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Featured Application: As emerging therapeutic systems, the toxicity of THEDES at different lev-
els should be assessed prior to using them clinically.

Abstract: Therapeutic Deep Eutectic Systems (THEDESs) are a mixture of components, including an
active pharmaceutical ingredient, that have recently emerged because of their interesting properties
for drug therapies. In general, they have been recognized to increase the solubility and permeability
of some drugs, and consequently, their bioavailability. Moreover, they have also been used for novel
formulations of pharmaceuticals. Despite the potential benefits of THEDESs, concerns about their
safety and toxicity remain. In this review, we summarize previous studies that have investigated
the toxicity of THEDESs. These studies evaluate the toxicity of THEDESs using various methods,
including cell cultures, animal models, and human trials. The results of previous findings suggest that
THEDESs are generally well-tolerated and have low toxicity. However, further research is needed to
fully understand the long-term effects of these systems on human health and to identify any potential
adverse effects.
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1. Introduction

The solubility of drugs in an aqueous medium is a major problem in the pharmaceuti-
cal industry. More than 50% of newly developed drug molecules suffer from low aqueous
solubility [1–3]. The Biopharmaceutics Classification System (BCS) is a classification system
that categorizes drugs based on their solubility and permeability properties, which are
important determinants of drug absorption and bioavailability. The BCS is a classification
system that categorizes drugs into four classes (I–IV) based on their solubility and perme-
ability properties [4]. Class I drugs have high solubility and high permeability, while Class
II drugs have low solubility and high permeability. Class III drugs have high solubility and
low permeability, and Class IV drugs have low solubility and low permeability [5]. The
poor solubility of drugs is a common problem, particularly for Class II and IV drugs [6].

There are several techniques available to improve the solubility of poorly soluble
drugs, and this is important because drug solubility affects many pharmaceutical param-
eters such as pharmacokinetics or pharmacodynamics [7]. Some of the commonly used
techniques to enhance drug solubility include physical modifications such as particle size
reduction by micronization and nanosuspension, alteration of pH, manipulation of solid
state, and complexation [8–10]. Other techniques for solubility enhancement include chem-
ical modifications, such as salt formation, hydrotrophy, and precipitation inhibitors, as
well as the use of surfactants, self-emulsifying drug delivery systems, microemulsions, and
liquid solid methods [9,11].

During the last few years, a trend has emerged to improve drug solubilization tech-
niques, and that is the use of Deep Eutectic Solvents (DESs) for increasing drug solubil-
ity [12,13]. These mixtures are formed by the hydrogen bond acceptor (HBA) and hydrogen
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bond donor (HBD), which, at a particular molar composition, become liquid at room tem-
perature. Their liquefaction is reached only by the interaction between their components,
not involving any chemical reaction. However, the stability of DESs is a crucial factor
that must be considered when evaluating their potential uses, and it was found that the
hydrogen bond plays an important role in its thermostability [14,15]. As it can be possible
to choose the components, they are usually non-toxic, biodegradable, and biocompatible
molecules [16]. The most used components are chemicals such as sugars, alcohols, urea,
natural metabolites, organic acids, and choline chloride (ChCl), among others [17,18]. When
one of these components is an active pharmaceutical ingredient (API), these systems are
renamed THEDESs (Therapeutic Deep Eutectic Systems). The first THEDES was reported
by Stott and co-workers in 1998 by mixing ibuprofen as an API and seven skin penetration
enhancers to obtain eutectic systems [19]. In a THEDES, an API can be served both as an
HBA and HBD. For example, aspirin can be used as the hydrogen bond donor to form DES
with ChCl [20], while lidocaine and atropine can be used as the hydrogen bond acceptor to
construct DES with carboxylic acid [21].

They offer a wide range of advantages when combined. In several pharmaceutical
fields, DESs have been useful in order to increase the drug solubility, permeation, and
absorption [22]. Compounds such as paracetamol, aspirin, and salicylic acid are very
poorly soluble in water. However, by using a DES as a solvent, for example, mixtures
of urea, ChCl could dissolve benzoic acid, danazol and itraconazole [23]. Duarte et al.
prepared different THEDESs based on menthol complexed with different APIs (ibuprofen,
phenylacetic acid, and benzoic acid). The solubility and permeability of the systems in
an isotonic solution was evaluated and compared with the pure APIs [24]. The authors
concluded that with the exception of the system containing phenylacetic acid, for the rest
of the mixtures, the solubility of the APIs when they are in the THEDES can be improved
up to 12-fold, and the permeability can be improved up to 3-fold in comparison with
the pure APIs. Therefore, this work demonstrates the efficiency of a THEDES as a new
formulation in order to improve the bioavailability of APIs by changing the physical state
of the molecules from a solid dosage to a liquid system. However, only a few studies study
the combination of two APIs as counterparts to obtain a THEDES. This is the case of the
paper published by Yin et al., who constructed a new THEDES based on two APIs derived
from natural products, osthole and paeonol. Osthole has a wide variety of pharmacological
functions, such as antimicrobial, antioxidant, and anticancer functions, and paeonol is
known as a great anti-inflammatory, antioxidant, and antibacterial agent [25].

DESs can have a variety of applications including human health [26]. Biomedical
potential applications of hydrophobic THEDESs based in menthol and saturated fatty acids
with different chain lengths are studied by different authors, and for example, Silva et al.
found a huge versatility of THEDESs as an approach toward the development of many ef-
fective therapies [27]. THEDESs are used as an alternative to enhance the therapeutic action
of certain antibiotics [28], and also to increase the antibacterial action [29]. Pereira et al. [30]
showed that the production of new THEDESs involves combining terpenes with anticancer
properties, such as safranal, menthol, and linalool, with nonsteroidal anti-inflammatory
drugs, such as ibuprofen and ketoprofen. To evaluate the therapeutic potential of these
THEDESs, it is necessary to carry out the evaluation of their physicochemical properties and
bioactivity. Moreover, Pereira et al. observed that the combination of limonene with ibupro-
fen as a THEDES formulation presented anticancer activities, associated with increased
ibuprofen solubility [31]. Different THEDESs of ibuprofen with several terpenes such as
thymol and menthol were already reported. Menthol/ibuprofen (3:1) is able to increase
Ibuprofen solubility, while THEDESs with thymol did not increase its solubility. Moreover,
menthol and stearic acid were used to formulate a THEDES for wound healing [27]. Inter-
estingly, it is rather promising to develop API-NADESs (Natural Deep Eutectic Solvents)
formulations based on various components from Chinese herbal medicines to improve
their targeted properties, such as solubility, bioavailability, stability, or fast drug delivery
capacity to the target site [32].
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THEDESs have been also used in the formulation of pharmaceuticals, including
creams and suppositories, due to their ability to improve skin permeability or drug ab-
sorption, or even to provide controlled drug release or as an alternative strategy for drugs’
delivery [33–37]. In some other cases, the formulation could also improve the stability
of APIs and even promote a controlled release to achieve the therapeutic effect. In the
work from Mano et al. (2017) [38], the THEDES formed by ChCl-mandelic acid (1:2) and
encapsulated in gelatin showed a fast-dissolving release profile in phosphate-buffered
saline without cytotoxicity. The formulation also maintained the antibacterial effect of
mandelic acid on both Gram-positive and -negative bacteria. Additionally, one THEDES
based on a NADES (ChCl/ascorbic acid) and sunitinib malate as a drug was used to obtain
an ion-gel system that could be used as a novel carrier for this anticancer drug. In addi-
tion, no cytotoxicity was found for the NADES mixture toward HN-5 cells [39]. The same
NADES (ChCl/ascorbic acid) was also used to solubilize dexamethasone and a supercritical
fluid sintering process was followed to obtain a controlled drug delivery system for this
glucocorticoid with low water solubility. The authors highlighted the potential applications
of this THEDES in biomaterials science beyond the pharmaceutical industry involving
drugs [40].

To sum up, the potential advantages and main applications of THEDESs are collected
in Table 1.

Table 1. Potential advantages and applications of THEDESs.

Potential Advantages Applications

Higher API solubility Enhancement of therapeutic action of API
Higher API permeability Faster drug delivery
Improved API absorption Controlled drug release

Improved API bioavailability

The main objective of this paper is to gather different studies regarding the toxicity of
THEDESs and to check if there is enough supporting information to confirm their safety to
be used for human therapies. Previously, Lomba et al. carried out an exhaustive review
of similar information regarding DESs [41]. Therefore, the most attention was paid on
the toxicity results of THEDESs including cell lines, animal models, and human trials, as
shown in Figure 1.

Figure 1. Focus of the review about toxicity studies developed with THEDESs.

2. Cell Lines
2.1. Cell Viability

The analysis of DESs’ cytotoxicity has been an objective since they were firstly de-
scribed and potential applications were proposed [26]. In fact, each time that a new mixture
is characterized, and the goodness of its properties is demonstrated, its toxicity should be
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also checked. Despite being a mixture of components that are not harmful, toxicological
behavior of the final resulting DES can change the expected result, taking into account
the components separately. For example, Hayyan et al. demonstrated a low cytotoxicity
compared to ionic liquids, and they pointed that due to this fact, they could be useful for
therapeutic applications. They examined the cytotoxicity of six different concentrations of
several ammonium-based DESs toward seven cell lines (PC3, A375, HepG2, HT29, MCF-7,
OKF6, and H413), most of them being cancer cell types, using MTT cell viability assay.
When comparing the cytotoxicity results of DESs with their individual components, a
synergistic effect was supposed to play a role, since the results could not be explained by
the individual behavior of each one alone. Additionally, some components of the DES
can show a higher toxicity, and even the effect in different cell lines can be variable [42].
One of the components that was pointed out as a potential factor that increases the cy-
totoxicity of DESs is oxalic acid, when fish (CCO) and human (MCF-7) cells are exposed
to a eutectic mixture with ChCl. Nevertheless, the sensitivity of the cell lines was also
different to this DES [43]. The HBA was considered as the main responsible factor of the
cytotoxicity found by Macario et al. in their study involving several THEDESs toward two
cell lines [44]. When compared to ionic liquids, NADESs have also been recognized with a
low cytotoxicity profile, although some constituents, such as tartaric acid, could affect the
metabolism of cells [45]. Similarly, one study about the cytotoxicity of NADESs showed
that the cytotoxicity was lower than in the former version, DESs, at the same time that it
highlighted the importance of several factors such as their composition (e.g., presence of
organic acids) or physical properties (e.g., viscosity) influencing it [46].

Sometimes, the toxicity of DESs is searched to destroy bacteria. Hayyan et al. found
that some phosphonium-based DESs were effective in the growth inhibition of both kinds
of bacteria, Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative
(Escherichia coli and Pseudomonas aeruginosa) [47]. Zhao et al. characterized different ChCl-
based DESs and suggested that those DESs that are acid-based could be more harmful to
bacteria [48]. If the attempt of confirming the antibacterial activity of DESs is successful,
DESs can even enhance the antibacterial activity of drugs used for this purpose.

Occasionally, DESs are not used to solubilize any chemotherapy agent or to enhance
their activity, but they show their own cytotoxic usefulness for destroying cancer cells. In
such cases, selectivity is the main property that must be verified in order to avoid side-
effects [42]. Moreover, DESs have been also used as reaction media for the preparation
of an anticancer compound, such as in the case of a derivate of a quinazoline. The final
product was also tested using MTT assay with three cell lines (MCF-7, A549, and MCF-10A)
in order to find a higher cytotoxic effect on the cancer cell lines than in the non-malignant
one (MCF-10A) [49]. Other studies concerning NADESs as potential anticancer agents
evaluated their cytotoxicity toward six hepatic cell lines. As expected, it was found that
there were different toxicity profiles depending on the composition of NADESs as well as
the tested cell lines. The metabolic pathway of each component was specifically highlighted
as a possible cause of the differences [50].

Finally, DESs proposed to be used as solvents of some APIs need to be analyzed
to demonstrate that they are safe enough for their latter potential therapeutic use. For
instance, in the case of lamotrigine (antiepileptic agent) that is effectively solubilized by
DESs consisting of ChCl and urea/ethylene glycol or glycerol, the cytotoxicity of such DESs
was tested. Using an MTT cell viability assay, a moderate toxicity was found for the A549
lung cell line when exposed to three different combinations of those THEDESs [51].

As DESs are being used as part of THEDESs, it is necessary for new cytotoxicity
assessments to be developed to check the possible synergistic effect of the final product,
similarly to DESs [31,40,52]. They have been compiled according to the applications
of THEDESs.

There are some drugs that are better solubilized with DESs, such as coumarin. Different
final THEDESs were obtained, and low toxicity was found for them toward a cancer cell
line [53].
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The use of anti-inflammatory drugs is widely spread among the general population.
Many drugs with this application are not easily dissolved, and THEDESs have risen as
a good alternative to solve the problem. In fact, DESs have also been used to solubilize
ibuprofen and the absence of cytotoxicity in xylitol; ChCl:water toward HaCaT (immor-
talized human epidermal keratinocytes) and HepG2 (hepatocellular carcinoma) cell lines
using a PrestoBlue cell viability assay was demonstrated [54]. Ibuprofen is one of the most
extended drugs within THEDESs, and cytotoxicity assays were developed to test if such
combinations are not cytotoxic [30,55]. Nevertheless, there is one study that was performed
with dexamethasone that was successfully solubilized with ChCl and ascorbic acid. At
some higher concentrations, cytotoxicity was found, while it was not shown at lower ones.
Interestingly, a synergistic effect was found inside the components of THEDESs combining
the antioxidant activity of ascorbic acid with the activity of dexamethasone [40].

Bacterial toxicity was an outcome explored with the use of several THEDESs, while
cytotoxicity toward other cell lines was also explored. Olivares et al. analyzed the potential
cytotoxic effect of THEDES including betaine/urea with imipenem. They found that at
the same time that betaine/urea could serve as an effective stabilizer for imipenem, it also
enhanced the antimicrobial activity toward some bacteria. Moreover, its cytotoxicity was
low for human fibroblasts and even when using human skin explants with the absence
of histopathological changes. In this case, as the cytotoxicity profile was tested with
human fibroblasts and skin explants, the authors suggested that it could be used for topical
applications [56]. Silva et al. combined menthol, a terpene which generally increases the
permeation of other components, with three different acids, namely, stearic acid, myristic
acid, and lauric acid. The assessment of cytotoxicity was performed toward keratinocytes
cells because they were searching a specific application for wound healing. The antibacterial
activity of the THEDESs was maintained, and relevant cytotoxic effects were not found in
the analyzed cell line [27]. Pedro et al. found a reduced toxicity profile of ciprofloxacin
within THEDES combinations (with proline/urea/malonic acid or citric acid/xylitol)
when compared to the cytotoxicity of ciprofloxacin alone, while the therapeutic action
against bacteria was maintained. They used immortalized human epidermal keratinocytes
(HaCaT) as cell models [28,57]. In general, some THEDESs show good properties when
the bacterial toxicity is the objective, while the low cytotoxicity of the other exposed cell
lines is maintained. A similar situation was found when amoebae was the focus of the
antimicrobial activity of the THEDESs [58].

As cancer remains as a challenging disease for effective therapies, some THEDESs
have also checked for this therapeutic application. Pereira et al. explored the possibility
of including limonene within a THEDES while trying to decrease its intrinsic toxicity for
normal cells. Mixtures of limonene with capric acid or menthol did not seem to decrease
its toxicity, whereas combinations of limonene with ibuprofen (1:4) did. Moreover, a syn-
ergistic effect of this latter THEDES was found that overcomes the simple mixture of its
individual components, as previously shown with the DES. Even a different mechanism of
action is followed by the THEDESs compared to the isolated ibuprofen and limonene, but
their advantages for cancer therapy are preserved [31]. Notably, in a review, Oliveira et al.
suggested to understand the cytotoxicity process of THEDESs when affecting different
kinds of cell lines, malignant and non-malignant, in order to take advantage of this knowl-
edge to design proper therapies for specific cancer types, such as colorectal cancer [59].
Later on, Pereira et al. evaluated the usefulness of different THEDES including terpenes
and nonsteroidal anti-inflammatory drugs. They found that a specific mixture containing
menthol/ibuprofen (3:1) was selectively cytotoxic toward cancer cells [30].

In diabetes mellitus, chlorpropamide and tolbutamide were solubilized with
tromethamine and a proportion of water after trying other conformers. In the study
developed by Sarraguça et al., these THEDESs showed a low toxicity profile in two cell
lines involving murine fibroblasts and human cancer cells [60].

The treatment of tuberculosis is another field where THEDESs are being analyzed.
Santos et al. combined citric acid with L-arginine or ethambutol, and the cytotoxicity was
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assessed using the Caco-2 cell line. Citric acid was found to be more toxic than ethambutol
for this specific cell line. The acidity of the media was pointed out as a relevant factor that
could increase the toxicity of THEDESs, as seen with previous studies with DESs [61].

In relation to the development of new drug delivery systems, Mano et al. found that
the cell proliferation of fibroblast was not inhibited by the exposure to gelatin fibers with
encapsulated THEDESs composed of ChCl and mandelic acid. At the same time, fibers
impregnated with THEDES maintained the expected antibacterial activity [38]. In another
study, a liquid L-arginine-based THEDES was encapsulated in a lipidic matrix. When
checking its cytotoxicity toward a mouse fibroblast cell line, no toxicity was found [62]. In
addition, Pedro et al. explored the cytotoxicity profile of a THEDES including ibuprofen in
the form of hydrogel for transdermal administration. The main action of the ibuprofen was
maintained while arginine/glycerol (1:4) was used to solubilize it. Human abdominal skin
samples were used to check the enhancement of drug permeation. Additionally, murine
macrophages were analyzed in relation to the cytotoxicity, and no toxicity was found [55].

A summary of the cytotoxicity studies carried out with THEDESs is gathered in Table 2.

Table 2. Cytotoxicity studies of THEDESs using different cell lines ordered by their therapeutic areas
and dates from oldest to newest.

Therapeutic Area Components Cell Lines Cytotoxicity Assay Reference

Anticoagulation ChCl: urea/ethylene
glycol/glycerol + coumarin Melanoma skin cell line MTT cell viability assay [53]

Anti-inflammation ChCl: ascorbic acid +
dexamethasone

Immortalized mouse lung
fibroblasts cell line (L929) MTS cell viability assay [40]

Anti-inflammation Arginine: glycerol + ibuprofen Murine raw 264.7
macrophages

Resazurin cell viability
assay [55]

Antimicrobial ChCl + mandelic acid Immortalized mouse lung
fibroblasts cell line (L929) MTS cell viability assay [38]

Antimicrobial Menthol + stearic
acid/myristic acid/lauric acid

Immortalized human
epidermal keratinocytes

(HaCaT)

MTS cell viadbility
assay [27]

Antimicrobial Betaine: urea + imipenem Human primary dermal
fibroblasts

CellTiter-Blue® Cell
Viability Assay

(resazurin)
[56]

Antimicrobial
Proline: urea: malonic

acid/citric acid: xylitol +
ciprofloxacin

Immortalized human
epidermal keratinocytes cell

line (HaCaT)
MTT cell viability assay [28]

Antimicrobial
Trioctylphosphine/trihexylamine/

trioctylamine + malonic
acid/salicylic acid

Henrietta Lacks cervical
cancer cell line (HeLa) LDH cytotoxicity assay [58]

Cancer Menthol/capric
acid/ibuprofen + limonene

Human colon
adenocarcinoma cell lines

(Caco-2 and HT29)

MTS cell viability assay
(and antiproliferative

assay)
[31]

Cancer
Safranal/menthol/linalool +

ibupro-
fen/ketoprofen/flurbiprofen

Human colon
adenocarcinoma cell lines

(Caco-2 and HT29)

MTS cell viability assay
(and antiproliferative

assay)
[30]

Diabetes mellitus Tromethamide: water +
clorpropamide/tolbutamide

Immortalized mouse lung
fibroblasts cell line (L929)

and human colon
adenocarcinoma cell line

(Caco-2)

MTT cell viability assay [60]

Tuberculosis Citric acid +
L-arginine/ethambutol

Human colon
adenocarcinoma cell line

(Caco-2)
MTS cell viability assay [61]

Tuberculosis Citric acid + L-arginine Immortalized mouse lung
fibroblasts cell line (L929) MTS cell viability assay [62]
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2.2. Gene Expression

Although the above findings classify THEDESs as generally safe, little is known about
their interaction at the cellular and molecular level, and how they can affect DNA structure
and gene expression [63].

Considering the little evidence about genotoxicity, similar strategies to those carried
out in the studies with NADESs could be followed. They must be focused on genes related
to the mechanism of action of drugs whose solubility is intended to be increased.

The evidence to date for the genotoxicity of DESs/NADESs is more extensive, hav-
ing been tested in different cell lines and methods. Between them, gene expression or
DNA damage are measured. Grozdanova et al. (2020) [64] carried out a comet assay, a
single-cell gel electrophoresis for measuring DNA stand breaks, to assess the genotoxicity
of tested NADESs applied for the extraction of two medicinal plants as follows: ChCl:
glycerol/Sideritis scardica, ChCl: glycerol/Plantago major, Citric acid-1,2—propanediol 1:4
(CAPD)/Sideritis scardica and CAPD/Plantago major. All tested NADESs were harmless
for CCL1 cells, and the genotoxicity was concentration-dependent [64]. Ammonium-based
DESs with glycerin, ethylene glycol, triethylene glycol, or urea were tested on MCF-7 cells
to evaluate DNA integrity. The results obtained via DNA fragmentation analysis on agarose
gel show that the cell deaths were not caused by DNA damage [42].

Trans-resveratrol is a natural polyphenol widely used in cosmetics and the pharmaceu-
tical industry, both in its topical and oral forms (e.g., antioxidants and hypolipidemic supple-
ments). When exposed to UV light, it is isomerized to trans-1,4,6-trihydroxyphenanthrene
(THP), with genotoxic effects. Proline/glycerol NADES showed a photo-protective effect
under UV exposure, inhibiting the isomerization of resveratrol and THP formation [65].
Moreover, another study evaluated resveratrol, improving its bioavailability via lipid con-
jugation. Endothelial permeability protection was evaluated by MMP-9 inhibition, which
plays an important role in the inflammation and healing processes. Resveratrol-linoleic
acid dissolved in NADESs, composed by 1,2-propanediol:ChCl:water, showed the highest
MMP-9 inhibitory effect in THP-1 tested cells [66].

A study carried out by Szél et al. (2019) [67] tested the protective effect to hyperosmotic
stress produced by sorbitol addition of glycerol and xylitol in keratinocyte HaCaT cells.
The inflammatory cytokines’ expression was measured to evaluate stress cell levels. The
results show that both polyols decreased IL-1α expression, while only glycerol affects IL-1β
and NFAT5 expression, despite having similar chemical structures.

Lee et al. (2022) [68] tested a fermented NADES ginger extract on HTC-116/R cells
(colorectal cancer model). The NADES ginger extract has a higher phenolic content and
antioxidant activity than organic solvent extract. The NADESs were composed of a mix-
ture of betaine/lactate/water. The fermented NADES extract were shown to inhibit the
expression of NF-κB (via activity assay) and CXC chemokine receptor 4 (CXCR4) (using Real
time PCR) genes, enhancing the therapeutic effects in oxipalatin-resistant CRC cells.

Likewise, similar studies, such as Wang et al. (2019) [69], were carried out in ionic
liquids, demonstrating their influence on the expression of p53 and Bcl-2 family genes, and
showing NADESs’ cytotoxic and apoptotic effect on hepatocellular carcinoma (HepG2)
cells treated with f 1-dodecyl-3-methylimidazolium chloride.

To the best of our knowledge, the only study really considered as a THEDES formed
by betaine-urea DESs containing imipenem was tested in monocyte cells, showing that this
formulation increases therapeutic efficacy. The immunogenic response of the THP-1 cells
was measured by the proinflammatory cytokines gene expressions (IL-1, IL-6, and TNF-α).
This THEDES showed no immunogenic effect, suggesting its potential as a formulation [56].

3. Animal Models

Regarding the toxicity of DESs, to date, these compounds have been tested mainly in
invertebrates and animal models (rodents).

Studies in invertebrate animals included Daphnia magna, Artemia salina, and Hydra
sinensis with mixed results in the toxicity of the DES use. In reference to the Daphnia magna
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toxicity test, only two studies evaluated different DESs [70] or NADESs [71], and none
of the tested combinations induced significant toxicity toward this model. Hayyan et al.
tested different DESs in Artemia salina to determine the toxicity and the mortality. The
results of the assays indicated that the toxicity of DESs was higher than their individual
components, suggesting that the toxicity can be influenced by the composition of DESs
by varying the salt/HBD combination and molar ratio [42,47]. The study of Hydra sinensis
concluded that the survival times of Hydra sinensis were significantly shortened by exposure
to a DES-containing aqueous solution, suggesting that the DES exhibited a toxic effect on
the hydras. It was suspected that depending on the type of HBD of the eutectic mixtures,
the charge will be delocalized in the HBA and modify the toxicity [72].

Regarding more complex animal models, Hayyan et al. also tested the toxic potential
of ammonium-based DESs in vivo in a murine model. As in Artemia salina had shown
previously, in mice tests, DESs were relatively more toxic in comparison to their individual
components [38]. Consequently, Mbous et al. tested the toxicity of DESs and NADESs
in mice, showing that NADESs presented higher toxicity than DESs, and induced liver
failure due to their viscosity, which made the circulation of the mixture difficult [50]. In the
same line, Benlebna et al. administered phenolic NADES extract from green coffee beans
to Wistar rats, and its oral administration induced mortality in two rats, and short-term
side effects such as excessive water consumption, weight loss, hepatomegaly, and plasma
oxidative stress associated with hyperlipemia [73].

On the other hand, more recent articles observed less toxicity on the DESs studied.
Nurunnabi et al. investigated the toxicity of oral CAGE (Choline bicarbonate and Geranic
acid) administration in rats treated for 30 days. The results obtained indicate that the CAGE
formulation was well tolerated, that no changes were found in the red blood cells and
platelet count of treated rats compared with the controls [74]. Zhao et al. used metabolites
of Coptidis rhizoma extract to artificially prepare the NADES. Then, the toxicity in the mice
was evaluated, showing that after the oral administration of the NADES, the mice became
irritable and presented dyskinesia, which means that the NADES itself showed an acute
toxicity to the mice. However, the mice that were given 10% dilution of the NADES in
water showed no toxicity, and none died after oral administration [75].

Different NADESs/DESs were used to improve the bioavailability and/or biocompati-
bility of different compounds [36,76–80]. Xiao et al. developed a novel hydrogel system
incorporating an amino acid-based DES. The DESs were integrated into Carbomer® 940
hydrogels for the skin delivery of “sanwujiaowan” extract, a Chinese herbal medicine. San-
wujiaowan is composed of six ingredients, some of them with a certain degree of toxicity. By
preparing the DES extract complex, it demonstrated good dissolution and skin permeability
of the ingredients in the extracts. The authors used a collagen-induced-arthritis rat model,
and the hydrogel with the DES extract complex exerted an enhanced therapeutic effect that
reduced the inflammatory response with systemic toxicity of the extracts [32].

Due to their high stabilization and solubilization power, DESs offer the ability to tune
the solubility, permeation, and absorption of APIs. For that, APIs with low solubility or
permeability could be improved by including these solvents on their formulation in in vivo
studies. The toxicity of THEDESs has been tested primarily on animals such as mice, rats,
or pigs focused on the preclinical angle. Previous studies are shown according to their
routes of administration and are summarized in Table 3.

Table 3. Animal model studies with API dissolved in DESs.

Route of Administration Components Animal Model Reference

Injection: intravenous
(in vivo)

Choline bicarbonate: oleic acid (CODES) +
verteporfin Balb/c female mice [81]

Injection: subcutaneous
(in vivo) + skin from dorsal

side (ex vivo)
CAGE + Apomorphine Wistar rats and pigs [82]
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Table 3. Cont.

Route of Administration Components Animal Model Reference

Injection: transdermal
(in vivo) + porcine skin (ex

vivo)
CAGE + insulin Male Wistar rats and Porcine skin [83]

Injection: transdermal skin
(ex vivo) CAGE + insulin Porcine skin [84]

Injection: subcutaneous
(in vivo)

Choline glycolate, acetylcholine glycolate,
choline lactate, acetyl-choline lactate, choline
propionate, acetylcholine propionate, choline

hexenoate, acetylcholine hexenoate, CAGE, and
acetylcholine geranate (aCAGE) + insulin.

Balb/c female mice [85]

Injection: transdermal
iontophoresis (in vivo)

ChCl/urea, ChCl/glycerol, and ChCl/ethylene
glycol + insuline Diabetic rats [86]

Injection: skin topical
(in vivo) Capric acid: Risperidone Male rodents [87]

Injection: intraperitoneal
(in vivo)

3-(4-(4-
(bis(2chloroethyl)

amino)phenyl)butanoyloxy)-N,N,N-trimethyl
propane-1-aminium chloride (CABAL),

1,4-butanediol + doxorubicin

Adult female Sprague Dawley rats [76]

Injection: topical and
subcutaneous (in vivo) Arginine (Arg)-citric acid (CA) + Methotrexate Male Wistar rats [88]

Oral (in vivo) Betaine, Mandelic acid (Bet-Man NADES) +
RA-XII Healthy male Sprague Dawley rats [89]

Oral (in vivo) Fumaric acid + Diacerein
2,4-dihydroxybenzoic acid + Diacerein Healthy Sprague Dawley rats [90,91]

Oral (in vivo)

Mixtures of sugars (glucose, xylitol, sorbitol),
amino acids (glutamic acid, proline), organic

acids (citric, malic, oxalic, and tartaric acid), and
other nitrogen-containing compounds (urea,

ChCl, acetylcarnitine and carnitine) + Berberine

Balb/c female mice [36]

Oral (in vivo) Malic acid + Berberine Grade II ICR mice (male and
female) [75]

Oral (in vivo) ChCl/glycerol + salvianolic acid B Mice (male and female) and
Sprague Dawley male rats [92]

Oral (in vivo) CAGE + insulin Adult nondiabetic male Wistar rats [93]

Oral (in vivo) + porcine
buccal tissue (ex vivo) CAGE + chitosan + insulin Nondiabetic adult male Wistar rats

and Yorkshire pigs [94]

Nasal (in vivo) ChCl and malic acid (CM-DES) + insulin Male Sprague Dawley rats [95]

3.1. Injection Routes: Transdermal/Subcutaneous/Intravenous Administration

Injection administrations require the drug to be delivered through the skin with a
needle (subcutaneous, intravenous, or transdermal). Some drugs are delivered body-
wide through a patch on the skin. These drugs are sometimes mixed with chemical
compounds, as DESs, that enhances penetration through the skin into the bloodstream
without any injection. According to transdermal skin delivery, it is difficult to assess the
skin permeability of materials using only in vivo experiments. Consequently, numerous ex
vivo models are frequently employed to assess drug skin permeation profiles and kinetic
parameters [96].

Kim et al. used DESs to formulate a nanocomplex for the systemic administration of
verteporfin, a chemotherapeutic drug. They investigated the efficacy of the nanocomplex
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administered intravenously in female mice bearing a 4T1 tumor in the mammary pad.
The authors observed a better drug penetration into the tumor tissue, probably due to the
DESs’ contribution to the fluidization of the tissue through the interaction between the
DESs and membrane lipids. In addition, greater drug sensitivity and effective inhibition of
orthotopic tumor growth was shown [81]. The same authors reported a deep eutectic-based
formulation that slows the release of apomorphine after subcutaneous injection. In this
case, CAGE1:2 and a mixture with the drug was prepared, which is called SEAPORT
formulation. The skin from the dorsal side of Wistar rats was used to study apomorphine
release from SEAPORT ex vivo and it was observed that CAGE 1:2 plays a critical role in
its release. Moreover, in vivo pharmacokinetic of the apomorphine from subcutaneously
injected SEAPORT was measured in the rats and pigs and showed a prolonged duration of
a higher apomorphine concentration in plasma in comparison to the clinical comparator
(reference drug formulation) [82].

Other studies also synthesized CAGE, as DESs, and included them in drug formu-
lations for the application in ex vivo and in vivo models, mainly with insulin, because of
its difficult transdermal delivery by conventional chemical permeation enhancers. Baner-
jee et al. reported that CAGE can deliver insulin across porcine skin and significantly
reduce blood glucose levels in rats when insulin-CAGE is topically administered. The ex
vivo penetration into the skin samples was measured using porcine skin; to measure the
insulin-CAGE penetration, Fluorescein isothiocyanate-labeled insulin (FITIC-insulin) was
added to CAGE and applied to the porcine skin. In vivo experiments were performed
in male rats applying transdermal insulin in CAGE [83]. Tanner et al. synthesized vari-
ants of CAGE by controlling the ratio of a range of 1:4 to 2:1. In this case, an ex vivo
pig’s skin model demonstrated that the 1:2 and 1:4 molar ratio variants were capable of
transporting FITIC-insulin through to the stratum corneum, epidermis, and dermis (trans-
dermal transport) [84]. Recently, Curreri et al. developed a new tool toward improving
subcutaneous formulation using biocompatible deep eutectics. The DESs were synthesized
using a salt metathesis reaction at the cation/anion ratios of 1:2 and were then formulated
with solubilized 100 U/mL of regular insulin. Pharmacokinetics of subcutaneous insulin
administration using deep eutectics (SPADES-insulin) was compared against the equivalent
dose of the clinical gold standard of the fast-acting insulin analog (Humalog) in male Wistar
non-fasting rats and improved the systemic absorption of subcutaneously injected insulin
faster than Humalog. The toxicity was analyzed in healthy female Balb/c mice receiving a
single subcutaneous injection of DES solutions and demonstrated that SPADES is a safe
and non-toxic formulation [85]. In a new paper, DESs were introduced as novel chemical
penetration enhancers for transdermal iontophoresis of insulin across rat skin. The results
of the in vivo studies indicated a reduction in the blood glucose level in diabetic rats using
ChCl/ethylene glycol and ChCl/glycerol in the iontophoresis delivery of insulin [86].

Al-Akayleh et al. investigated the skin permeability of risperidone, an antipsychotic
drug, using eutectic systems. The prepared THEDES mixture of risperidone and capric acid
was spread on the skin of male rodents and was found to be tolerable, less irritant, and safe
for application to the skin compared with the control untreated skin. A histopathological
study was performed that did not show changes in the state of the skin and morphological
changes [87].

Rajan et al. synthesized DESs, which influenced the formation of folic acid (FA)-
tagged g-beta-alanine-co-Poly ε-caprolactone (PCL) polymer (DES@FA-g-β-alanine-co-
PCL polymeric system) to encapsulate the doxorubicin drug. The enhanced anticancer
potential of doxorubicin-loaded polymeric micelle was studied in an in vivo breast cancer
model. The advantage of this polymeric system is that it could increase the bioavailability
of hydrophobic doxorubicin drugs. The intraperitoneal injection of doxorubicin-loaded
polymeric micelle significantly reduced the body weight and tumor size when compared
with dimethylbenzanthracene-induced mammary carcinoma-bearing rats and polymeric
micelle-treated rats [76].
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Recently, Li et al. reported a transdermal delivery strategy using a silica nanoparticle
matrix (MSN) encapsulated with methotrexate and impregnated in DES hydrogels for the
topical management of rheumatoid arthritis. This formulated DES-MSN hydrogel system
was applied to the skin of rats to test the skin irritation and the in vivo toxicity of this
system. They observed a sustained penetration and accumulation of MSNs at subcutaneous
inflammation sites [88].

3.2. Oral Administration

Regarding in vivo pharmacokinetic studies, Liu et al. administered RA-XII dissolved
in 5–20% v/v Betaine and Mandelic acid (NADES) solution in rats. The authors observed
that the oral absorption of RA-XII dissolved in 20% NADES solution was significantly
increased. They concluded that NADES solutions were effective approaches for improving
solubility, permeability, and oral bioavailability of the anti-tumor candidate RA-XII [89].
Patel et al. prepared a novel eutectic of Diacerein with fumaric acid (FMA) as a coformer in
various molar ratios. Diacerein and its active metabolite, called rhein, are anthraquinone
derivatives used for treating osteoarthritis. Healthy Sprague Dawley rats were distributed
in two groups and administered pure Diacerein and prepared eutectic suspension orally,
respectively. Blood samples were collected, and pharmacokinetic parameters were analyzed
after oral administration. The results of the pharmacokinetic evaluation suggested greater
oral bioavailability of the prepared eutectic versus pure Diacerein [90]. These authors
repeated the same study but changed the fumaric acid for 2,4- dihydroxybenzoic acid
(DHA) as coformer, and again, the pharmacokinetic study in the rats proved higher oral
bioavailability of the prepared eutectic [91]. Berberine is a quaternary benzylisoquinoline
alkaloid with huge properties as an antihypertensive, antiarrhythmic, anti-inflammatory,
and hypolipidemic, among other properties. Despite its therapeutic properties, berberine is
poorly absorbed after oral administration and its plasma concentration in pharmacokinetic
studies is extremely low. In this study, several NADESs were prepared and used to
solubilize berberine. The NADESs selected were urea or organic acids (malic and lactic
acid), and proline. The berberine solubilized in the selected eutectics mixtures were used to
evaluate their pharmacokinetic properties in the female Balb/c mice and were compared
with berberine. The plasma levels were determined up to 6 h after oral administration via
gavage in the mice. The administration of NADESs with berberine yielded in a significant
increase in the plasma level of berberine [36]. These authors were in concordance with
another recent report that observed that the pharmacokinetic parameters of berberine
were improved in the liver and indicated that NADES dilutions promoted the intestinal
absorption of oral berberine by increasing solubility in mice. The authors suggested that
NADESs may help to promote its use in oral drug delivery [75].

Another natural compound, the salvianolic acid B with anti-inflammatory and antioxi-
dant properties, was studied, adding the model drug in ChCl/glycerol with the common
molar ratio (ChCl/glycerol 1:2) as a drug vehicle for this poorly soluble compound. The
results obtained demonstrated that the oral administration using gavage of ChCl/glycerol
(1:2) was non-toxic with LD50 7733 mg/kg in mice. The results indicated that ChCl/glycerol
(1:2) could accelerate the absorption and elimination of salvianolic acid B, maybe because
the eutectic system could enhance the membrane penetration ability of drugs [92].

Barnejee et al. also studied the efficacy of insulin-CAGE administered through the oral
route. For the oral efficacy in in vivo studies, enterically coated capsules were administered
via oral gavage to adult nondiabetic male rats. In vivo, when 10 U/kg insulin-CAGE
was administered, a 45% decrease in blood glucose was observed, and by delivering
insulin-CAGE, the authors evade gastric degradation of insulin and enhance its intestinal
permeability [93]. Other authors reported the fabrication of a biodegradable polymeric
patch for the buccal delivery of insulin using CAGE, as DESs, to transport facilitator and
chitosan as mucoadhesive matrix. They applied ex vivo and in vivo studies. The ex vivo
permeation was performed using porcine buccal tissue to study the extent of drug transport.
The results show that CAGE induced an increase in insulin transport and enhanced insulin
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penetration through buccal tissue. To test in vivo the performance of insulin delivered by
the patches, the patches were placed in the pouches of the nondiabetic rats in the buccal
cavity of the rats. The authors concluded that the CAGE/insulin patches placed in the rat
buccal pouch lowered the blood glucose levels, and non-tissue damage was shown [94].

3.3. Nasal Administration

Nasal administration was proposed as an alternative administration route for insulin.
Like the transdermal and oral routes, this route must be evaluated to determine if there
is toxicity and to determine if it is a good route of administration. Li et al. developed a
biocompatible DES as a carrier for improving the nasal delivery of insulin. Nasal toxicity
was evaluated in vivo using rats, after intranasal epithelia administration of the solution.
The authors concluded that the in vivo studies demonstrated that DES caused no evident
toxicity to rat nasal epithelia and could improve the permeability of nasal epithelia, because
DESs absorb water to facilitate the disassociation of the structure and the release of drugs
upon contact with the nasal mucus [95].

Regarding delivery methods, the studies mentioned focused on oral, buccal mucosa,
transdermal, intravenous injection, subcutaneous injection, and topical delivery with very
good results and low toxicity. However, other potential routes require investigation, such
as ocular, sublingual, or vaginal/anal drug delivery.

4. Human Trials

The properties of DESs have been widely demonstrated at different levels, yet there
are only few studies carried out directly in humans, and none of them are considered as
conventional THEDESs. The antimicrobial properties of DESs and their ability to deliver
drugs transdermally have generated great interest in the dermatology industry, mainly
in [33,55]. One of the first human trials focuses on the treatment of rosacea. The study of
Ko et al. showed that DES with a composition of CAGE is a good candidate to improve
the effectiveness of rosacea treatment due to the good results of in vitro studies with this
ionic liquid/DES [97,98]. Its high ability to penetrate into the deep layers of the skin
allows for the treatment of pathogens at this level [83]. The CGB-400 gel, with a CAGE1:2
composition, has managed to complete the “seven steps of translation”, reaching the final
step of human studies for the treatment of rosacea. The high antibacterial activity of CAGE
against Propionibacterium acnes, associated with the biological origin of rosacea, has also
been demonstrated [98]. This clinical trial was conducted in 52 patients with rosacea, and a
34.6% reduction in the mean papules and pustules typical of this disorder was observed
after only two weeks of therapy with CGB-400 gel. At 12 weeks, the reduction observed
was much greater, specifically, 71.9%. This study and the process to obtain the final product
open a door to other products based on the properties that have been demonstrated for
CAGE. The use of CGB-400 for the reduction in facial redness and bumps and blemishes are
still in phase one of clinical trials (https://www.cdek.liu.edu/api/119951/#trials, accessed
on 24 March 2023) [99].

Human tissues were also used for ex vivo analysis of toxicity. For example, abdominal
skin samples were obtained to carry out a permeation study of risperidone. Al-Akayleh
et al. concluded that the amount of this drug permeated as part of a THEDES including
capric acid was high [83]. Pedro et al. also performed a permeation assay of an alginate-
based hydrogel containing ibuprofen using human abdominal skin as an ex vivo model.
The authors showed that the permeation of ibuprofen was improved compared to that
obtained with the hydrogel without the DES [51].

5. Conclusions

Despite being recognized as promising solvents with many potential biomedical
applications, THEDESs have not been fully analyzed on their toxicity profile, although
there are some studies about this topic. There is a lack of comprehensive toxicity studies
available in the literature. DESs have received more attention about their toxic profile,
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but combinations with APIs are not always recognized as THEDESs, and further research
is needed to fully assess the potential risks associated with their use. As soon as a new
THEDES arrives, its toxicity should be assessed, especially if it is going to be used for
therapeutics. It is suggested that toxicity should be checked systematically since these
kinds of data are scarce. As the complexity of the models increased, a smaller number of
studies were developed. Interestingly, some authors have found a synergistic effect when
mixing original compounds of the THEDESs, and toxicity can change in both directions, so
it is necessary to test any new combination.

Since each THEDES has its own composition with unique properties, it is difficult
to establish a universal toxicity testing protocol that would be applicable to all THEDESs.
However, the development of such model would aid in the safe and effective use of
THEDESs in their various applications. As THEDESs are tailored to be used for specific
therapeutic areas, the models used to carry out the toxicity assessment should vary. Notably,
an effort must be made to maintain the individual bioactivity of the components of the
THEDESs, whereas some additional advantages could be found. Regarding cell cultures
and gene expression, cell lines and genes must be selected in relation to the intended
application. This should be the first step before using more complex animal models or even
human trials. In animal models, a variable toxicity was found, with injection being the
most tested route of administration of the compounds.

This manuscript is focused on the toxicity of THEDESs specifically, but it is also
essential to investigate their degradation products to ensure they are non-toxic as well.
THEDESs can break down into various substances, some of which may have different
toxic properties from the original compound. Therefore, the investigation of the toxicity of
THEDESs’ degradation products is also crucial to ensure their safe use.
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API Active Pharmaceutical Ingredient
BCS Biopharmaceutics Classification System
CAGE Choline bicarbonate and Geranic acid
CAPD Citric acid-1,2—propanediol 1:4
ChCl Choline Chloride
DES Deep Eutectic Solvents
DHA 2,4-Dihydroxybenzoic Acid
FA Folic Acid
FMA Fumaric Acid
FITIC-insulin Fluorescein Isothiocyanate-Labeled Insulin
HBA Hydrogen Bond Acceptor
HBD Hydrogen Bond Donor
MSN Silica Nanoparticle Matrix
NADES Natural Deep Eutectic Solvents
PCL Poly ε-Caprolactone
THEDES Therapeutic Deep Eutectic Systems
THP Trans-1,4,6-Trihydroxyphenanthrene
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