488 0.465
70% 0.377 0.437 0.43 0.408 0.284

Compared to SF and DCI, the TraLink2vec model outperforms both methods in all
cases, demonstrating that relying solely on traffic travel or network topology indicators
cannot effectively identify critical road links in urban transportation systems. Compared
to Deepwalk and Node2vec, although TraLink2vec did not achieve the best performance
during short intervals (T = 5 min) and hollow periods, the difference between its perfor-
mance and the best method can be negligible. This suggests that TraLink2vec is capable of
capturing the latent information of urban structures even during periods with no apparent
traffic travel characteristics and is also effective in identifying critical road links.

As the time interval increases, TraLink2vec demonstrates superior performance com-
pared to other methods in identifying critical road links. Particularly in the evaluation with
a time interval of 30 min, TraLink2vec significantly outperforms other baseline methods.
This suggests that as the time interval increases, TraLink2vec, utilizing both the network
structure and dynamic travel, can capture the hidden features in the traffic system and
accurately identify critical road links in the city through the clustering method. Further-
more, as the proportion of removed link nodes increases, the performance gap between
TraLink2vec and other methods widens. When the proportion of removed link nodes
reaches 70%, the traffic network efficiency ratio of TraLink2vec is approximately between
0.25 and 0.3, indicating that removing less than 25% of link nodes will cause the network
to collapse. On the other hand, when other methods with the same proportion of link
nodes are removed, the traffic network efficiency is between 0.3 and 0.5. These results
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demonstrate the advantages of the proposed method in accurately identifying critical road
links in the traffic system.

6. Conclusions

The evaluation of urban critical links is of great significance for the control of urban
traffic systems. In this paper, we propose a novel approach that combines both static and
dynamic attributes of urban road networks to evaluate critical road links. The directed
dual traffic network model is introduced to reflect the crucial role of road links in the traffic
system. By constructing the directed dual traffic network at different time periods, the
circulation and time-varying characteristics of the traffic system are fully considered. The
TraLink2vec model is proposed to accurately capture the dynamic and static information of
road links in the urban traffic network, which can effectively identify critical road links in
urban road networks combined with machine learning analysis. The experimental results
show that our proposed method outperforms baseline methods under real-world data,
demonstrating its effectiveness and superiority.

Individual travel information is an important feature in traffic systems, which contains
great spatio-temporal information. In the future, the combination of individual travel
information and traffic travel information in urban areas has the potential to enable joint
control of road link node information mining, leading to a comprehensive understanding
of urban traffic. Additionally, the TraLink2vec model holds promise for application beyond
critical road link evaluation, as it can be extended to explore the prediction of traffic travel
information, including traffic status and travel trajectory, through combination with deep
learning models.
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