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Abstract: In this paper, sustainable design seeks to reduce negative impacts on the environment,
and the health and comfort of building occupants, thereby improving financial performance. The
basic objectives of sustainability are to reduce consumption of non-renewable resources, minimize
waste, and create healthy, productive environments. A sustainable alternative to this production
system is Industry 4.0 (I4.0) and circular economy (CE). The contribution of this paper is integrating
sustainable production and design decisions of a supply chain in the adoption of I4.0 aimed at cost
minimization, in which the decision variables include the production rate of engineered-to-order
(ETO) components, design time of general components, and time period of advertising and sales
promotions. The validation of the implementation of CE and its production and sale strategies are
demonstrated through I4.0. The results presented in this paper may have significant practical value,
notably with respect to manufacturers in the bike industry.
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1. Introduction

The concept of I4.0 has gathered great importance in recent years. Manufacturing pro-
cesses are usually made up of several operation stages. Typical multistage manufacturing
processes (MMPs) in I4.0 are automotive assembly processes, flexible production lines, and
metal-forming processes. For many enterprises, sustainable waste management is a key
operational area where they can improve their environmental, social, and governance (ESG)
performance, with a resulting positive impact on their carbon footprint, operational costs,
and resource efficiency. ESG is an acronym developed in a 2004 report by 20 financial insti-
tutions in response to a call from Kofi Anon, Secretary-General of the United Nations. As it
implies, ESG refers to how corporations and investors integrate environmental, social, and
governance concerns into their business models. Gillan et al. [1] provide an excellent review
of the ESG and CSR issues related to corporate finance. In recent years, new research studies
have appeared that tackle the issue of circular economy. The continuing improvement in
I4.0 have led to CE and fascinating applications, which can be generated in the form of data,
interactivity, synergy, and mechanisms to produce sustainable supply chains that are in line
with the precepts of companies committed to the circularity of resources. Early theorization
of the economic ordering quantity (EOQ) model and economic production quantity (EPQ)
model can be traced back to [2,3]. Four new sustainable EPQ models were investigated
with different shortage situations [4]. Karim and Nakade [5] provide an excellent review of
the sustainable EPQ model related to carbon emissions and product recycling. The impor-
tance of the standard EOQ model to incorporate sustainability considerations that include
environmental and social criteria have been emphasized [6]. A fuzzy EPQ inventory model
to achieve sustainability and profit maximization was developed [7]. A remanufacturing
process-oriented model, which combined a set of remanufacturing parameters and features,
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was analyzed [8]. Issues of sustainability supply chain were analyzed by means of cost
calculation methods, including economic and environmental costs [9]. Previous research
has primarily focused on solving sustainable EOQ and EPQ problems such as economic
aspects [10–15], environmental sustainability especially in carbon emissions [16–21], and
social aspects [22]. Supply chain sustainability allows gathering inefficiencies in the supply
chain operations. The objective of CE is to extract the advantage of materials, energy, and
wastes of an industry [23,24]. In order to deepen our understanding of this framing of
sustainable supply chain within a CE, Patil et al. [25] highlighted ESG performance from
enterprises and growing awareness of sustainability among businesses, consumers, and
investors on the current investing trends. Theeraworawit et al. [26] provide an excellent
review of accelerating corporate sustainability. In terms of I4.0 technology, we often investi-
gated the main contribution of I4.0 in the CE issue with cleaner production systems, and
precision, accuracy, and efficiency in process control. Rabta [27] presented an EOQ model
in a circular economy. Su et al. [22] considered an imperfect multiple-stage production
system that manufactures paired products made from mixed materials containing scrap
returns, in which the scrap returns are converted from defective products. Khan et al. [17]
proposed a profit-maximizing production system where all the products are produced with
a variable circularity. Hegedűs and Longauer [28] considered the EOQ and EPQ models
with the reusability of raw materials and components in multiple product generations.
While considerable attention has been paid in the past to EPQ and EOQ models related to
CE, the literature on issues of I4.0 has emerged only very slowly and in a more scattered
way. Doltsinis et al. [29] considered the sequential nature of ramp-up and proposes a
Cyber-Physical Systems approach based on data capturing, learning mechanisms, and
knowledge extraction, leading to an Industry 4.0-compliant Decision Support System (DSS)
for human operators. Tsao et al. [30] incorporates the concept of I4.0 in an imperfect EPQ
model with predictive maintenance and reworking. Figure 1 illustrates the continuous
flow of technical and biological materials through a circular economy. A sustainable CE
system consists of some phases, with designing, reused, repaired, and remanufactured
products. This retains the functional value of products, rather than just recovering the
energy or materials they contain and continuously making products anew. The system
consists of 10 items (ex: farming/collection, regeneration/biogas/extraction of biochem-
ical feedstock/recycle, refurbish/remanufacture, reuse/redistribute, maintain/prolong)
and is divided into two parts (ex: industrial cycle/biogeochemical cycle). An increasing
number of recent publications have reassessed the positive contribution that I4.0 can make
to circular economy in the studies of [31–39].

The bike-sharing system (BBS) is becoming an increasingly popular item of the trans-
port system in urban spaces in many cities around the world. The goal of BBS is to deepen
our understanding of global environmental challenges and energy-saving solutions based
on the sharing economy and circular economy. Macioszek and Cieśla [40] addressed the de-
velopment of a public bike-sharing system, considering random factors, based on selected
external environmental analysis methods. Macioszek and Granà [41] identified factors that
influence the occurrence and severity of bicyclist injury in bicyclist-vehicle crashes. With
the COVID-19 pandemic, we witnessed an increasing awareness of bikes as an alternative
means of transport, as many people either avoid using mass transit or encounter reduced
mass transit services. In times of crisis, bikes can provide resilience in transport systems,
satisfying our mobility needs when mass transit systems are inaccessible. Huang et al. [42]
investigated a CE policy in an imperfect production system with an ETO component and
general component.
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Figure 1. The circular economy system.

Reviewing the applications of CE issues in a sustainable supply chain includes green
logistics, waste recovered, and virgin resources use. In discussions of anxiety in CE issues,
the current issues are in regard to environmental economics. The purpose of this paper is
to prove that the CE is the effective utilization of resources, and I4.0 has been established to
shorten the design lead-time and CNC machining time, while improving the production
rate of ETO components. In light of these concerns, the following three issues are addressed:

RQ1. When is the optimal design time of general components in stage 1?

RQ2. What is the optimal production rate of ETO components in stage 1?

RQ3. What is the optimal sales promotions time in stage 2?

It would appear the study of I4.0 and CE might pose a fruitful and important issue in
understanding the goals that Taiwan’s SMEs seek to achieve through digital transformation,
and the current status of and future SME needs for digital-related tools (I4.0 technology).
The results are of great interest both for application and scientific research.

For convenience, Table 1 indicates a brief comparison of the results of the studies
mentioned above. As shown in Table 1, Su et al.’s [22] proposed problem is formulated as a
joint economic order quantity (EOQ) and economic production quantity (EPQ) model with
CE and GM aimed at cost minimization. Tsao et al. [30] developed imperfect economic
production quantity (EPQ) models that consider predictive maintenance (PM) and rework-
ing of defective products by I4.0 to improve PM. This paper may be critically important in
laying the groundwork for understanding how bike manufacturers use I4.0 strategies. The
aim of this paper is to identify bike production (SMEs) in a sustainable way, by incorpo-
rating I4.0 and limiting the consumption and waste of resources (raw materials) as well
as the production of waste in company strategy. The bike may seem like a basic form of
transportation, but it is really a complex solution to urban traffic problems.
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Table 1. A comparison of the major issues between some current EPQ models with the present paper.

References
Major Issues

Other Consideration(s)
EPQ/EOQ Product Demand Supply Chain En E S

Taleizadeh et al. [4] EPQ Single Deterministic Single V V Single transportation mode, FIFO.
Ouyang et al. [10] EPQ Single Price-quality Two-echelon V Game theory.
Ouyang et al. [11] EOQ/EPQ Single Deterministic Single V V Inspection improvement investment.
Chang et al. [14] EPQ Single Deterministic Single V V V Discounted cash flow.
Arora et al. [16] EPQ Single Deterministic Single V V Cap-and-trade regulation.
Khan et al. [17] EPQ Single Cicular-index Two-echelon V V V Carbon tax, circular economic index.

Stindt [19] SSCM Single Deterministic Two-echelon V V Synthesize concepts and methods.
Liao and Deng [20] EOQ Single Uncertainty Single V V Carbon footprint.
Condeixa et al. [21] EOQ Multiple Deterministic Single V V V Reverse logistics.

Su et al. [22] EPQ Multiple Deterministic Single V V Green manufacturing (GM), scrap returns, CE.
Rabta [27] EOQ Single Linear form Single V Circularity index.

Hegedűs and Longauer [28] EOQ/EPQ Single Deterministic Two-echelon V CE, sustainability.
Doltsinis et al. [29] I4.0.

Tsao et al. [30] EPQ Multiple Deterministic I4.0, Corrective maintenance.
This paper EPQ Single Deterministic Two-echelon V V CE, I4.0.

Notes: environmental (En), economic (E), social (S), sustainable supply chain management (SSCM).
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The remainder of this paper is divided into six sections. The authors discussed the
introduction in Section 1. Section 2 describes the problem of the model. In the next section,
we will describe the general notation and assumption for this research. Sections 3 and 4
describe the context of this study and the model formulation for this research. Section 5 pro-
vides a numerical example that can be used to do sensitivity analysis. Finally, conclusions
are presented, and suggestions are made for further research.

2. The Context of this Study

The main object in this study selected by the authors for research is the Taiwan bike
manufacturer since it has an important meaning to Taiwan and has a strong supply chain in
the global bike industry (Taiwan Excellence Award [43]). In addition, Figure 2 will describe
the simple production system of LC Enterprise (LASCO) in the bike industry.
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As shown in Figure 1, some of the most important components of finished product are
the ETO component (crank) and general component (gears). The transmission system of
circular gears connect crank-slider mechanism has been presented and mathematical model
of the driving mechanism has been established. The top three are inventory level of finished
product, inventory level of ETO component, and inventory level of general component.

3. Model Formulation

When this model has been adopted in the bike industry, it differs from the previous
studies because there are different characteristics compared with other industries. We
sought to determine the optimal production rate, design period, and time period of adver-
tising and sales promotions through practices as the LC company, which is currently the
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bike company in Taiwan. To determine the effects of the optimal model in this paper, five
assumptions were conducted:

• A single product, single period is considered;
• All components and finished products must pass the inspection process. The digital

interconnection of machines, processes, data, departments, suppliers, partners, and
customers is the essential element in I4.0 technologies;

• Shortages cannot be allowed;
• Product design therefore determines the circularity potential of a product and includes

the longevity, reparability, recyclability, proportion of recycled and renewable material
in the product, and its suitability for refurbishment or remanufacture;

• In most finished products, the ratio of ETO components is a critical element to increase
manufacturer’s profit, β ≥ γ.

It is critical that if the manufacturer must dispose of its defective products that it does
so through a certified product disposal process. The continuous tracking of data during
a bike’s production and lifetime can provide information for reuse and refurbishment
and enable recycling by way of providing information on the bike’s components and
disassembly. Therefore, t1, t2, and t3 can be presented in turn as follows:

t1 =
ZM2

(p− D)
, (1)

where t2 + t3 = t′2 + t′3, βZM0 = ZM1 , γZM0 = ZM2 , βZG0 = ZG1 , γZG0 = ZG2 .
We obtained:

t2 =
ZM1 − ZM2

p− θ1D
=

(β− γ)ZM0

p− θ1D
t1, (2)

t3 =
ZM0 − ZM1

p− D
=

ZM0(1− β)

p− D
=

D(1− β)

p− D
t4, (3)

t4 =
ZG0

D
=

ZM0

D
=

Z f

D
, (4)

and:

T = t1 + t2 + t3 =
Z f

p− D
, (5)

respectively.
Based on five equations from (1) to (5), with the influence of four costs, the total cost

per unit time will be established as follows:

• Setup cost (SC);

The company can identify and evaluate new designs to improve performance by
evaluating how product and process designs affect activities and costs, ex design drawing

The setup cost per cycle = S + α
[
(1− γ)cme + γcmg

]
, (6)

• Holding cost (HC);

The holding cost per cycle for ETO components and general components is given by:

HC = 1
2 h f

[
Z f × (T + t4)

]
+ 1

2 he
[
ZM2 × t1 +

(
ZM1 + ZM2

)
× t2 +

(
ZM0 + ZM1

)
× t3 + ZM0 × t4

]
+ 1

2 hg
[
ZG2 × t1 +

(
ZG1 + ZG2

)
× t′2 +

(
ZG0 + ZG1

)
t′3 + ZG0 × t4

]
= 1

2 h f [T(p− D)(T + t4)] +
1
2 heDt4

[
γ× t1 + (β + γ)× (β−γ)Dt4

p−θ1D t1 + (1 + β)× D(1−β)
p−D t4 + t4

]
+ 1

2 hg[γ× t1 + (β + γ)× t′2 + (1 + β)t′3 + t4]Dt4.

(7)

• Rework costs (RC);
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The rework costs for ETO components and general components per cycle (denoted by
RC) is given by:

RC =
[(

r f θ f + rgθ1

)
p + reθ2 p1

]
T, (8)

• Production costs (PC);

The production costs for finished products per cycle (denoted by PC) is given by:

PC =
[

p
(

cp f + cpg

)
+ cpe p1

]
T, (9)

The objective function of the proposed model consists of four parts to minimize the
total cost per unit time and is given by optimizing t1, t4, and p. Therefore, the total cost per
unit time (denoted by AC(t1, t4, p)) is given by:

AC(t1, t4, p) = 1
T+t4

(SC + HC + RC + PC)

= 1
T+t4

{
S + α

[
(1− γ)cme + γcmg

]
+ 1

2 h f [(p− D)T(t2 + t3 + t4)]

+ 1
2 he[(p− D)t1t2 + (p− θ1D)t2(t2 + t3) + Dt4(t3 + t4)]

+ 1
2 hg[t′2((p1 − θ2D)(t2 + t3) + t1(p1 − D)) + Dt4(t′3 + t4)]

+ 1
2
[
he(p− D) + hg(p1 − D)

]
Tt1

+
[(

r f θ f + rgθ1 + cp f + cpg

)
p +

(
reθ2 + cpe

)
p1

]
T
}

.

(10)

In order to solve this nonlinear programming problem, we first ignore the restriction,
and take the first-order derivation of AC(t1, t4, p) with respect to t1, t4, p, respectively.
We obtain:

∂AC(t1, t4, p)
∂t1

=
Dt4

2(T + t4)

[(
he + hg

)
γ− he

(β + γ)(β− γ)

p− θ1D
Dt4

]
= 0, (11)

∂AC(t1,t4,p)
∂t4

= 1
2 h f (p− D)t1 +

1
2 heDt1γ

−
[
(β + γ)(β − γ)D

p − θ1D + D(1 + β)(1 − β)
p − D + 1

]
heDt4

+ 1
2 hgDt1(2γ + β)− hgDt4

[
1
2 (1 + β) + 1

]
= 0

(12)

and:
∂AC(t1,t4,p)

∂p = 1
T+t4

{
1
2 h f T(T + t4)

− 1
2 heD2t2

4

[
(β + γ)(β − γ)t1

(p − θ1D)2 + (1 + β)(1 − β)

(p − D)2

]
+
[(

r f θ f + rgθ1

)
T
]

+
[(

cp f + cpg

)
T
]}

.

(13)

where k1 = (β + γ)(β− γ) > 0, k2 = (1 + β)(1− β) > 0 and k3 =
(

r f θ f + rgθ1 + cp f + cpg

)
> 0 . To find the optimal solution of (t1, t4, p), let ∂AC(t1, t4, p)/∂t1 = 0, ∂AC(t1, t4, p)/∂t4 = 0,
and ∂AC(t1, t4, p)/∂p = 0, simultaneously. By solving these equations, the feasible solution for

t4 should be chosen from 0 to
∧
t4, where:

∧
t4 =

(p− θ1D)
(
he + hg

)
γ

Dhek1
. (14)

Thus, we can obtain the following result: once we get the value t4 ∈ (0,
∧
t4), a

corresponding position t1
∗ can be uniquely determined by the following equation:

t1
∗ = t4

∗
2
{(

k1D
p − θ1D + Dk2

p − D + 1
)

he + hg

[
1
2 (1 + β) + 1

]}
h f (p − D)

D + heγ + hg(2γ + β)
. (15)
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The below two cases show all possible situations of t1: (i) β > γ and (ii) β < γ.

Case 1: (With I4.0 technology) β > γ

In this case, customers place more order products, they typically select or identify
parameters to meet their requirements. ETO components are critical to have a robust and
flexible production system in place to help manage that complexity. The key result is the
demonstration of the concept of I4.0-enabled monitoring through low-cost devices. While
the main supported functionality of the presented case supports the key constituents of a
condition monitoring data process chain, from data acquisition and signal pre-processing,
to detection, diagnosis, and prediction, the prime focus of this study has not been to
develop a new approach for such data processing, but showcase that such processing can
be delivered through low-cost IoT-enabled simple architecture.

Case 2: (Without I4.0 technology) β < γ

In this case, one way to support the design process of ETO building components is
to use a coherent platform model that focuses on the reuse of engineering assets, which
is more of the skills and knowledge to accomplish higher efficiency during development.
Obviously, from Equations (14) and (15), t1 and t4 can be uniquely determined as functions
of p. Then, if we are trying to find the optimal solution of (t1, t4, p), a reasonable thing is to
substitute t1 and t4 given by Equations (14) and (15) into Equation (13), and then obtain:

L(p∗) =
(p∗ − θ1D)(he + hg)γh f

Dhek1
+ 2k3

− 1
he

[
(p∗ − θ1D)(he + hg)γ

k1

]2[
k1t1

(p∗ − θ1D)2 +
k2

(p∗ − D)2

]
.

(16)

Taking the first-order derivative of L(p) with respect to p:

dL(p)
dp

=

 θ1
(
he + hg

)
γh f

hek1
− 2

he

[(
he + hg

)
γ

k1

]2

(k1t1
∗ + k2θ1)

.

It is not difficult to understand that L(p) is a strictly decreasing function during
p ∈

[
pL, ∞

)
. To that end, the following results were posed:

Theorem 1. For any given t1 ≥ 0,

(a) If L(p) < 0, then the solution (t∗1 , t∗4 , p∗) which minimizes AC(t1, t4, p) not only exists but
also is unique, and p∗ ∈ (0, ∞).

(b) If L(p) ≥ 0, then optimal value of p is p∗ → 0 . The production system should not be opened.

The proof of this theorem is given in Appendix A.
Summarizing the above results, we obtain the following Algorithm 1.

Algorithm 1: Optimal solution of inventory problem.

1: STEP 1: Start with i = 1 and t4j;
2: STEP 2: Put t4j into Equation (15) to obtain the corresponding value of t1 and then from
Equation (16) to calculate L(p)
3: STEP 3: If L(p) < 0, put t̃1 into Equation (16) to obtain the corresponding value of p, i.e., p̃j,τ+1
otherwise, let p̃j = 0;
4: STEP 4: If the difference between pj,τ and pj,τ+1 is sufficiently small, set p̃j = pj,τ+1. Otherwise,
set pj,τ+1 = pj,τ + ε, where ε is any small positive number, and set τ = τ + 1; then, go back to
STEP 2;
5: STEP 5: Substitute t1 = t̃1j and pj = p̃j into Equation (10) to calculate the value of AC(t1, t4, p).
The objective is to determine the optimal the number of shipments, lot size per shipment and
capital expenditure that minimizes the joint total expected cost per unit time of the integrated
supply chain.
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4. Application Example

In this section, we use one case study to show how CE can be used to help in the
explaining of the proposed model. By means of two numerical examples and sensitivity
analysis, the study has collected rich data which enable descriptions of managerial insights
of the EPQ model with CE.

4.1. CE in the Context of a Bike Company

In the following, we introduce a well-established OEM bike company in Taiwan.
Maleque et al. [44] proposed that the successful design of a folding bike should take into
account the function, material properties, and fabrication. It is essential to include all key
stakeholders in the process design. Design engineers should understand the organization’s
objectives and process work preface diagram. We also indicate in Figure 3 the existence
of some main parts: drivetrain system design (3D computer graphics, CNC machining,
finished product assembly), the general components (crank, chain wheel) are design and
CNC machining to form drivetrain system via grinding, and surface treatment and as-
sembly processes. Figure 3 helps to define: A reveals the start point of CNC machining
specified for machining the crankshaft; B is the waiting time of finishing process with the
crankshaft—I4.0 will revolutionize this process through real-time quality assurance (QA)
such as automated virtual metering (AVM) systems; and C reveals the start point of grind-
ing and surface treatment—I4.0 provides the communication standards of human–machine
interfaces. Most laborers will perform daily operations with robots and machines (often
called collaborative robots). The integration of CNC machinery and CAM (Computer-
Aided Manufacturing) helps to shorten manufacturing time and ensure the production
of defect-free components. In this diagram, we constructed the components of the bike
drivetrain system as shown in Figure 4 that consists of inner claw piece, chain cover, crank,
chain wheel, and the appearance (Figure 5). As Figure 4 indicates, CNC machining is
a manufacturing process suitable for a wide variety of industries. The most common
mechanical CNC machining operations including: Drilling (A), Milling (B), Turning(C).
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4.2. Numerical Example

In order to clarify the relative utilization of the proposed model, this subject was
selected from the bike industry. We consider two numerical examples of CE problems to
illustrate the model and verify the obtained analytical results. In the first example, it would
be the situation of Case 1 due to β > γ. By applying the proposed algorithm, we have the
optimal solutions, t∗1 = 1.21012, t∗4 = 3.07002, p∗ = 398.703, and AC(t∗1 , t∗4 , p∗) = 2963.04.
In the second example, which meets the situation of Case 2 due to β < γ, we have the
optimal solutions, t∗1 = 1.0307, t∗4 = 3.9635, p∗ = 504.723, and AC(t∗1 , t∗4 , p∗) = 6529.57. Next,
the effect of CE practices was carried out on the enterprise’s inventory policy. To analyze
the proposed algorithm, the effect of changes in various parameters was carried out in the
model. Here is Table 2, which shows CE problems for examples 1 and 2.
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Table 2. The value of parameters for two examples with CE problems for examples 1 and 2.

Example 1 (Case 1)

P1 = 12,000 cpe = $0.5 cp f = $0.375 cpg = $0.4
r f = $0.04 rg = $0.03 re = $0.005 h f = $10
hg = $5 he = $7 θ1 = 0.04 θ2 = 0.03
θ f = 0.01 α = 0.3 β = 0.2 γ = 1
k1 = 0.03 >0 k2 = 0.96 > 0 k3 = 0.7766 > 0

Example 2 (Case 2)

P1 = 10,000 cpe = $0.5 cp f = $0.375 cpg = $0.4
r f = $0.04 rg = $0.03 re = $0.005 h f = 0.3
hg = 0.2 he = 0.1 θ1 = 0.04 θ2 = 0.03
θ f = 0.01 α = 0.3 β = 0.2 γ = 1
k1 = −0.96 < 0 k2 = 0.96 > 0 k3 = 0.7766 > 0

Next, the effect of CE practices was carried out on the enterprise’s inventory policy. To
analyse the proposed algorithm, the effect of changes in various parameters was carried
out in the model.
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4.3. Sensitivity Analysis

I4.0 is identified as one of the main determinants to drive the application towards
a more sustainable production through an economy that reuses, reduces, and recycles
resources. The numerical examples in the above subsection are considered to study the
effects of changes in the system parameters (p1, h f , he, hgθ1, θ2, θ f , cp f , cpe, re, rg, α, β and
γ) on the optimal values of p∗, t∗1 , t∗4 and AC(p∗, t∗1 , t4

∗). Therefore, the effects of changes
in the parameters of a model are determined by solving the model and comparing the
results with respect to changes made with parameters by +50%, +25%, −25%, and −50%,
taking one parameter at a time and keeping the remaining parameters unchanged. The
analytical results are shown in Tables 3 and 4. Other detailed results are tabulated in Table 5
to illustrate some managerial insights for bike company.

Table 3. Effect of changes in various parameters of the model for example 1.

Parameter Change (%)
Optimal Solutions

p* t*
1 t*

4 AC(p*, t*
1, t*

4)

p1

50% 436.98 1.0686 3.7668 4020.82
25% 419.47 1.1776 3.1692 3916.01
−25% 362.76 1.8736 3.0194 2706.39
−50% 278.78 2.6666 2.7895 2601.58

h f

50% 337.439 1.9686 3.3733 3903.41
25% 344.952 1.8761 3.1449 3857.31
−25% 446.238 0.8659 3.0315 2765.10
−50% 451.165 0.8567 3.0256 2719.00

he

50% 394.441 1.1452 2.7618 3284.07
25% 394.957 1.1561 2.7758 3256.24
−25% 399.771 1.6601 3.8019 2972.56
−50% 399.592 1.6898 3.8199 2900.73

hg

50% 383.598 1.1781 3.9862 2917.13
25% 386.711 1.1949 3.3030 2972.77
−25% 425.238 1.6743 2.4454 3384.04
−50% 430.651 1.7204 2.3511 3539.67

cp f

50% 402.703 1.1912 3.3701 3817.24
25% 399.703 1.2012 3.1701 3814.22
−25% 391.703 1.2212 2.9701 3808.18
−50% 382.703 1.2312 2.8701 3805.16

cpg

50% 502.322 1.2312 5.1512 2969.65
25% 457.434 1.2212 4.1232 2966.42
−25% 348.447 1.1912 2.9871 2960.98
−50% 300.512 1.1812 2.5678 2957.75

cpe

50% 406.568 2.1664 3.2438 3135.37
25% 401.717 1.3311 3.2384 2973.28
−25% 379.631 0.9036 1.1935 2649.12
−50% 344.729 0.6090 1.1775 2487.04

θ1

50% 401.325 1.2071 3.9700 2963.24
25% 399.172 1.2092 3.7712 2963.24
−25% 396.091 1.2112 2.9189 2962.02
−50% 392.858 1.2134 2.8650 2961.84

θ2

50% 398.501 1.2108 3.0691 2963.24
25% 398.603 1.2111 3.0698 2963.14
−25% 398.901 1.2115 3.0710 2963.03
−50% 398.921 1.2118 3.0720 2963.02
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Table 3. Cont.

Parameter Change (%)
Optimal Solutions

p* t*
1 t*

4 AC(p*, t*
1, t*

4)

θ f

50% 398.751 1.2106 3.0722 2963.04
25% 398.721 1.2107 3.0712 2963.04
−25% 398.681 1.2116 3.0691 2963.03
−50% 398.661 1.2118 3.0682 2963.01

re

50% 399.891 1.2108 3.0901 2963.05
25% 399.822 1.2109 3.0802 2963.05
−25% 397.401 1.2114 3.0603 2963.01
−50% 396.301 1.2115 3.0401 2962.99

rg

50% 398.901 1.2107 3.0712 2963.12
25% 398.821 1.2109 3.0708 2963.09
−25% 398.711 1.2115 3.0698 2963.04
−50% 398.612 2.2118 3.0691 2963.01

α

50% 398.691 1.2116 3.0691 2973.04
25% 398.692 1.2114 3.0697 2963.04
−25% 398.705 1.2109 3.0705 2953.04
−50% 398.708 1.2106 3.0709 2943.04

β

50% 402.145 1.1812 6.1934 3213.26
25% 401.178 1.1934 4.1980 3014.16
−25% 396.013 1.2319 2.1982 2960.15
−50% 392.124 1.2681 1.7841 2958.11

γ

50% 412.013 1.2601 3.2146 5019.21
25% 401.456 1.2213 3.1561 4311.09
−25% 381.781 1.1927 2.9811 1865.19
−50% 361.890 1.1789 2.8157 1618.01

Table 4. Effect of changes in various parameters of the model for example 2.

Parameter Change (%)
Optimal Solutions

p* t*
1 t*

4 AC(p*, t*
1, t*

4)

p1

50% 125.399 3.0843 4.1282 6621.91
25% 393.338 2.9481 3.3552 6575.74
−25% 516.398 0.7995 3.0995 6483.41
−50% 553.813 0.6426 2.7981 6437.24

h f

50% 199.344 0.9985 5.7014 6623.82
25% 298.280 1.0294 4.1272 6576.71
−25% 530.233 1.1246 3.1402 6524.14
−50% 539.372 1.9993 3.0511 6515.32

he

50% 157.571 1.0023 1.4074 6786.60
25% 160.434 1.0748 3.3701 6657.23
−25% 526.985 1.0975 4.3503 6400.21
−50% 541.887 1.1898 6.1973 6398.50

hg

50% 71.7052 0.9946 1.9803 6476.52
25% 191.372 1.0172 2.3185 6503.91
−25% 446.400 1.0929 8.9382 6553.54
−50% 612.191 1.9649 9.6048 6579.21

cp f

50% 119.715 1.0010 3.1432 6532.77
25% 166.646 1.0272 3.6996 6529.47
−25% 519.728 2.9220 4.1268 6526.28
−50% 529.365 3.0534 5.0842 6524.67
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Table 4. Cont.

Parameter Change (%)
Optimal Solutions

p* t*
1 t*

4 AC(p*, t*
1, t*

4)

cpg

50% 119.714 2.9419 1.1438 6532.98
25% 119.718 2.9368 1.1395 6531.28
−25% 585.505 0.9148 0.3861 6527.87
−50% 591.946 0.8944 0.3665 6526.16

cpe

50% 411.648 1.0000 8.8623 6672.35
25% 507.545 1.0269 4.4774 6600.96
−25% 619.926 2.2554 2.4523 6458.18
−50% 620.329 2.5789 1.7692 6386.79

θ1

50% 119.721 2.9318 3.1282 6529.61
25% 279.927 2.0342 3.4481 6529.59
−25% 523.091 1.0318 4.1386 6529.55
−50% 591.721 0.9317 4.3503 6529.53

θ2

50% 959.383 0.9613 4.8483 6529.66
25% 617.581 1.0267 4.6210 6529.61
−25% 217.586 1.0433 3.4905 6529.53
−50% 225.004 1.0488 3.6877 6529.49

θ f

50% 268.496 1.0244 3.3183 6529.67
25% 351.181 1.0264 3.3222 6529.57
−25% 905.177 1.0425 4.8095 6529.47
−50% 952.832 1.0826 4.8479 6529.47

re

50% 419.583 1.3165 1.8924 6529.61
25% 495.711 1.2702 2.8304 6529.59
−25% 529.404 0.8844 4.5494 6529.55
−50% 628.991 0.8845 8.4646 6529.51

rg

50% 398.901 1.2107 3.0712 2963.12
25% 398.821 1.2109 3.0708 2963.09
−25% 398.711 1.2115 3.0698 2963.04
−50% 398.612 2.2118 3.0691 2963.01

α

50% 210.182 1.0231 3.2298 6559.57
25% 363.959 1.0268 3.7892 6549.57
−25% 519.721 2.9318 3.9761 6539.57
−50% 569.489 3.0068 3.9911 6529.57

β

50% 436.780 1.1715 1.2687 6466.63
25% 502.420 1.0487 1.1120 6493.74
−25% 573.259 0.9411 0.8959 6582.69
−50% 646.242 0.7510 0.7197 6678.85

γ

50% 363.959 1.0268 1.7892 6429.59
25% 500.011 1.0302 2.0055 6429.47
−25% 530.111 1.9592 5.6479 6429.37
−50% 619.721 2.9318 6.1352 6429.29

There are two situations to consider to improve the average time of design stage (t1)
and average time of sales promotions stage (t4): (i) when the I4.0 technology is implemented
in the production system as (1.6966, 3.1862; p1), (1.4419, 3.0214; hg), (1.2062, 3.7073; cpg),
(1.4482, 3.304; rg) (see Figure 6); and (ii) when the I4.0 technology is not implemented in
the system as (1.8686, 3.3452; p1), (1.2674, 5.7104; hg), (0.7589, 4.7589; cpg), (1.6861, 4.6048;
rg) (see Figure 7), respectively. Obviously, as observed in Figures 6 and 7, the design time
of components with I4.0 are shorter than those without I4.0. The adoption of I4.0 could
lead to a 20% reduction design time of the general component. I4.0 technological solutions
make possible to exchange data in real-time between interconnected companies, reducing
costs (ex: purchase cost, holding cost, rework cost, production rate for general component)
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and response times (ex: design time, time period of advertising and sales promotions for
general component). I4.0 enables increased flexibility of production processes to fabricate
products with a high level of customization. Thus, the analyzed result is to identify the role
of I4.0 to promote sustainable business performance in SMEs.

Table 5. Some detailed results of the sensitivity analysis.

Parameter(s) Example 1 (Case1) β>γ Example 2 (Case2) β<γ

h f , he

Customization-based interaction for ETO-based
component can be complicated and small batch and
multi-species order batch.

Enterprise offers flexibility in modeling ETO-based
component, and build at a relatively fast pace, but must
also be flexible and account for any design changes a
customer may have.

cp f , cpg, cpe

Enterprise works with design for assembly (DFA)
methods for different reasons. Some enterprises want to
take cost out of their products, some want to make more
products in their factories, and some want to simplify
the product to increase quality and reliability.

Adding to this environment is the push for mass
customization by consumers and purchasers of ETO
products, requiring an already difficult process to move
faster with a higher degree of customized design.

θ1, θ2, θ f

When new activities occur (e.g., due to changes or
defects), planned activities need to be replanned,
including considering the consequences of such changes
or delays for other activities from the customer’s
specification.

A large number of defects usually occur in the initial
stages of a project and early defect detection will lower
the overall cost of the project.

re, rg, r f

Defects, delays, disconnects (DDD) cause rework,
repairs, returns (RRR) that consume valuable resources
to contain problems, correct deviations, and restore
customer relationships.

Liability for personal injuries caused by a product’s
defective design can be imposed under several
underlying legal theories, among them negligence,
breach of warranty, and strict product liability.

α, β, γ

Products require limited custom design per customer
order because they have standard designs that can be
altered to fit the customer requirements. Products may
even be manufactured using an MTO strategy.

The components also differ in degree of standardization,
where some components are standardized and unaltered
across many products and others may be changed and
redesigned for each customer order.
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5. Conclusions

Gurjanov et al. [45] studied the principles of cyber-physical system constitution at
I4.0 company of the item designing components of assembly production. Dutta et al. [46]
investigated the functional areas which can implement digital transformation according
to I4.0 technology in Indian SMEs. This paper focuses on exploring the link between I4.0
and CE. A key challenge facing the high cost of designing and manufacturing generic
components is the main drawback in working towards increased resource efficiency and
material circularity through I4.0. First, we exhibit necessary and sufficient conditions for
the optimal solution. Next, a simple algorithm was used to identify the optimal solution
of (t1, t4, p), which would minimize the total cost per unit time. The findings identified
several challenges that need to be addressed in searching for circular materials, for example,
a multidisciplinary approach combining fundamental science and engineering to create the
necessary materials and technologies to underpin circular systems but also policy and eco-
nomics to enable society to make the transition to a circular economy. Torn and Vaneker [47]
provided extensive discussions of I4.0 to increase the capacities of SMEs to capitalize on
mass personalization via a collaborative network. In light of these concerns, this case study
has led to the following observations: (1) with a simulation model, companies must be
automated and measure the impact of technological tools on productivity and variability
without upsetting daily production activities; (2) the company uses real-time to power
decision making, resulting in the total cost per unit time shrinking by 2.9%. An important
area for future research in the years to come will be to investigate to which degree and for
which types of products, materials, and personalization is expectedly profitable.
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Appendix A

In order to gain a better understanding of CE issues through I4.0, the same notation in
the production system.

Table A1. System Parameters.

p1 production rate for general component.
D demand rate per unit time.
S buyer’s ordering cost per order.

cmg design cost for general component per unit time.
cme design cost for ETO component per unit time.
cp f purchase cost for finished product per unit time.
cpg purchase cost for general component per unit time.
cpe purchase cost for ETO component per unit time.
θ f defective rate for finished product.
θ1 defective rate for ETO component.
θ2 defective rate for general component.
α design fee (installment/payment).
β finished product with a ratio of ETO-based components.
γ percentage for designing ETO-based components.
h f holding cost for finished products per unit time.
hg holding cost for general component per unit time.
he holding cost for ETO component per unit time.
r f rework cost for finished products per unit time.
rg rework cost for general component per unit time.
re rework cost for ETO component per unit time.
Z f maximum inventory level of finished products.

ZM0 maximum inventory level of ETO component can be assembled.
ZG0 maximum inventory level of general component can be CNC machined.
ZG2 maximum inventory level of general component can be stamped.
t′2 time period prior to begin to CNC machining for ETO components in stage 2.
t3 time period prior to begin to surface finishing for ETO components in stage 2.

Table A2. Decision Variables.

p production rate of ETO components in stage 1.
t1 design time of general components in stage 1.
t4 time period of advertising and sales promotions in stage 2 (the maturity stage).

Appendix B

Proof of Theorem A1

(a) From, Equation (16), there exists a unique solution t1
∗ ∈ [0, ∞) if L(p∗) ≥ 0. Fur-

thermore, we derive the following differential equations and the determinant of
the Hessian matrix, det (H) at the stationary point in order to examine the second-
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order sufficient conditions (SOSC) for a minimum value. Taking the second partial
derivatives of AC( t1, p|t4) with respect to t1 and p, respectively, yields.

H11 =
∂2 AC( t1, p|t4)

∂t1
2

∣∣∣∣
(t1,p)=(t∗1 ,p∗)

=
Dt4

2(T + t4)
2

[(
he + hg

)
γ + he

k1

p− θ1D
Dt4

]
> 0,

H22 =
∂2 AC( t1, p|t4)

∂p2

∣∣∣∣
(t1,p)=(t∗1 ,p∗)

= heD2t2
4

[
k1t1

(p− θ1D)3 +
k2

(p− D)3

]
> 0,

and

H12 = H21 =
∂AC( t1, p|t4)

∂t1∂p

∣∣∣∣
(t1,p)=(t1

∗ ,p∗)
= 0.

Therefore, we can determine the nature of stationary point (p∗, t1
∗) by considering

value of Hessian matrix and whether Hessian is negative definite.

det(H) = H11 ×H22 −H12 ×H21

=
[(

he + hg
)
γ + hek1Dt4

p−θ1D

]
×
[

heD2t2
4k1t1

(p−θ1D)3 + heD2t2
4k2

(p−D)3

]
> 0.

(b) From Equation (11), for t1 ∈
[
t̂1, ∞

)
, we obtain that ∂AC(t1,t4,p)

∂t1
> 0. This implies that

a large value of t1 causes a higher value of AC(t1, t4, p). Hence, the minimum value
of AC(t1, t4, p) occurs at the point t∗1 = tL

1 . It seems reasonable to conclude that the
production system will not be opened. This completes the proof. �
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