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Abstract: Industrial automation and control systems have gained increasing attention in the literature
recently. Their integration with various systems has triggered considerable developments in critical
infrastructure systems. With different network structures, these systems need to communicate with
each other, work in an integrated manner, be controlled, and intervene effectively when necessary.
Supervision Control and Data Acquisition (SCADA) systems are mostly utilized to achieve these
aims. SCADA systems, which control and monitor the connected systems, have been the target of
cyber attackers. These systems are subject to cyberattacks due to the openness to external networks,
remote controllability, and SCADA-architecture-specific cyber vulnerabilities. Protecting SCADA
systems on critical infrastructure systems against cyberattacks is an important issue that concerns
governments in many aspects such as economics, politics, transport, communication, health, security,
and reliability. In this study, we physically demonstrated a scaled-down version of a real water plant
via a Testbed environment created including a SCADA system. In order to disrupt the functioning of
the SCADA system in this environment, five attack scenarios were designed by performing various
DDoS attacks, i.e., TCP, UDP, SYN, spoofing IP, and ICMP Flooding. Additionally, we evaluated
a scenario with the baseline behavior of the SCADA system that contains no attack. During the
implementation of the scenarios, the SCADA system network was monitored, and network data
flow was collected and recorded. CNN models, LSTM models, hybrid deep learning models that
amalgamate CNN and LSTM, and traditional machine learning models were applied to the obtained
data. The test results of various DDoS attacks demonstrated that the hybrid model and the decision
tree model are the most suitable for such environments, reaching the highest test accuracy of 95%
and 99%, respectively. Moreover, we tested the hybrid model on a dataset that is used commonly in
the literature which resulted in 98% accuracy. Thus, it is suggested that the security of the SCADA
system can be effectively improved, and we demonstrated that the proposed models have a potential
to work in harmony on real field systems.

Keywords: critical infrastructure; SCADA; cybersecurity; DDoS; deep learning; testbed

1. Introduction

Facilities that produce, store, and transmit natural resources, such as water, oil, and
natural gas, or energy sources, such as hydroelectric, solar, and nuclear, constitute critical
infrastructures. Space, satellite, air, sea, or train transportation systems are also in these
groups. These systems spread and work over small or large areas. Some systems monitor,
control, and, when necessary, intervene in processes and events in critical infrastructures
from a central point. One of them is the Supervisory Control and Data Acquisition (SCADA)
system. For example, municipalities use SCADA systems to monitor water levels, pipe
pressure, and the temperature in tanks located in utility water distribution facilities.

The reports and research published every year in the field of cybersecurity suggest
one should always be ready for attacks that may occur from the inside or the outside [1].
Ensuring the cybersecurity of SCADA systems in the cyber world is a crucial issue and
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has become mandatory. Since cyberattacks against SCADA systems are dangerous for
critical infrastructure systems, these attacks should be investigated [2]. According to a
special report by the National Institute of Standards and Technology, cyberattacks to control
systems can disrupt the reliable operation of industrial processes. Therefore, providing
cybersecurity is imperative [3]. Defence Research and Development Canada published a
report aimed to increase the cyber resilience of Canada’s critical infrastructure. According
to the report, changes to the standard network configurations of SCADA networks can
greatly improve the protection of control system fields [4]. In the study conducted by the
U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, security
vulnerabilities found to be common in control systems such as SCADA were discussed
and grouped by severity. In addition, security recommendations were provided for asset
owners and system vendors [5]. Due to the architectural structure of SCADA systems,
their integration with advanced technology has not been fully solved. On the other hand,
internet usage, access to external networks, and remote control are increasing worldwide.
These developments enhance the functionality of traditional SCADA systems, but they also
bring many security vulnerabilities.

Critical infrastructures are designed to enable citizens to maintain their lives in better
conditions. Problems experienced in the functioning of these structures may affect not
only the relevant area but also the whole country. For example, the failure of electricity
generation, storage, and transmission facilities can cause massive chaos in a country
and directly affect other electrical systems. Countries experiencing power outages have
realized how crucial such blackouts are. Attacks on critical infrastructures can destructively
impact the economy, security, or health. The consequences of cyberattacks against SCADA
systems may be far beyond estimates. As a result, necessary measures should be taken
for the cybersecurity of SCADA systems. Security system developments, such as attack
detection and prevention, will considerably contribute to the continuity of a country’s
critical infrastructures.

Models that include machine learning, deep learning, or artificial intelligence algo-
rithms used in attack detection studies may also serve in SCADA systems. Studies to
determine the “attacks” and “attack types” can contribute to the cybersecurity of SCADA
systems. There are different types of cyberattacks, and distributed denial-of-service (DDoS)
attacks are more common than other attacks. In particular, handling DDoS attacks for
SCADA systems is essential in cybersecurity. Since the attack detection models in the
algorithms have different structures, the analyses also give different results. For example,
an attack detection model providing high performance on one dataset can deliver poor
performance on another, or different models on a dataset may not yield the same highly
successful results. For these reasons, developing an attack detection model that provides
high performance for a particular dataset is essential.

The current study aimed to detect DDoS attacks that may occur against a SCADA
system used in critical infrastructures and to determine the type of DDoS attack. For
this purpose, a testbed was prepared that enables the processing of cyber and physical
processes. Various DDoS attacks and tests were implemented on the testbed to damage
the processes of the SCADA system and measure the system’s reaction against attacks.
Attack detection is essential to ensure the cybersecurity of the system. For this purpose, the
network traffics in the baseline situation without any attack and the situations in which
DDoS attacks were applied and recorded. Deep learning and machine learning algorithms
were used to analyze the recorded network traffic packets and to determine whether there
is an attack or not. In addition to intrusion detection, these algorithms have also been
studied to determine the type of attack. The deep learning-based convolution neural
network (CNN) model, long short-term memory (LSTM) model, and hybrid model using
LSTM-CNN algorithms together were evaluated. Machine learning-based 13 algorithms
such as K-Nearest Neighbors (KNN), LogitBoost, Naive Bayes, PART, decision tree, and
random forest were used. High success rates were obtained with deep learning-based
LSTM-CNN hybrid model and machine learning-based decision tree model. It is aimed to
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provide different perspectives for ensuring the cybersecurity of SCADA systems and to
prepare suitable models for determining the type of attack.

The main contributions of the present study are as follows:

• A testbed environment containing a SCADA system was prepared and different
components, software and hardware were used from the studies in the literature.

• Various DDoS attacks (five different) and the baseline situation were evaluated together
to add diversity to the literature.

• A new dataset was prepared to contribute to the literature by including various DDoS
attacks and a baseline situation, enabling detection and identification of attack types.

• CNN and LSTM algorithms were used as separate models for attack detection and
attack type determination. In addition, LSTM and CNN algorithms were evaluated
together and used as a hybrid model. In the studies in the literature we examined, there
are no such separate and hybrid uses in this way. By using a hybrid model, a higher
success rate was obtained than using separate models. In addition to deep learning-
based models, machine learning-based models were also prepared and evaluated in
the study. Analyses were performed with 13 different machine learning algorithms
and the highest success rate was obtained with the decision tree model.

• A commonly used dataset in the literature was selected and tested to evaluate the
adequacy of the hybrid model. According to the results obtained, a high accuracy rate
was achieved.

This study comprises six chapters. The first part provides an overview of SCADA
systems, shows the security vulnerabilities, and explains the importance of ensuring the
cybersecurity of SCADA systems. The second part examines the studies that detect attacks
against SCADA systems using their own datasets, ready-made datasets, or their own
testbeds. The third chapter discusses SCADA systems and cyberattacks against these
systems. The fourth section covers the prepared testbed environment, DDoS attacks
against this environment, the obtained dataset, the success metrics, and the proposed
models. The fifth section presents the analyses for DDoS attack detection for SCADA
system, experimental results of the proposed models, and the results of other studies in the
literature. The study results and recommendations for future studies are summarized in
the sixth section.

2. SCADA Systems and Cybersecurity

This section gave information about what SCADA systems are, what components they
consist of, the cybersecurity of these systems, and possible attacks.

2.1. Scada System

SCADA systems perform control and monitoring tasks in critical infrastructure or
facilities. Critical infrastructures, such as power generation plants, wind energy turbines,
and natural gas distribution facilities are vital structures that produce and (or) transmit
natural gas, oil, water, and similar resources to another place. To give more examples, many
systems such as municipal water distribution facilities, airlines, and ship systems are also
critical infrastructure systems and have a significant place nationally and internationally.
SCADA systems are also used in production facilities, factories, or public institutions apart
from these infrastructures.

SCADA systems consist of a master terminal unit (MTU), remote terminal units (RTUs),
and a communication network. The MTU controls the processes in the system using a
human–machine interface (HMI). There is data exchange and command transmission be-
tween RTUs and MTU. RTUs transmit the data collected from the field sensors to the MTU,
and RTUs carry out the commands from MTU. Modbus, DNP3, and Profibus communica-
tion protocols—specific to SCADA systems—are used for communication between basic
units. The sensors and actuators on the RTUs abide by the commands. Elements such as
pumps and relays serve as actuators. The HMI also demonstrates the data obtained from
the sensors [6,7].
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2.2. Cybersecurity and Attacks in Scada Systems

Most structures where SCADA systems are used have not direct connections to the
internet and work independently from external networks. Developing technologies expand
the area of internet usage, and this situation also affects SCADA systems. Innovations
such as the co-usage of different technologies and remote accessing the system via the
internet create new cybersecurity problems for SCADA systems. SCADA systems, which
cannot keep up with the developing technology, have many architecture-related security
problems. For example, the frequently used Modbus protocol has many vulnerabilities that
can be attacked, such as by a man-in-the-middle, command injection, and denial-of-service
(DoS) [8–10]. SCADA systems in different sectors become attractive targets for malicious
people who are aware of these situations and work in the national or international arena.
Figure 1 shows the sectors where SCADA systems serve. Each can contain various threats
that malicious applications can attack.
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Today, many attack scenarios may occur in SCADA systems, such as emerging new
vulnerabilities, existing old security gaps, vulnerability exploitation, damaging systems, or
rendering the system inoperable. Possible scenarios may cover malicious remote control
of the system and power cut threats. For example, cyberattacks can occur by targeting
electricity generation or distribution facilities. As a result of these attacks, there may
be power cuts; cities may suddenly go dark. A nuclear power plant’s centrifuges were
remotely disrupted through the Stuxnet, which is one of the most dangerous attacks. In this
attack, while the system was physically damaged, the field operators noticed the problem
much later [11]. Another example of an attack is the remote poisoning of the Florida City
Water Supply. The attackers seized the water facility and tried to increase the sodium
hydroxide level in the city water. Once the authorities realized the situation, they quickly
intervened and prevented the attack [12]. As can be understood from these examples,
cyberattacks can also affect some or all of the SCADA systems. In addition, the experienced
problems may adversely trigger other systems associated with SCADA systems. Today,
actions to disrupt public peace, complicate their daily life, or harm their health have become
possible using the vulnerabilities in SCADA systems. For these reasons, cybersecurity in
SCADA systems is necessary today.
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SCADA systems are vulnerable to numerous attacks due to their tasks, traditional ar-
chitectural structure, and built-in communication technologies. Specially developed attack
techniques make SCADA systems targets for aggressive attempts, and the security risk of
these systems is increasing day by day. Various attacks are made against SCADA systems,
such as man-in-the-middle, data injection, command injection, DoS, and DDoS [10,13,14].
Among these, DDoS attacks are common and dangerous attacks that can affect any SCADA
system. These attacks aim to disrupt control and process operations and render the system
out of use [15,16]. DDoS attacks against SCADA systems used in critical infrastructures
may cause devastating harm to these infrastructures.

3. Literature Studies on SCADA Security

In the literature, studies carried out on the detection of DDoS attacks against SCADA
systems are considerably popular. These studies have frequently used machine learning-
and deep learning-based methods for attack detection. Some of these works are summa-
rized below.

Marcio Andrey Teixeira et al. performed a study to detect cyberattacks on SCADA
systems. The authors created a dataset using a test environment. They employed random
forest, decision tree, logistic regression, Naive Bayes, and KNN algorithms in their study
for attack detection [17].

Thomas Morris and colleagues worked on potential cyberattacks at Mississippi State
University’s SCADA Security Lab and investigated the security vulnerabilities of the most
widely used communication protocols in SCADA systems. They aimed to detect attacks
and minimize their effects with the security mechanisms developed with neural network
methods [18].

Nader et al. carried out a study on the security of industrial control systems and
critical infrastructures. They emphasized that traditional attack detection systems could
not detect attacks newly developed and unregistered in databases. They used data from a
water distribution system in France in the study and proposed machine learning algorithms
for attack detection [19].

Focusing on the developments in information and communication technologies, Y.
Yang et al. have emphasized that the complexity and security vulnerabilities in SCADA
procedures are gradually increasing. They stated that new security measures were necessary
for new-generation SCADA designs integrated into the internet and different systems.
Therefore, they proposed an attack detection system with a behavior-based and multilayer
framework [20].

Almalawi et al. proposed two approaches to detect attacks against SCADA systems.
The first was to determine whether the data in the system were consistent or inconsistent.
The second approach was to obtain proximity detection rules from specified situations.
They stated that the KNN-based attack detection system showed significant accuracy [21].

Meir Kalech proposed techniques based on temporal pattern recognition for cyberat-
tack detections in SCADA systems. The study proposed two algorithms based on Hidden
Markov models (HMM) and artificial neural network-based self-organizing maps (ANN-
based SOM). According to the results obtained, they stated that it was easier to detect
cyberattacks [22].

Jun Gao et al. discussed temporally uncorrelated and correlated attacks against
SCADA systems. They detected attacks using the feedforward neural network (FNN)
and LSTM algorithms based on deep learning. The FNN-LSTM model, on the other
hand, succeeded in detecting both types of cyberattacks, regardless of their temporal
correlations [23].

While intrusions into SCADA systems will continue, defense mechanisms against
different attack vectors remain insufficient. Therefore, Maglaras et al. conducted a study to
ensure the cybersecurity of SCADA systems. Accordingly, they proposed an integrated at-
tack detection mechanism against cyberattacks that captures network traffic, divides traffic
by source, and creates a set of one-class support vector machine (OCSVM) models [24].
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Gao et al. proposed two models aimed at detecting attacks against SCADA systems.
These models have many-to-many (MTM) and many-to-one (MTO) architectures. The
models used the LSTM algorithm. Both detection systems performed well in detecting
temporally uncorrelated attacks [25].

There are many studies aimed at detecting unauthorized access to SCADA systems.
Shitharth and Winston developed an intrusion detection system that classifies attacks
based on optimization. They proposed intrusion weighted particle-based cuckoo search
optimization (IWP-CSO) and hierarchical neuron architecture-based neural network (HNA-
NN) techniques [26,27].

This study focused on DDoS attacks in SCADA architecture and presented models that
work efficiently to detect attacks. In the literature, studies that detect attacks on SCADA
systems have been examined and it has been seen that machine learning algorithms such
as random forest, decision tree, logistic regression, Naive Bayes, KNN, and SVM are
used more frequently than other algorithms for detection. In addition to these, there are
models in which neural networks and deep learning algorithms such as LSTM are used. In
this study, deep learning-based models (CNN, LSTM, LSTM-CNN hybrid) and machine
learning-based models (13 models such as KNN, LogitBoost, Naive Bayes and decision
tree) were proposed. The attack detection accuracy rates of the examined studies and this
study are placed in the table in the Section 5.2. Thus, a general review and comparison is
provided for the studies.

4. Materials and Method

This section elaborated on the prepared testbed, fictionalized the cyberattacks using
scenarios, and gave information about the dataset’s features obtained from the testbed.
This section also covered the metrics to analyze the dataset as well as their explanations.
Information was given about the proposed models and their architectural structures. The
topics in this section are summarized in Figure 2.
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4.1. Physical Testbed

The test environment aimed to simulate the industrial control systems of a plant as
approximately as possible without completely copying them [28]. In addition, it aimed to
contribute to the performance of national and international industrial control system stan-
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dards and directives. The preparation and use of a testbed provides a suitable environment
for performing real cyberattacks and even observing the results of the attack.

In order to contribute to cybersecurity research, a testbed environment including a
SCADA system was prepared in the study. In this environment there are storage tanks,
specific processes are operated, and Modbus TCP/IP communication is used. A SCADA
system is usually realized by integrating Modbus communication protocol [29]. A simpli-
fied version of a real water plant was shown in this testbed. The SCADA system controls
and monitors the water circulation processes and the status of the storage tanks. This
section explained the configuration and architectural structure of the prepared SCADA
system test environment. The equipment used in the test environment was selected from
the components frequently used in real SCADA systems. The architectural structure of the
test environment is shown in Figure 3.
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As shown in Figure 3, there are two water circulation and storage tanks in RTUs. There
were sensors and actuators connected to RTUs. The sensors monitor the water levels in the
tanks, and the water pumps operate according to the levels. In order to prevent problems
such as the overflowing of the tanks and running out of water in the tanks, the water level
is continuously controlled. In addition, an alarm was generated according to the state of
the water level and, thus, attracting the attention of the operator who is interested in the
system. LEDs and buzzers are designed for alarm events. Modbus TCP/IP wired and
wireless communication protocols were used for communication in the environment. The
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data received from the RTUs were transmitted to the MTU and the processes were followed
through the HMI simulators on the MTU. Incoming data were checked and stored, and
new commands were sent to RTUs.

Attackers scanned the network and attacked the appropriate RTU. Whether there is an
attack or not is checked on MTU. When 5 different DDoS attacks were applied to the RTU,
network traffic packets were listened to and recorded separately for each attack. In addition,
the same listening and recording operations were performed for baseline operation without
attack. Google Colab, an environment offered by Google Research, enables Python coding
for machine learning, data analysis, and training. The data were preprocessed in this
environment to make the packets suitable for analysis. Pandas’ libraries were added to this
environment and different models were generated for attack detection using deep learning
and machine learning algorithms.

4.2. Attack Scenarios for the Testbed

This section elaborates on the baseline situation of the testbed and the attacks against
the testbed. DDoS attacks, one of the most common attacks on SCADA systems, were
discussed and attacks against an RTU selected by the attacker were performed. Different
types of DDoS attack scenarios were implemented and aimed to affect the operation of the
system. These scenarios were:

1. Baseline (normal or no-attack) situation;
2. TCP flooding attack scenario;
3. UDP flooding attack scenario;
4. SYN flooding attack scenario;
5. Spoofing IP flooding attack scenario;
6. ICMP flooding attack scenario.

In the baseline situation scenario (when the SCADA system was not under attack), the
obtained network traffic was listened to and recorded. In this scenario, water circulated
continuously between the water tanks and the necessary operations were performed
automatically according to the change in the water level. The pinging method was used to
establish communication between RTU and MTU.

Specific coding was made by the attacker for each attack type and 5 different DDoS
attacks were performed against the target RTU. Each of TCP, UDP, SYN, Spoofing IP and
ICMP flooding attacks were carried out at different times and separately. Each of these
attack scenarios were executed for approximately 2 min. During the attacks, the target
RTU system processes were interrupted for a short period of time. Processes such as water
recirculation and alarm generation were disrupted. These adverse conditions also affected
the other RTU system and the operation of the entire testbed system was interrupted for
short periods of time. Abnormal situations such as incorrect measurement of the tank
water level or buzzer alarming at the wrong time were observed. When the execution of
the attack scenarios ended, the system operation slowly recovered and, after a while, the
system returned to its former state. If the time taken to restore the system operation is
too long to be tolerated, irreversible major problems may occur for SCADA systems. For
this reason, it is important to attack SCADA systems and monitor and analyze the attack
responses. In this study, this issue is emphasized.

4.3. Dataset from the Testbed

This section provides information about the total dataset obtained as a result of the
scenarios performed separately on the testbed. Network traffic packets of each scenario
were collected with Wireshark network listening and analysis tool. Then, the packets of
these 6 scenarios were collected in a single file and the total dataset was created. The
features frequently used in the literature and specific to the Modbus TCP/IP protocol were
determined for this dataset [23,25]. Table 1 shows the features used in this research.
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Table 1. Features used in the dataset and their descriptions.

No Features Descriptions

1 No Data number

2 Time Time

3 SourceIP Source Internet Protocol

4 DestinationIP Destination Internet Protocol

5 SourcePort Source port

6 DestinationPort Destination port

7 Protocol Protocol

8 Length Data packet length

9 Info Information about packet

10 Modbus_ByteCount Modbus protocol data area (in bytes) size

11 Modbus_ResponseTime Modbus protocol response time

12 Modbus_ReqFrame Modbus protocol message format

13 DeltaTime Duration between the start and end of an operation

14 ModbusEventCount Number of Modbus device transactions

15 TimeSince_FirstFrameInThisTCPStream Time elapsed since the first frame in this TCP stream

16 TimeSince_PreviousFrameInThisTCPStream Time elapsed since the previous frame in this TCP stream

17 TimeDeltaFromPrevious_CapturedFrame Time difference from the previous captured frame

18 TimeDeltaFromPrevious_DisplayedFrame Time difference from the previous displayed frame

19 TimeSince_ReferenceOrFirstFrame Time elapsed since the reference or first frame

20 FrameLength_OnTheWire Frame length on the wire

21 FrameLength_StoredIntoTheCaptureFile Frame length stored into the capture file

22 TimeToLive Time to live

23 TotalLength Total length

24 FrameLengthStoredIntoTheCaptureFile Frame length stored into the capture file

25 ModbusTCPLength Modbus TCP packet length

26 ModbusByteCount Modbus packet byte count

27 ModbusTimeFromRequest Modbus packet time from request

28 TCPHeaderLength TCP header length

29 ModbusRegNum Modbus register number

30 Register Value (UINT16) Modbus register value

31 Class Classification column

A new and comprehensive dataset consisting of 30 attributes, 1 deterministic class,
and a total of 22.768 samples was obtained. While preparing the dataset, the attacks were
observed on the SCADA system and abnormal situations were noticed clearly by the
operator. It is detected whether there is a DDoS attack and if there is an attack, which of
the 5 different types is determined. This dataset is suitable for training and testing deep
learning and machine learning models. Due to these properties, a new perspective and
contribution to the literature is presented.

4.4. The Performance Analysis Metrics in Attack Detection

Performance metrics serve for the evaluation and comparison of the deep learning,
and the machine learning algorithms for the model. While working on a problem, using
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these metrics makes it easier to propose more solutions and apply the proposed methods.
To determine the most effective method in problem solving, the performance information
of each method is obtained one by one. Then the method producing the highest success
rate is selected. Table 2 shows the confusion matrix containing the values for performance
metrics.

Table 2. Confusion Matrix.

Actual Values

Positive Negative

Predictive Values
Positive TP FP

Negative FN TN

The values in the confusion matrix show the actual values and the estimation val-
ues [30]. The fact that the value with a positive label in reality also has a positive label in
the prediction part makes it a true positive (TP). The fact that the value with a negative
label is positively labeled in the prediction part makes it a false positive (FP). The fact that
the value with a positive label is negatively labeled in the prediction portion makes it a
false negative (FN). The fact that the value with a negative label also has a negative label in
the prediction part makes it a true negative (TN). The success metrics calculated with the
values on the confusion matrix are below.

Accuracy is the ratio of the correctly predicted values to the total values. Equation (1)
shows this situation:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision is the ratio of the correctly predicted positive values to the predicted values
with a positive label. Equation (2) shows this ratio:

Precision =
TP

TP + FP
(2)

The recall is the ratio of correctly predicted positive values to the values with a positive
label. Equation (3) shows this ratio [31]:

Recall =
TP

TP + FN
(3)

F-1 Score—ranging from 0 to 1—is the harmonic mean of precision and recall values.
Equation (4) calculates this average:

F1 Score = 2 × Precision × Recall
Precision + Recall

(4)

The current study used accuracy, precision, recall, and f1-score among traditional
performance metrics. While comparing the literature studies, this research preferred the
frequently used “accuracy success metric”.

4.5. Recommended Models for Attack Detection

In this section, attacks against the testbed containing the SCADA system were detected.
For this purpose, a deep learning-based model and a machine learning-based model were
applied to the previously prepared dataset. The analysis results obtained were compared
with each other according to particular metrics.

In order to achieve successful results in proposed models, data were preprocessed,
and experiments were performed. Innovative and different approaches were proposed for
the cybersecurity of a physical testbed containing a SCADA system.
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4.5.1. Preparing the Data and Transmitting Them to the Proposed Models

This section concerns turning the dataset into an analyzable state and designing
the appropriate models, which Figure 4 summarizes. Several data pre-processes were
determined to make the dataset analyzable. The primary operations were deleting attributes
and instances deemed unnecessary or containing too many null values. The next step was
completing the attributes containing missing data using the mean method. Another process
is to convert data types to the same type using categorization processes. In the end, a
dataset with 25 features was obtained.
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After preprocessing, the dataset was divided into parts for training, validation, and
testing in the data fragmentation stage. The split ratios here were kept constant in the
models used. The obtained training and validation data were combined and sent to the
proposed models. Tests were carried out on the model using the test data, and analysis
results were obtained for training, validation, and test data. According to the results, the
attack-detection success of the proposed model was evaluated. These stages were essential
for obtaining the most suitable model which achieved the highest success rate in detecting
the attack.
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4.5.2. Recommended Models

LSTM and CNN, which are important deep learning algorithms, were used alone and
in combination with different algorithms in the literature. In this study, CNN and LSTM
algorithms were evaluated and tested separately in order to contribute to the literature.
Then, a hybrid model was created by considering these two algorithms together and tests
were performed. Tests with different properties were applied to the LSTM model and CNN
model. The parameter values in the LSTM-CNN hybrid model architecture were changed
and different test procedures were performed. These models were analyzed separately and
their attack detection success rates were discussed.

In addition to these, machine learning algorithms that are frequently used in the
literature were determined. By using these algorithms, suitable models for attack detection
were obtained. All prepared models were compared according to the determined success
metrics and the results are presented in the Section 5.1. Information about the models used,
their architectural structures, and parameter values were given in this section.

A 70% randomly selected dataset—that is, 15,937 rows of data—was used in the mod-
els’ training. The remaining 30% was split into two to evaluate the testing and validation of
the proposed model. Accordingly, 3415 rows were used for data validation and 3416 rows
(including the class column) for testing. There were 22,768 rows of data (samples) in total.

Deep Learning-Based Models

The deep learning-based models used in the study are explained in this section.
Analyses were made on the LSTM models, the CNN models, and the hybrid models in
which LSTM-CNN were used together.

Since categorical data were included for all three proposed models, categorical_
crossentropy was chosen as the loss function. Adaptive moment estimation (ADAM)
was used as the optimization algorithm because it works efficiently on datasets containing
many parameters [32]. In order to ensure stability, the rectified linear units’ (ReLU) acti-
vation function was preferred. ReLU has a simple computational form and determines
the output by evaluating the input [33]. The batch size was left by default. The softmax
function was used to finish the classification.

LSTM-Based Models

In this model, analyses were performed on the LSTM algorithm. The LSTM algorithm
is an iterative neural network and has been used frequently recently. Due to its structure, it
is very effective in catching long-term addictions. It can store information for a long time
with its special memory cell architecture. LSTM consists of repetitive sequential blocks
known as memory blocks.

In this algorithm, there are input, output, and forget gates that enter and exit between
cells and regulate the flow of information. For the iteration process, the input is generated,
the predicted output value is obtained according to the current situation, and the next
output vector is generated. Figure 5 shows the architecture of the LSTM-based deep
learning models.

The first proposed model was based on deep learning using the LSTM algorithm.
LSTM networks contain a sequential input layer. In the proposed LSTM network architec-
ture, the LSTM layer was placed after the input layer. Next came a smoothing layer and,
finally, the fully connected classification and output layers. In the study, two LSTM models
with 200 epoch and 300 epoch parameters were prepared (LSTM1a and LSTM1b). Other
parameters selected for the models were mentioned at the beginning of the chapter.
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CNN-Based Models

The CNN algorithm was studied in this model. The CNN algorithm is a variant of
feed forward neural network. The architecture of the CNN algorithm is similar to the
multilayer perceptron and consists of three layers. These are the convolution layer, pooling
layer, and fully connected layer [34]. Multiple filters are included in this algorithm to
extract or retrieve hidden features from the dataset. Figure 6 shows the architecture of the
CNN-based deep learning models.
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Deep learning was performed with the CNN1a model using 200 epochs and the
CNN1b model using 300 epochs. Both models employed a 1-D CNN layer and pooling
layer followed by normalization and flattening. Finally, connected, classification, and
output layers were used. Other parameters selected for these models were explained at the
beginning of the chapter.

Hybrid-Based Models

In the other model proposed in the study, LSTM and CNN algorithms were used as a
hybrid and analyses were carried out. Three different models (HYBRID1, HYBRID2, and
HYBRID3) were prepared using hybrid deep learning. The architecture of the first model
(HYBRID1) is shown in Figure 7 as the others were prepared with reference to the first model.

In this hybrid model (HYBRID1), deep learning was performed using LSTM and CNN
algorithms. Pooling layers and 1-D CNN layers were used. Normalization processes were
done and, after the last pooling layer, the LSTM layer was placed in the model. Smoothing,
fully connected, classification, and output layers were used. The HYBRID1a model with
200 epochs and the HYBRID1b model with 300 epochs were obtained.

In the second hybrid model (the HYBRID2), unlike the HYBRID1, normalization and
activation processes were applied twice. Then, the HYBRID2a model was obtained by
applying 200 epochs to the model and the HYBRID2b model was obtained by applying 300
epochs to the model.
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The kernel size in the 1-dimensional CNN layers in the HYBRID1 model was increased
and the number of filtering operations was reduced. In this way, the HYBRID3 model was
obtained. The HYBRID3a model for 200 epochs and the HYBRID3b model for 300 epochs
were prepared.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

and HYBRID3) were prepared using hybrid deep learning. The architecture of the first 
model (HYBRID1) is shown in Figure 7 as the others were prepared with reference to the 
first model. 

 
Figure 7. The architecture of the hybrid deep learning model (HYBRID1). 

In this hybrid model (HYBRID1), deep learning was performed using LSTM and 
CNN algorithms. Pooling layers and 1-D CNN layers were used. Normalization pro-
cesses were done and, after the last pooling layer, the LSTM layer was placed in the 
model. Smoothing, fully connected, classification, and output layers were used. The 
HYBRID1a model with 200 epochs and the HYBRID1b model with 300 epochs were ob-
tained. 

In the second hybrid model (the HYBRID2), unlike the HYBRID1, normalization and 
activation processes were applied twice. Then, the HYBRID2a model was obtained by 
applying 200 epochs to the model and the HYBRID2b model was obtained by applying 
300 epochs to the model. 

The kernel size in the 1-dimensional CNN layers in the HYBRID1 model was in-
creased and the number of filtering operations was reduced. In this way, the HYBRID3 
model was obtained. The HYBRID3a model for 200 epochs and the HYBRID3b model for 
300 epochs were prepared. 

Machine Learning Based Models 
When the literature was examined, it was seen that machine learning methods are 

also used in the detection of attacks on SCADA systems. Algorithms such as random 
forest, decision tree, logistic regression, Naive Bayes, and KNN were frequently used in 
the literature. In this study, in addition to deep learning algorithms, machine learning 
algorithms were also evaluated. Machine learning models were prepared for the detec-
tion of DDoS attacks and DDoS attack types for the testbed environment using the 
SCADA system. The results obtained were given in Table 3. 

KStar, locally weighted learning (LWL) and KNN algorithms from lazy learning 
methods were preferred. LogitBoost and AdaBoost algorithms from Meta Learning 
Methods and Naive Bayes and Bayes Net algorithms from Bayesian methods were used. 
ZeroR, PART, and decision Table algorithms based on rules and the decision tree, ran-
dom forest, and random tree algorithms based on trees were analyzed. 

Table 3. Performance values of the proposed models. 

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Deep Learning Based Models     

LSTM 
LSTM1a 84.60 86.03 84.60 83.73 
LSTM1b 84.28 84.63 84.28 83.63 

CNN 
CNN1a 93.53 94.01 93.53 93.57 
CNN1b 94.26 94.79 94.26 94.35 

LSTM-CNN HYBRID1a 94.09 94.23 94.09 94.12 

Figure 7. The architecture of the hybrid deep learning model (HYBRID1).

Machine Learning Based Models

When the literature was examined, it was seen that machine learning methods are
also used in the detection of attacks on SCADA systems. Algorithms such as random
forest, decision tree, logistic regression, Naive Bayes, and KNN were frequently used in
the literature. In this study, in addition to deep learning algorithms, machine learning
algorithms were also evaluated. Machine learning models were prepared for the detection
of DDoS attacks and DDoS attack types for the testbed environment using the SCADA
system. The results obtained were given in Table 3.

Table 3. Performance values of the proposed models.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Deep Learning Based Models

LSTM
LSTM1a 84.60 86.03 84.60 83.73

LSTM1b 84.28 84.63 84.28 83.63

CNN
CNN1a 93.53 94.01 93.53 93.57

CNN1b 94.26 94.79 94.26 94.35

LSTM-CNN HYBRID

HYBRID1a 94.09 94.23 94.09 94.12

HYBRID1b 93.97 93.99 93.97 93.97

HYBRID2a 93.91 94.05 93.91 93.93

HYBRID2b 91.92 92.33 91.92 91.93

HYBRID3a 92.77 92.99 92.77 92.82

HYBRID3b 94.73 94.90 94.73 94.74

Machine Learning Based Models

Lazy

KStar 79.93 81.93 79.95 79.03

LWL 66.00 59.62 66.02 58.53

KNN 86.15 86.08 86.15 86.11

Meta
LogitBoost 83.91 88.33 83.93 83.13

AdaBoost 42.96 - 43.01 -

Bayes
NaiveBayes 84.03 85.43 84.00 83.54

BayesNet 85.24 86.44 85.20 84.82

Rules

ZeroR 22.55 - 22.51 -

PART 79.24 91.32 79.23 77.14

DecisionTable 59.39 - 59.40 -

Trees

DecisionTree 98.77 98.77 98.77 98.77

RandomForest 95.84 97.21 95.84 96.51

RandomTree 83.07 85.71 83.14 82.44
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KStar, locally weighted learning (LWL) and KNN algorithms from lazy learning meth-
ods were preferred. LogitBoost and AdaBoost algorithms from Meta Learning Methods
and Naive Bayes and Bayes Net algorithms from Bayesian methods were used. ZeroR,
PART, and decision Table algorithms based on rules and the decision tree, random forest,
and random tree algorithms based on trees were analyzed.

5. Experimental Results

This section discussed the analysis results of the proposed deep learning-based, and
machine learning-based models. In addition, the discussion section covered the comparison
between previous studies and the current study for attack detection success. The analysis
results of the proposed hybrid model on a different dataset were also placed in the table in
the Discussion section.

5.1. Results

In the study, the steps mentioned in Title 4 were carried out on the dataset. Table 4
shows statistical information about network traffic captured while applying attack scenarios
and the baseline situation. Captured packets in network traffic represent samples in
datasets.

Table 4. Statistical information about network packets of attack scenarios.

Attack Scenarios Values

Measurement Normal TCP
Flooding

UDP
Flooding

SYN
Flooding

Spoofing IP
Flooding

ICMP
Flooding

Total number of packets 3391 5253 3118 3238 3217 4551

Average packet size (bytes) 109 60 89 60 143 60

Total size of packet (bytes) 370,724 315,180 277,679 194,280 461,615 273,084

Duration of capture (ms) 530 294 253 163 286 271

As shown in Table 4, while there were 3391 packages in the normal situation scenario,
there were 19,377 packages in the attack scenarios. The distribution of the number of
packages was in a balanced state in all scenarios. The average sizes of packets (in bytes) were
the same for TCP, SYN, and ICMP flooding attack scenarios. The spoofing IP flooding attack
scenario had the maximum value. When the attack scenarios were analyzed separately,
the total packet sizes (in bytes) took different values. In attack scenarios, when the packet
capture times were examined, the most listening was done for the baseline situation. The
least time was spent on the SYN Flooding attack scenario.

Analyses were made to reveal the attacks and DDoS attack types on the system.
Suggestions were made for the attack detection system. Table 3 presents the analysis of the
proposed models results.

When the performance results were examined, it was seen that the HYBRID3b model
was more successful in analyzing and classifying DDoS attack data among deep learning
algorithms. Among the machine learning algorithms, the highest success rate was obtained
with the decision tree model. Considering the accuracy, precision, recall, and f1-score
success metrics, these two models were found to be the most suitable models for attack
detection. LSTM models from deep learning algorithms and the ZeroR model from machine
learning algorithms performed the attack detection with the lowest success rate. The
confusion matrix values obtained with the HYBRID3b model were placed in Table 5 and
are shown below.
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Table 5. Confusion matrix values of the proposed HYBRID3b model.

Predicted Class

Actual
Class

Normal
(%)

TCP
Flooding

(%)

UDP
Flooding

(%)

SYN
Flooding

(%)

Spoofing IP
Flooding

(%)

ICMP
Flooding

(%)

TP Rate
(%)

FN Rate
(%)

Baseline Situation 88.27 0.00 8.65 0.00 3.08 0.00 88.30 11.70

TCP Flooding 0.00 100 0.00 0.00 0.00 0.00 100 0.00

UDP Flooding 3.67 0.00 92.01 0.00 4.32 0.00 92.10 7.90

SYN Flooding 0.00 0.00 0.00 100 0.00 0.00 100 0.00

Spoofing IP
Flooding 6.34 0.00 9.90 0.00 83.76 0.00 83.80 16.20

ICMP Flooding 0.00 0.00 0.00 0.00 0.00 100 100 0.00

The confusion matrix values in Table 5 were evaluated according to the accuracy
metric frequently used in the literature [35]. Accordingly, among the attack types, TCP,
SYN, and ICMP Flooding attacks were correctly detected with 100%. The worst detection
performance was achieved in the spoofing IP flooding attack with a rate of 84%. For
this attack, 423 of 505 samples were correctly detected. In the baseline situation, 459 of
520 samples were determined as not attacked and a high detection rate of 88% was obtained.
The UDP flooding attack detection also had a rate close to the non-attack detection rate.
The confusion matrix values obtained with the decision tree model were placed in Table 6
and shown below.

Table 6. Confusion matrix values of the proposed the decision tree model.

Predicted Class

Actual
Class

Normal
(%)

TCP
Flooding

(%)

UDP
Flooding

(%)

SYN
Flooding

(%)

Spoofing IP
Flooding

(%)

ICMP
Flooding

(%)

TP Rate
(%)

FN Rate
(%)

Baseline Situation 98.08 0.00 0.58 0.00 1.34 0.00 98.10 1.90

TCP Flooding 0.00 100 0.00 0.00 0.00 0.00 100 0.00

UDP Flooding 0.86 0.00 95.25 0.00 3.89 0.00 95.30 4.70

SYN Flooding 0.00 0.00 0.00 100 0.00 0.00 100 0.00

Spoofing IP
Flooding 0.59 0.00 2.18 0.00 97.23 0.00 97.30 2.70

ICMP Flooding 0.00 0.00 0.00 0.00 0.00 100 100 0.00

The values in Table 6 were evaluated according to the accuracy metric. As in the
HYBRID3b model, all TCP, SYN, and ICMP flooding attacks were correctly detected with
100% in the decision tree model. The UDP flooding attack was the worst-detected attack
with 95%. For this attack, 441 of 463 samples were correctly detected. In the baseline
situation, 510 of 520 samples were determined as non-attack and a high detection rate
of 98% was obtained. Spoofing IP flooding attack detection also had a rate close to the
non-attack detection rate.

5.2. Discussion

The analysis results of the two models with the highest success rates among the models
proposed in the study (deep learning-based and machine learning-based) were compared
with the analysis results of the studies in the literature. The results obtained are given in
Table 7.
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Table 7. Comparison of studies in the literature.

References Datasets Algorithms Detection Rate (%)

[17] Their own dataset

Random Forest 99.89

Decision Tree 99.89

Logistic Regression 99.59

Naive Bayes 99.60

KNN 72.29

[18] Mississippi State University SCADA Laboratory Neural Network Average 83.00

[19] Water distribution system real dataset

SVDD Average 84.00

Robust SVM Average 76.00

Slab SVM Average 82.00

Proposed Method Average 91.00

[20] Their own dataset Hybrid SCADA-IDS 100

[21] DUWWTP Dataset KNN 92.86

[22]
CyberGym SCADA Lab dataset

Ben-Gurion University of the Negev SCADA Lab Dataset
ANN-based SOM Average 85.00

HMM Average 88

[23] Their own dataset

FNN Average 99.00

LSTM Average 99.00

FNN-LSTM Average 99.00

[24] Their own dataset OCSVM 96.30

[25] Their own dataset
MTO-based LSTM Average 99.00

MTM-based LSTM Average 98.00

[26] ADFA-LD Dataset

IWP-CSO + SVM 91.50

HNA-NN 83.20

IWP-CSO + HNA-NN 93.10

SVM 74.90

Our Study
Our Dataset

HYBRID3b Model 94.73

Decision Tree Model 98.77

Mississippi State University SCADA Laboratory HYBRID3b Model 98.09

The study addresses the detection of DDoS attacks against the physical testbed using
SCADA systems. For this, approaches based on deep learning and machine learning were
used. The number of previous studies that detected attacks using ready-made datasets was
very high. Fewer studies created a testbed for attack detection, prepared their own dataset,
and performed analyses using the dataset. Both types of studies were equally included and
reviewed.

Machine learning-based classifier methods such as KNN, Naive Bayes, and random
forest were generally used in attack detection. There were also studies based on deep
learning approaches such as LSTM and neural networks. As can be seen in Table 7,
different algorithms were used for various datasets in the detection of attacks on SCADA
systems. Each dataset had different characteristics and should be evaluated on its own.

In the studies examined in the literature, machine learning and deep learning ap-
proaches had achieved an average of over 90% success in attack detection on SCADA
systems. As a result of the analyses performed in this study, two models based on deep
learning and machine learning were proposed. With the hybrid model using LSTM and
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CNN algorithms together, 95% success was achieved. A higher success rate of 99% was
achieved with the decision tree-based model.

When we consider the existing research on the subject, we obtained promising models
by creating an appropriate testbed, utilizing relevant technologies, and preparing dataset
features. It is difficult to directly compare the performances of different models with the
results obtained from studies using different datasets. Therefore, a different technique was
used to demonstrate the performance of our proposed deep learning-based hybrid model.
A dataset [5], which is frequently used in the literature and included in the benchmark
table, was selected and evaluated for analysis. This dataset prepared by Morris et al. was
analyzed with our proposed HYBRID3b model and a high success rate was obtained for
attack detection. This result was shown in the last row of Table 7.

It has been observed that our proposed models have higher or very close performances
compared to other models in the literature. Due to the diversification and development
of attacks, it is important to carry out new analyses on different environments, and this
has been achieved in this study. As a result, it is important that attack detection studies for
SCADA systems are frequently updated and diversified.

6. Conclusions

The continuous functionality of a SCADA system enables smooth operation of cri-tical
infrastructure systems. DDoS attacks against SCADA systems may interrupt the whole
system causing functionality lost. Interruption in the operation of the SCADA system can
be costly from both financial and time aspects. The methods proposed in the study will
reinforce SCADA systems against cyberattacks. Thus, early DDoS attack detection on the
system will be possible, and it will be easier to prevent disaster scenarios.

In this study, DDoS attacks were performed against the prepared testbed using the
SCADA system. The obtained data both under the attacks and without attacks were
recorded. LSMT, CNN, LSTM-CNN hybrid, and machine learning-based models were
tested on the preprocessed dataset. After modifying the parameters of the models, various
versions were obtained and used. The deep learning-based LSTM-CNN hybrid model
achieved a classification accuracy of 95.00%, and the machine learning-based decision tree
model achieved a classification accuracy of 99%. For a further evaluation of the success
of the hybrid model, tests were conducted on a commonly used dataset in the literature
which resulted in a high success rate of 98%. A higher success rate was achieved compared
to the study in the literature using this dataset.

In addition to DDoS attack detection, DDoS attack type detection was also performed.
With deep learning-based and machine learning-based models, all TCP, SYN, and ICMP
flooding attacks were correctly detected. These models will provide high success and
efficiency in the detection of such attacks. In this respect, it is aimed to contribute to the
literature and provide guidance for future studies.

More detection studies should be carried out to reduce the effects of DDoS attacks
on SCADA systems. Since SCADA systems are used in many different sectors, studies
should be diversified by using different and new technologies and environments. In future
studies, it should be an aim to prepare the SCADA system testbed environment more
comprehensively and effectively. It should be an aim to apply different type of attacks other
than DDoS attacks to this environment and to diversify the models used for their detection.
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