iririedl applied
e sciences

Article

Password Cracking with Brute Force Algorithm and Dictionary
Attack Using Parallel Programming

Ibrahim Alkhwaja 1, Mohammed Albugami !, Ali Alkhwaja 1'*(, Mohammed Alghamdi 1,

Hussam Abahussain !, Faisal Alfawaz 1, Abdullah Almurayh 2

check for
updates

Citation: Alkhwaja, I.; Albugami, M.;
Alkhwaja, A.; Alghamdi, M.;
Abahussain, H.; Alfawaz, F;
Almurayh, A.; Min-Allah, N.
Password Cracking with Brute Force
Algorithm and Dictionary Attack
Using Parallel Programming. Appl.
Sci. 2023, 13,5979. https:/ /doi.org/
10.3390/app13105979

Academic Editor: Luis Javier
Garcia Villalba

Received: 26 April 2023
Accepted: 5 May 2023
Published: 12 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Nasro Min-Allah !

Department of Computer Science, College of Computer Science and Information Technology,

Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

Deanship of Admissions and Registration, Imam Abdulrahman Bin Faisal University, P.O. Box 1982,
Dammam 31441, Saudi Arabia

* Correspondence: 2190000164@iau.edu.sa; Tel.: +966-55-899-3488

Abstract: Studying password-cracking techniques is essential in the information security discipline
as it highlights the vulnerability of weak passwords and the need for stronger security measures to
protect sensitive information. While both methods aim to uncover passwords, both approach the task
in different ways. A brute force algorithm generates all possible combinations of characters in a speci-
fied range and length, while the dictionary attack checks against a predefined word list. This study
compares the efficiency of these methods using parallel versions of Python, C++, and Hashcat. The
results show that the NVIDIA GeForce GTX 1050 Ti with CUDA is significantly faster than the Intel(R)
HD Graphics 630 GPU for cracking passwords, with a speedup of 11.5x and 10.4x for passwords
with and without special characters, respectively. Special characters increase password-cracking
time, making the process more challenging. The results of our implementation indicate that parallel
processing greatly improves the speed of password-cracking techniques. The brute force algorithm
achieved a speedup of 1.9x with six cores, while the dictionary attack showed a speedup of 4.4 x

with eight-core static scheduling. Studying password-cracking techniques highlights the need for
stronger security measures to protect sensitive information and the vulnerability of weak passwords.

Keywords: parallel computing; password cracking; brute force algorithm; dictionary attack; parallel
programming; Hashcat; CUDA

1. Introduction

In the domain of computer security, parallel computing has proven to be an effective
method of accelerating the process of cracking passwords using brute force techniques
as well as the dictionary attack. Brute force techniques involve trying every possible
combination of characters until the correct password is obtained [1]. The duration of
computation needed to discover a password by the brute force technique is reliant on
various factors, including the length and complexity of the character set of the password,
as well as the computational complexity of the encryption algorithm employed [2]. In
addition, if the computation is carried out on a single processor, it may require even
more time to crack the password. However, distributing the workload across multiple
processors or devices can contribute to accelerating the process. This not only makes
password cracking more efficient, but also increases the chances of having a successful
cracking attempt. When a password is deemed to be highly secure, brute force password
cracking becomes indispensable, but there are alternate methods for cracking passwords
that are considered more favorable, such as the dictionary attack [3]. The dictionary attack
uses a pre-compiled list or wordlist of commonly used passwords and matches them with
the targeted password [4]. This method is less time-consuming compared to brute force
but is only effective if the password exists in the list used. Therefore, it is usually used
when the brute force attack takes too long to crack lengthy passwords [5]. Again, parallel

Appl. Sci. 2023, 13,5979. https:/ /doi.org/10.3390/app13105979

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13105979
https://doi.org/10.3390/app13105979
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-4637-3298
https://orcid.org/0009-0008-0161-3200
https://orcid.org/0009-0004-4273-9791
https://orcid.org/0000-0003-3471-4987
https://doi.org/10.3390/app13105979
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13105979?type=check_update&version=1

Appl. Sci. 2023,13, 5979

20f22

programming can be utilized to reduce the time it takes to perform the attack. Nevertheless,
parallel computing can also be used to implement highly optimized password-cracking
algorithms, such as using GPUs for processing large amounts of data. Can et al. [6] argue
that the difficulty of the algorithm determines how much computation is required. A study
conducted by Laatansa et al. [7] investigated the effectiveness of cracking SHA-1 hashed
passwords using a GPGPU-based machine with brute force and dictionary attack methods.
The results demonstrate that brute force is more effective in cracking passwords with fewer
characters, with 11% of passwords containing seven or fewer characters cracked, compared
to only 3% with the dictionary attack. On the other hand, dictionary attack proves to be
more effective in cracking passwords with insecure character patterns, with 5053 passwords
cracked versus 491 with the best brute force scenario. A combination of both methods (brute
force and dictionary) provides a more balanced approach to cracking passwords, regardless
of length or character pattern security [7]. The use of parallel computing in password
cracking is essential not only for security professionals to empower their defense systems
by identifying weak passwords used by employees, for instance, but also for individuals
and organizations who may have lost or forgotten their passwords. Most operating systems
and apps use key derivation functions (KDFs) to transform plaintext passwords to hashed
passwords in order to prevent attackers from simply obtaining the clear text password.
A brute force attack would be the only method to recover the plaintext password from
a hashed password since KDFs are one-way functions [8]. Using parallel computing in
password recovery is essential as it saves time and retrieves data and information protected
by a forgotten password. On average, 76% of internet users use the same password
across other websites, according to [9]. This increases the chance of their accounts being
compromised. Another technique of cracking passwords is the dictionary attack. A pre-
determined list of common passwords is used in the dictionary attack to achieve a potential
match. This technique poses a significant threat to various entities, particularly in the realm
of account and network security. For instance, it can involve exploiting Wi-Fi networks
by targeting common passwords to gain unauthorized access [10]. The objective of this
study is to determine the most efficient and effective approach for password cracking by
evaluating the performance of various hardware configurations for parallel brute force and
dictionary attacks. Furthermore, the objective aims to investigate the impact of character
sets on password-cracking performance, specifically the inclusion of special characters.
The results of this study demonstrate the significant impact that hardware configurations,
such as multiple cores or powerful GPUs, can have on the efficiency of password-cracking
techniques. By leveraging these advanced hardware tools, security professionals can
achieve a dramatic increase in password-cracking speed and accuracy, which is critical
in the fight against cyber threats. These findings underscore the importance of ongoing
research and development in the field of hardware configurations for password cracking
and suggest that future advances in this area could have a transformative effect on the field
of cybersecurity.

The rest of this work is structured in the following manner. In Section 2, a review of
16 related papers of literature is presented. The proposed techniques are given in Section 3.
The proposed techniques used are as follows: implementing parallel processing in brute
force and dictionary attacks using Python language, implementing the dictionary attack
with OpenMP in C++, and implementing brute force and dictionary attacks using Hashcat.
In Section 4, there are research studies that encompass both the experimental design and
the optimization technique or method used to search for parameters. In Section 5, results
and discussion can be found. The analysis and comparison with other research studies are
presented in Section 6. Finally, Section 7 contains the conclusion and suggestions derived
from the implementation.

2. Literature Review

Ignatius and Yusuf [11] discussed the use of the CUDA computing platform to support
a brute force algorithm as it requires a large number of computational resources. The

Appl. Sci. 2023,13, 5979

30f22

authors evaluated five factors that may affect the performance of a GPU-based parallel
program. The elements considered were integer arithmetic, delay in accessing memory,
data transfer, shared memory usage, and utilization of registers. They created custom and
test algorithms to assess these factors based on prior research on cracking PDF passwords.
The final algorithm was constructed by incorporating the factors that had the greatest
impact. The parallel algorithms were put into practice on a Tesla C2075, and the results
showed a speedup of 2.92 for 2-byte alphanumeric passwords and 4.77 for 6-byte numeric
passwords. The study included five factors in both the test and testbed algorithms, and the
results showed that shared memory has the greatest impact on the algorithm’s performance.
The shared memory factor helped the algorithm to achieve a speedup of up to 4.77.

Sarah and Robert, in their study [12], investigated the potential of using low-power
and energy-efficient hardware for password cracking. They argued that this type of
hardware could be useful in security applications that do not require high-speed processing,
such as long-term surveillance or battlefield scenarios. The study described a proof-of-
concept implementation using the Epiphany series of chips from Adapteva Inc., Lexington,
MA, USA, which have a theoretical peak performance of 16 GFLOPS/W and a power
consumption limit of 2 W. The experiments were performed using a symbol set of size
10, generating a total of 100 plain texts of length 4, which were encrypted using the
SHA-512 algorithm. The study compares the performance of a brute force algorithm
that is executed sequentially on a dual-core ARM Cortex-A9 host, as well as a parallel
implementation designed for the Epiphany co-processor. The results indicated that the
parallel implementation provides an energy-efficient means of executing the algorithm,
with a speedup of up to 16 times that of the serial version. The authors also mentioned the
limitations of the implementation, such as the limited amount of available RAM and the
need to consider the memory bottleneck. Overall, this study provided a proof of concept
for energy-efficient brute force password cracking using low-power hardware and opens
the door for further research in this area.

Can et al. [6] suggested an enhanced brute force password recovery method for SHA-
512 on a GPU utilizing a variety of optimization techniques. To fully utilize the GPU, they
used OpenCL, and they used C to develop programs that ran on the GPU. The Secure
Hash Method (SHA-512), a one-way hash algorithm that is frequently used for password
encryption and verification, is what they aimed to utilize in a brute force attack. They
created a simple GPU system in their work and improved it using several optimization
techniques, including password concatenation, register reuse, faster instructions, and
a meet-in-the-middle strategy. The first section includes a basic password recovery scheme
for SHA-512. In this scheme, the CPU generates passwords in batches, while GPUs are
utilized to perform concurrent SHA-512 hash calculations. The next step is to implement
optimizations at the program level, such as utilizing registers repeatedly and replacing
certain instructions. In the third part, they apply additional algorithms to the basic scheme
to make it more optimized. After all of their testing and research, they were able to achieve
a speed of 1055 M hashes per second on two AMD R9 290 GPUs. Their solution is 11%
quicker when compared to Hashcat, the quickest password-cracking program.

Feng et al. [13] discussed that UNIX systems frequently employ the cryptographic
technique MD5 Crypt for authentication. It renders traditional password cracking ap-
proaches on widely used computer platforms and ensures system security by leveraging
more salt randomization and greater scheme complexity. However, a brute force attack
threatens MD5 Crypt security once again due to the rapid growth of petaflop heteroge-
neous supercomputer systems, such as Tianhe-1A. For MD5 Crypt’s speed to increase,
much work has been completed on the GPU-accelerated platform. Utilizing the CUDA
architecture’s constant memory, however, has not led to much of an improvement. Their
research investigates the issue and reports a 44.6% improvement by giving the padding
array constant memory. In addition, using Tianhe-1A, the world’s fastest heterogeneous
supercomputer, their study provides a highly scalable implementation of the MD5 Crypt
Brute Force Attack Algorithm. According to their testing findings, a single processing node

Appl. Sci. 2023,13, 5979

4 0f22

can check 326,000 MD5 hashes per second, outperforming the CPU version by 5.7 times.
Their solution also exhibits excellent scalability on multiple nodes. As a result, it presented
a fresh problem for MD5 Crypt’s authentication security.

In [14], Abdelrahman et al. explored the implementation of WPA-WPA2 PSK cracking
on parallel systems. For making use of the parallel platforms, they ran their single-threaded
cracking program on several systems. They also employed the dictionary attack method,
which depends on how quickly the most pre-shared keys are tried. The shared memory
concept was also implemented using Pthread, OpenMP on multi-core CPUs, and CUDA on
the GPU. They developed a single-thread cracking program based on two files: a password
dictionary file and a completed four-way handshake CAP file. The password dictionary file
is used to retrieve the password, while the CAP file is used to extract the input parameters
required for the cracking. They implemented the cracking tool on the GPU using CUDA,
a C extension that allows programmers to utilize the processing capability of both the
CPU and GPU. The results demonstrate that employing multi-core processors and a GPU
on regular machines with parallel platforms increases cracking performance by 16 x and
41x, respectively. Similarly, ref. [15] proposed a new method to crack Wi-Fi passwords
using GPU and parallel computing. The current WPA /WPA2 protocol is more secure but
is still vulnerable to brute force cracking attacks. The proposed algorithm is effective and
enhances the efficiency of cracking Wi-Fi passwords by restricting the combination range
of dictionary files and using GPU and CPU for simultaneous parallel division of tasks.
The speed of dictionary cracking using a combination of CPU and GPU processing was
much faster than traditional CPU computing power. However, this method is useless for
long passwords.

David et al. [16] experimented with how hashing can be sped up in hash function op-
erations and string comparisons which can be time-consuming. However, these operations
can easily be parallelized since each password can be tested separately. For the purpose of
making the performance faster, high-performance computing (HPC) can be obtained. GPU
computing can enhance performance even more. Multiple GPUs can be used for an even
larger scale, but this increases communication latency, reducing overall performance. In
this work, MPI was used to reduce communication latency and process data communica-
tion among machines. The paper demonstrates three password recovery algorithms that
use both MPI and CUDA. The algorithms differed in GPU memory utilization and data
distribution. The algorithms that involve dividing dictionaries and password databases
showed great performance with a speedup of 17x and 12x using eight GPUs across four
nodes, respectively. The minimal memory algorithm showed slower performance due to
communication latency. The algorithms scale well to multiple GPUs and can be used for
larger databases. This work can improve computer system security by identifying weak
passwords and could be useful for processing huge amounts of data using MPI and CUDA.

Anh-Duy et al. [17] proposed a homogeneous parallel brute force algorithm that uti-
lizes the GPU to crack passwords. They used the CUDA framework 3.0 to crack SHAL.
In addition, they divided the passwords into five groups. The first group contains only
numeric characters, the second group contains lowercase characters, the third group con-
tains numeric and lowercase characters, the fourth group contains lower and uppercase
characters (sensitive alphabet characters), and the last group contains numeric and case-
sensitive characters. They measured the password cracking time for each group. The
password contains six characters hashed using SHA1. Moreover, the proposed algorithm
has a memory-consuming disadvantage. The test was performed on the Tesla C1060 with
240 cores and 1.3 GHz core clock speed and the Tesla C2050 with 480 cores and 1.15 GHz
core clock speed. They were able to crack a six-character password in less than 1 s using
the Tesla C2050.

Maruthi et al. [18] discussed that although the MD5 hash algorithm’s FPGA implemen-
tation is quicker than its software equivalent, theoretically, 2128 iterations are required for
a pre-image brute force attack on an MD5 hash. Their research makes an effort to accelerate
hardware-implemented brute force attacks against the MD5 algorithm. For the generation

Appl. Sci. 2023,13, 5979

50f22

of MD5 hashes, a complete 64-stage pipelining is used, and for the generation of a guessed
password, three architectures are given. The MD5 hash generator and password generator
pair are parallelized using 32/34/26 instances to find a hashed password with the use
of the MD?5 technique. A single Virtex-7 FPGA chap was used to attain a total of around
60 trials/s performance.

In [7], Laatansa et al. argued that a system’s password data are often hashed. Tzhe
data may fall into the hands of people who are not authorized to access them or even those
who have malevolent intentions due to a variety of human errors and system vulnerabil-
ities. Brute force and dictionary attacks are examples of attacks that might be made on
hashed password data using a GPGPU-based system. The researchers’ study describes the
efficacy of brute force and dictionary attacks carried out using GPGPU-based machines
on SHA-1 hashed passwords. The findings demonstrate that password cracking using
brute force methods is more successful on passwords with shorter lengths (over 11% of
them had seven characters or less) than dictionary attacks, which only cracked 3% of
them. When compared to the best brute force attack scenario, which takes 491 passwords,
a dictionary attack is more effective in breaking passwords with unsafe character patterns
(5053 passwords). A more balanced technique for password cracking, regardless of how
lengthy or secure a password is, is provided by the use of a combined attack strategy
(brute force + dictionary).

In [19], Qingbing and Hao published a paper about password recovery for WinRAR3
encrypted files without a file name encryption. The present cracking methods, which
employ a single CPU or GPU platform, are constrained by the CPU’s and GPU’s sluggish
decryption and decompression algorithms, respectively. This problem is addressed by the
paper’s efficient cracking approach, which uses CPU + GPU pipeline collaboration to speed
up computation times and boost performance. In order to simplify the decompression
computation, the approach additionally takes advantage of magic number matching. The
testing findings demonstrate that the suggested strategy improves eight-digit password
speed by 2.3 times. The study emphasizes the merits of WIinRAR3’s compression method
and the significance of heterogeneous multi-core architecture for password cracking. The
following phase in improvement entails further improving CPU and GPU collaboration as
well as GPU and CPU performance. In a similar study to improve password recovery for
archived files, ref. [20] suggests a new method for creating effective hardware accelerators
for password recovery on FPGA devices using the RAR3 algorithm. This approach involves
making adjustments to the data paths at two levels of granularity: coarse and fine. Coarse-
grained adjustments are used to remove the randomness of message format resulting from
variations in password length, while fine-grained adjustments meet the data requirements
of the pipelined hashing unit when the password length is constant. This strategy enables
efficient data scheduling via regular data interconnect paths, which improves efficiency
and reduces overhead for password recovery accelerator components.

Guang et al. [21] published a study on how to perform password recovery for RAR
files using CUDA. With an emphasis on the process of generating keys for AES encryption,
the step that takes the most time in the RAR encryption/decryption process, the article
describes research on password recovery for encrypted RAR files. A version that utilizes
a CPU is also provided for comparison. The implementation is based on NVIDIA’s CUDA.
The study finds that the GPU performs better than the CPU but suggests that the SHA-
1 algorithm may still need to be improved. Also suggested is a modified approach for
calculating program performance.

Jaewoo et al. [22] assessed the security of pattern-based passwords used in Android
devices by exhaustively searching for secret patterns with the help of GPU parallelism. The
Android system employs a 3 x 3 grid for pattern locking, with a total of 389,112 permitted
patterns that must adhere to certain restrictions, such as having a minimum of four points
and avoiding intermediate points. The researchers aimed to determine the vulnerability
of these passwords to hacking techniques such as shoulder surfing or smudge attacks
by employing a brute force search method, which involves graph searches with four to

Appl. Sci. 2023,13, 5979

6 of 22

nine vertices and a maximum of eight edges. For the purpose of improving efficiency, the
GPU-implemented brute force search algorithm is optimized and recursive. The algorithm
explores different paths in the graph with multiple threads, each having a unique identifier
to track the path, and octal representation is used for easier conversion. The study provides
some initial results indicating the potential vulnerability of pattern-based passwords on
Android devices.

The study presented in [9] focuses on recovering encrypted document passwords,
which is in demand for forensic purposes. On standard hardware with multi-core CPUs
or GPUs, the authors conduct an experimental study of the password recovery procedure.
The findings demonstrate that recovery time may be estimated given the length, alphabet,
and hardware performance of the password. The fundamental technique for recovering
a password entails a thorough search (brute force). However, with the help of powerful
GPUs, the operation can be finished faster than it would with a CPU-only computer. In
addition, authors in [9] improved their program by adding more advanced password
generators and compatibility for additional file types. They also concentrated on password
recovery in distributed environments. In future studies, they intend to evaluate their
technology against existing programs such as the AccessData Password Recovery Toolkit,
version 7.6.0.

Similarly, another research paper [23] presents a solution for optimizing the password
recovery process for RAR files, which are compressed archives that employ the SHA-1
hashing and the AES encryption algorithm. The authors use a coarse granularity parallel
technique and concentrate on using GPUs to speed up password recovery. The strategy em-
ploys four optimization techniques to boost performance, including asynchronous parallel
between CPU and GPU, redundant calculations and conditional statements reduction, data
locality using LDS, and the usage of register optimization. According to the experiments,
the optimized parallel version outperformed a well-optimized serial version on a CPU by
a factor of 43 to 57. When using additional GPUs, the results likewise demonstrated linear
performance acceleration. Their future work will concentrate on fixing the algorithm’s
remaining flaws, such as poor portability and a lack of password search improvements.

Finally, Zhendong and Peng [8] suggested a new accelerator design for sha256crypt
password recovery that employs hybrid CPU-FPGA devices. The design was tested on
the Xilinx Zynq 7000 XC7Z030-3 SoC, and the experimental results demonstrate that the
proposed accelerator significantly improves energy efficiency, achieving a 2.54 x improve-
ment compared to Hashcat running on an NVIDIA GTX1080Ti GPU. The accelerator also
improves energy and resource efficiency by 1.64 x and 1.69 x, respectively, compared to the
pure FPGA-based implementation in John-the-Ripper. Additionally, the paper outlines the
difficulties in using pipeline techniques and presents various strategies to reduce hardware
resource overhead. The techniques can be applied to other key derivation functions (KDFs)
with comparable features. The researchers also plan to address structural weaknesses and
optimize the system using partial reconfiguration technology in the future.

Table 1 provides a summary of the related work, including the dataset used, the
number of samples included, the number of threads or processors employed, the techniques
utilized, and the best results achieved.

Table 1. Summary table of related work based on different criteria.

Number of Number of

Ref. Dataset Samples Threads/Processors Techniques Best Result
Using CUDA with GPU for
?r)r?(())gli?cl; 30 64 128 parallel password cracking
[11] and 4160 None. and 256 th,reaéls pér block and optimized shared 4.77 speedup.
for bitwise ' memory for 6-byte

numeric passwords.

Appl. Sci. 2023,13, 5979

7 of 22

Table 1. Cont.

Number of Number of .
Ref. Dataset Samples Threads/Processors Techniques Best Result
. Parallel implementation of Speedup of up to
[12] None. 1(3)(} ilrallr;e:ts 16 processors/threads. a brute force algorithm for 16 times that of the
st = the Epiphany co-processor. serial version.
They used several
optimization techniques:
combination of passwords,
[6] None. None. 2560. repetition of 1055 M hash/s.
register utilization,
faster instructions execution,
and meet-in-middle.
Each node of Tianhe-1A 326,000 MDS5 hashes are
supercomputer has two . searched per second,
[13] None. None. CPUs, one GPU. The CPU tk}é Sg;gl}) g;hoifs(i:rlf[{essgge which is 5.6 times faster
has 6 cores while the GPU & " than the performance of
has 448 cores operating. the CPU-only version.
The computer has an Intel
i7-4710HQ processor
(2.50 GHz, 4 physical They archive the best
cores, 8 threads). The score by using GPU
multi-core version was platform on the
[14] None. 2. tested on a different Threge?;gf tkrfoiired Windows operating
computer (Intel i7-2630 y ' system with
OM, 2 GHz, 4 cores, 1,000,000 passwords
8 threads) using Ubuntu in 384 s.
12.04. The GPU used was
a GeForce GTX 860 M.
The server has two 16-core The performance of
CPUs, 192 GB memory, Hybrid parallel processing a single-core GPU is
[15] None. N/A. and four GeForce GTX using Multi-CPU-GPU for about 80 times higher
1080 graphics chips, each calculations. than that of
with 8 GB video memory. a single-core CPU.
Parallel brute force using the
[16] 1M. N/A. 8 GPUs. GPU with MPI and CUDA. 17x speedup.
The Tesla C1060 has
240 cores with 1.3 GHz Parallel brute force usin They could crack
[17] None. 5. clock speed; the Tesla the GPU & a 6-character password
C2050 has 480 cores and ' in less than a second.
runs at 1.15 GHz.
It achieved
[20] None. None. NVIDIA GTX 1060 GPU. Dual—granularlty data path an 1mprovemer.1t of
adjustment strategy. 3.3 speedup in
energy efficiency.
The FP.GA they utlh.zed, Cracking a hashed
There were the Virtex-7, contains assword using their
three sample 485,760 logic cells and ard}?i tecture-3 (Arcgh—3) with They were able to crack
[18] None. p 75,900 slices. Four LUTs . . a hashed password with
26 instances, and it deals

passwords to
be cracked.

and eight flip-flops are
found on each slice of the
Xilinx 7 series FPGA.

with passwords of alphabets
only on Virtex-7 FPGA.

7 digits within 156 s.

Appl. Sci. 2023,13, 5979

8 of 22

Table 1. Cont.

Number of Number of .
Ref. Dataset Samples Threads/Processors Techniques Best Result
Using brute force and
dictionary attacks by
utilizing the software Brute force cracked
Hashcat v5.1.0. However 770,884 short passwords
6,458,020 The used device’s GPU is CPU resou.rc.eé were no t, (6 to 7 characters) while
[7] hashed None. 2 x MSI GeForce RTX . . dictionary attack
. . . utilized at all; instead, tests . .
passwords. 2080 Ti Gaming X Trio. were conducted using both succeeded in cracking
RTX 2080 Ti units with 63,119 long passwords
CUDA with a imit of (9 or more characters).
30 min.
It uses CPU + GPU pipeline
Collrforfti?nntgr?esednlép The cracking algorithm
CPU: Xeon(r)e5-2620 computatio esa now runs at
boost performance. In order
Number of cores: to simplify the 24,423 passwords
[19] None. None. 8 Number of threads: decomp reZsion per second, which is
16. GPU: GTX 1080 Ti: omp a 2.3 times better
computation, the approach .
3584 Cores. additionally takes performance than its
advantage of magic previous speed.
number matching.
They concentrated on the
process of generating keys .
for AES encryption, which c;)rrie 3¥§a§es:1:nleefliz
CPU: Intel Core2 is the step that takes the reaIZhes gmaxi%num y
Duo E7300: 2-core longest during the RAR .
[21] None. None. - . when computing around
GPU: GTX 9800: encryption/decryption 16384 kevs. The average
128 Cores. process, and they used GPU ! timey ‘er Kev is &
instead of CPU because estima tec{) to be}; 5 ms
GPU performs better than ’ ’
CPU in this case.
The study shows the
limitations of Android’s
- . pattern lock system and
Intel Xeon E5-2630 and g:hiﬁgi?rfielozzoé;ss rtl§ establishes the
[22] None. None. Nvidia Quadro 4000 GPU gcon duclt:)exﬁaustive foundation for
with 256 CUDA cores. raph search developing tools that
gtap ’ can assess the security of
passwords based
on patterns.
MySpace:
37,000.
phpbb:
180,000.
RockYou: GPU: features 2816
14,000,000.
[9] singles: None shaders and 64 ROPs. Exhaustive search 12% speedu
12 %OO. ’ CPU: 4 cores + 4 with ’ °SP p-
Facebook: hyperthreading.
2441.
pwgenl
(generated):

1,000,000.

Appl. Sci. 2023,13, 5979

9 of 22

Table 1. Cont.

Number of Number of .
Ref. Dataset Samples Threads/Processors Techniques Best Result
GPU: 1792 stream The final version
23] None None processors, 32 color ROPs. Asynchronous parallel rez;lflgiil:;i: szze;ifl;?
) ' ' CPU: 4 cores + 4 with between CPU and GPU. P ranges f r}?()) o
hyperthreading. ges !
43 to 57 times.
Energy efficiency
2.54x compared with
. . NVIDIA GTX1080Ti
Hybrid CPUFPGA: Xilinx 1o 44 CPU-FPGA-based GPU.
[8] None. None. Zyng-7000 .
solution. Energy and resource

XC72030-3 SoC. efficiency 1.64x and

1.69 x compared to the
pure FPGA-based.

3. Proposed Techniques

In this experiment, we used four various techniques for the purpose of implementing
parallel execution on the brute force attack and dictionary attack. All techniques were used
to perform sequential and parallel tests to compare results. In addition, brute force and
dictionary methods will be compared as they both were performed in Python with the
same hardware characteristics.

3.1. Applying Brute Force Using “ProcessPoolExecutor” in Python #1

The ProcessPoolExecutor class, which is based on the concurent.future model, is
imported to construct parallel tasks [24]. It provides the ability to run multiple functions
in parallel by utilizing a pool of processes. The class splits tasks among several processes
running on different cores of the computer, allowing functions to run in parallel. By using
“ProcessPoolExecutor”, you can easily submit functions to be executed simultaneously
and retrieve their results when they are done. It also takes care of managing the process
pool and distributing tasks to the processes, freeing you up to concentrate on writing your
application logic. It also manages communication between the main process and its child
processes. Figure 1 demonstrates how it can be imported.

from concurrent.futures import ProcessPoolExecutor

Figure 1. Importing the class ProcessPoolExecutor from the concurrent.futures library in Python.

Figure 2 shows the code portion of brute force implementation using the “Pro-
ces.sPoolExecutor” class.

3.2. Applying Dictionary Attack Using “Multiprocessing” Module in Python #2

Using the multiprocessing package in Python allows multiple processors within
a single computer to reach their full potential [25]. Multiprocessing in Python refers
to the ability to run multiple processes simultaneously within a single program. The
multiprocessing module provides a way to create separate processes for different tasks
and communicate between them to coordinate the execution of the program. This allows
for parallel processing, which can be useful for taking advantage of multiple cores and
increasing the speed of computationally intensive operations. Figure 3 demonstrates how
the module can be imported in Python.

Appl. Sci. 2023,13, 5979

10 of 22

def attempt_match(length , target):
for attempt in itertools.product("abcdefghijklmnopgrstuvwxyz0123456789", repeat=length):

if __name__ == '__main__':
target = input("Enter the password to be cracked: ")
Numb_of_cores = input(“"Enter the number of CPU core you want to use : ")

start_time = time.perf_counter()

with ProcessPoolExecutor(max_workers=int(Numb_of_cores)) as executor:

attempt = "".join(attempt)

if attempt == target:
print("Password was Found :", attempt)
return attempt

results = [executor.submit(attempt_match, length , target) for length in range(1, len(target)+1)]

for future in concurrent.futures.as_completed(results):
match = future.result()
if match:
break

Figure 2. Using the class “ProcessPoolExecutor” to implement parallel processing.

import multiprocessing as mp

Figure 3. Importing the multiprocessing library in Python.

Figure 4 shows a code portion to demonstrate the use of the module in a dictionary

attack using Python.

num
chu
pro
for

for

_processes = 8
nk_size = len(dictionary) // num_processes
cesses = []
i in range(num_processes):
start_index = i * chunk_size
end_index = (i + 1) * chunk_size
p = mp.Process(target=password_check, args=(dictionary, target, start_index, end_index))
processes.append(p)
p.start()

p in processes:
p.join()

Figure 4. A segment of code using a multiprocessing library.

3.3. Applying Dictionary Attack Using OpenMP in C++ Technique #3

A set of environment variables, library functions, and compiler directives called

“OpenMP” make it simple to parallelize sequential source code [26]. OpenMP allows us
to add parallelism to dictionary attacks by adding a few lines of code without having to
worry about the details of thread creation, synchronization, and communication. For this
technique, we wrote a program in C++ to implement six different processing settings on

a list

of 14,442,064 unique passwords from “RockYou” available at Kaggle and compared

the results to analyze them. The techniques implemented are as follows:

1.

Sequential code. Figure 5 illustrates the sequential code.

for

}

(int i = 0; i < dictionary.size(); i++) {
if (target == dictionaryl[i]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<endl;
cout<<"Number of thread is: "<< omp_get thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

Figure 5. A segment of the sequential code.

Appl. Sci. 2023,13, 5979 11 0f 22

2. Parallel code with 4 cores using static scheduling. Figure 6 demonstrates the parallel
code with 4 cores using static scheduling.

#pragma omp parallel for num threads(4) schedule(static)
for (int i = 0; i < dictionary.size(); i++) {
if (target == dictionaryl[i]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<endl;
cout<<"Number of thread is: "<< omp_get_ thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

}

Figure 6. A segment of parallel code with 4 cores using static scheduling.

3. Parallel code with 8 cores using static scheduling. Figure 7 illustrates the parallel code
with 8 cores using static scheduling.

#pragma omp parallel for num threads(8) schedule(static)
for (int i = 0; i < dictionary.size(); i++) {
if (target == dictionary[i]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<endl;
cout<<"Number of thread is: "<< omp_get thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

}

Figure 7. A segment of parallel code with 8 cores using static scheduling.

4. Parallel code with 8 cores using dynamic scheduling in one chunk. Figure 8 demon-
strates the parallel code with 8 cores using dynamic scheduling in one chunk.

#pragma omp parallel for num threads(8) schedule (dynamic)
for (int i = 0; 1 < dictionary.size(); i++) {
if (target == dictionary[i]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<endl;
cout<<"Number of thread is: "<< omp _get thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

Figure 8. A segment of parallel code with 8 cores using dynamic scheduling in one chunk.

5. Parallel code with 8 cores using dynamic scheduling in two chunks. Figure 9 illustrates
the parallel code with 8 cores using dynamic scheduling in two chunks.

#pragma omp parallel for num threads(8) schedule (dynamic, 2)
for (int i = 0; i < dictionary.size(); i++) {
if (target == dictionaryl[il]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<endl;
cout<<"Number of thread is: "<< omp_get thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

}

Figure 9. A segment of parallel code with 8 cores using dynamic scheduling in two chunks.

6. Parallel code with 8 cores using dynamic scheduling in four chunks. Figure 10
demonstrates the parallel code with 8 cores using dynamic scheduling in four chunks.

Appl. Sci. 2023,13, 5979 12 of 22

#pragma omp parallel for num threads(8) schedule (dynamic, 4)
for (int i = 0; i < dictionary.size(); i++) {
if (target == dictionary[i]) {
cout<<"password found: "<< dictionary[i]<<endl;
cout<<"number of i is: "<< i<<end14
cout<<"Number of thread is: "<< omp_get thread num()<<endl;
cout<<"Total number of passwords is: "<<dictionary.size()<<endl;

}

Figure 10. A segment of parallel code with 8 cores using dynamic scheduling in four chunks.

3.4. Applying Brute Force and Dictionary Attacks Using Hashcat #4

In this technique, we used the Hashcat tool version 6.2.6 to launch two types of attacks,
namely the brute force and dictionary attacks. The purpose of this investigation is to
evaluate the influence of different GPUs on password cracking. Specifically, one of the
GPUs used in this study supports CUDA, and we compare the performance of the two
GPUs, namely Intel(R) HD Graphics 630 and NVIDIA(R) GeForce(R) GTX 1050Ti with 4GB
GDDR5 and 768 CUDA cores. In addition, we evaluate the impact of password charset
on the speed of password cracking and how password structure affects the process. By
employing this approach, we aim to gain insights into the effectiveness of different GPUs
and password characteristics in password cracking. The following Table 2 demonstrates
the hardware and software specifications.

Table 2. Hardware and Software Configurations.

7th Generation Intel(R) Core(TM) i7-7700HQ
Quad Core (6 MB Cache, up to 3.8 GHz)

Memory 16 GB, DDR4, 2400 MHz
1 TB 5400 rpm hard drive + 128 GB solid

CPU

Hardware Storage state drive
GPUO Intel(R) HD Graphics 630
GPU 1 NVIDIA(R) GeForc.e(R) GTX 1050 Ti with 4 GB
GDDRS5 with 768 CUDA cores
Operating System Windows 11 Home 64-bit (10.0, Build 22,000)
Software Driver GeForce Driver 531.68
Software Hashcat v6.2.6

A collection of passwords was generated randomly and secured using the MD5 en-
cryption technique. We utilized the same passwords that were in previous techniques. Each
password’s string and corresponding hash value are illustrated in Table 3. Subsequently, we
attempted to crack the passwords by providing only their hash values to the Hashcat tool.

Hashcat is employed by specifying a script or command line with different parameters
based on the experimental objective. The “-m” parameter specifies the encryption type,
which is 0 (MD5) in this case. The “-a” parameter determines the type of attack to be
conducted, with 3 for brute force attack and 0 for dictionary attack. The “d” parameter
selects the device to be utilized for password cracking, where “3” is for CPU + GPU 0,
and “1” is for GPU 1 (CUDA) exclusively. Finally, the character set for the experiment is
determined using the “1” parameter for lowercase English characters, “u” for uppercase
English characters, “d” for digit numbers, and “s” for special characters. We aim to test the
impact of including special characters on password-cracking performance. Furthermore,
it is our intention to assess the efficacy of various hardware setups for the purpose of
executing these attacks. Table 4 shows the scripts used for different cracking scenarios.

Appl. Sci. 2023,13, 5979 13 of 22
Table 3. A list of randomly generated passwords.
Password String Hash Value (MD5)
Password 1 abcl4 b80eaaf275cf1d34b88d0b8c6c7da20b
Password 2 hd180 deccelac22fc85a9899a1{8ba2c08bfb
Password 3 a7rol 0fd4d72214cd938albef4e1a58{4366f
Password 4 tynq0 8eal5dcb8862ccab2fa6388fb43317£6
Password 5 o3kli 670244cdc900710194338673e26dbalf
Password 6 vlimbe bc4a21024aa58f2558a1€98e5839¢e54d
Password 7 x12z51 39db818049350277c4400cb01dd3£112
Password 8 asdf32 cb697d6d9fbd75cb15fb4670c5aaf0ca
Password 9 f6d3al 87¢818¢75041578020d71acd4c2ea79f
Password 10 j3g3vl 4be9b447aa3d00aefcc69629b626d460

Table 4. Brute Force and Dictionary Attack Scripts.

abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMN

~

E Charset OPQRSTUVWXYZ0123456789

2 <<space>>!"#$O/o&'()*+,-./Z;<=>?@[\]A_l{ [}~

g hash

2 . ashcat -m 0 -a 3 -d 3 hashedpasswords.txt -o
i Seript for CPU + GPU 0 cracked.txt -1 212u?d?s 212121212171

[

B . . hashcat -m 0 -a 3 -d 1 hashedpasswords.txt -o
-

2 Seript with GPU 1 (CUDA) cracked.txt -1 212u?d?s 212121212171 —increment
™ abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMN
g Charset OPQRSTUVWXYZ0123456789

b «space»!"#$%&" () +,-./ ;<=>2@[\]"_"{ | }~

2 hashcat -m 0 -a 0 -d 1 hashedpasswords.txt

< : . P .

.5 Script for CPU + HD Graphics (Intel) rockyoutxt -o cracked.txt

9 m0-a0-

A Script with GPU 1 (CUDA) hashcat -m 0 -a 0 -d 3 hashedpasswords.txt

rockyou.txt -o cracked.txt

4. Empirical Studies
4.1. Description of the Dataset

The dictionary attack can be performed by having a list of passwords. Therefore,
we used a list of 14,442,064 unique passwords from RockYou available on Kaggle [27].
According to Kaggle, in 2009, a gaming company called RockYou suffered a hacking
incident. The severity of the breach was magnified due to the company’s lack of security
measures, as they kept all their passwords in clear text and unencrypted, making them
easily accessible to the attacker. The hackers were able to obtain a list of all the passwords
and made it publicly available. The RockYou dictionary is reputed to be one of the largest
and most recognizable leaked collections of passwords [4].

4.2. Experimental Setup

We conducted four experiments in our research. The first experiment involved per-
forming brute force using parallelism in Python. In the second experiment, we wrote code
using Python to perform a dictionary attack. Then, the results of these two experiments
were compared. However, in the third experiment, we performed a dictionary attack by
implementing OpenMP in C++ and modified some parameters in the clauses, such as the
number of threads, the scheduling type, and the number of chunks. It is also noticed that
the experience of running the code is very similar. The user will be asked to insert the
password intended to be tested, and the results will be displayed to them in detail. Each
technique was set up differently. Lastly, the fourth experiment was conducted by using

Appl. Sci. 2023,13, 5979

14 of 22

Hashcat to evaluate the performance of the hardware configurations of two different GPUs.
The following subsections present the setup process for each technique.

4.2.1. Brute Force Setup

For brute force, the experiment was carried out using Python with the use of the
“ProcessPoolExecutor” class available in the “concurrent.futures” module. The program
first prompts the user to enter the targeted password and the number of CPU cores to use.
Then, it creates a list of all possible combinations of letters and numbers of increasing length
up to the length of the target password. Each combination is passed to the “attempt_match”
function to check if it matches the target. The process of checking each combination is per-
formed parallelly with the help of the “ProcessPoolExecutor” from the “concurrent.futures”
library, which allows for parallel execution of tasks by distributing them across the specified
number of CPU cores. The function returns the first combination that matches the target
password, and the total time taken to complete the process is recorded and displayed at the
end. The parameters used are as follows:

e “length”: This is a parameter for the “attempt_match” function that specifies the
length of the password combinations being generated and checked.

e “target”: This is a parameter for the attempt_match function that specifies the target
password to be cracked. It can either be passed as an argument or obtained by
user input.

e “Numb_of _cores”: This is a parameter obtained by user input that specifies the number
of CPU cores to be used for the concurrent execution of the password-checking task. It
is passed to the ProcessPoolExecutor class as the max_workers argument.

e “start_time”: Thisis a variable that stores the current time when the password-cracking
process starts.

e “end_time”: This is a variable that stores the current time when the password-cracking
process ends.

o “total_time”: This is a variable that stores the time elapsed between start_time and
end_time and represents the total time taken to complete the password-cracking process.

4.2.2. Dictionary Attack Setup

The dictionary attack consists of different experiments. The first one was implemented
with Python to compare it with brute force (first experiment). The second one was per-
formed with the use of OpenMP to see the different performances acquired when changing
the parameters of the clauses.

For the first experiment, we used Python to set up a parallelized password-cracking
experiment. The experiment uses the Python standard library’s “multiprocessing” module
to create and manage child processes. The child processes the “password_check” function
parallelly, each checking a portion of a dictionary of possible passwords to find a match
with the target password. The main program, defined in the “main” function, starts by
reading a target password from the user and then loads a dictionary of possible passwords
from a file we named “dictionary.txt”. The dictionary is split into “num_processes” equal
parts (8 parts in this case, and it can be changed), and “num_processes” child processes
are started to parallelly check each part of the dictionary. Each child process is passed
the dictionary, the target password, and the indices marking the start and end of the
portion of the dictionary it should check as arguments to the “password_check” function. If
a password match is found, the “password_check” function outputs information about the
matching password and the elapsed time, then returns. After starting the child processes,
the main program waits for all child processes to finish by calling join on each. The code
uses the “time” module to measure the elapsed time of password checking. These are the
parameters that were used:

e “dictionary”: a list of strings representing a dictionary of possible passwords.
e “target”: a string representing the target password to be found.

Appl. Sci. 2023,13, 5979

15 of 22

e “start_index”: aninteger representing the starting index of the portion of the dictionary
to be checked by a child process.

e “end_index”: an integer representing the ending index of the portion of the dictionary
to be checked by a child process.

e “num_processes”: an integer representing the number of child processes to be created
and used for parallelizing password checking.

e “chunk_size”: an integer representing the size of each chunk of the dictionary, calcu-
lated as the length of the dictionary divided by “num_processes”.
“processes”: a list to store the created child processes.
“file”: a file object representing the “dictionary.txt” file.
“passwd”: a string representing a password from the “dictionary.txt” file, read one at
a time in a loop.

"1,

. p”: a process object representing a child process.

For the second experiment, we wrote a code that functions similarly to the Python
code. However, the purpose here is to compare different settings of using OpenMP, such
as the number of cores and the type of schedule. The program reads a list of potential
passwords from a file named “dictionary.txt” (RockYou passwords) and stores it in a vector
called “dictionary”. The user is prompted to enter the target password, which is stored
in the variable “target”. The program then uses the “#pragma omp parallel for” directive
to parallelize a for-loop that iterates through the elements of the “dictionary” vector and
compares each one to the target password. The “num_threads” clause sets the number
of threads to any number you wish to test depending on your machine, and the “sched-
ule(Typeofschedule, NumberOfChuncks)” sets the scheduling method for distributing
iterations among the threads to be the type of schedule you are willing to test (static or
dynamic) with a chunk size that you can set. If a match is found, the program outputs the
matching password and the number of the iteration in the for-loop that found the match, as
well as the number of threads that found the match and the total number of passwords in
the dictionary. Finally, the program measures and outputs the elapsed time in milliseconds
using the “chrono” library. The following are the parameters used:

e “num_threads(8)”: This sets the number of threads to be used in the parallel for-loop.
The value of 8 means that 8 threads will be created to execute the loop in parallel.

e “schedule(type, chunk)”: This sets the scheduling method for distributing iterations
among the threads with the number of chunks.

o “target”: This is the target password that the program is trying to find in the “dictio-
nary.txt” file. The user is prompted to enter the target password.

e “dictionary”: This is a vector that stores the list of potential passwords read from the
“dictionary.txt” file.

e “pass”: This is a string variable that is used to temporarily store each password read
from the “dictionary.txt” file.
“i”: This is the loop variable for the for-loop that iterates through the “dictionary” vector.

“omp_get_thread_num()”: This is a function from the OpenMP library that returns

the number of threads executing the code.

5. Results and Discussion

The first technique and the second technique were tested on a computer with the
following specifications: Intel(R) Core (TM) i5-9400F CPU, a RAM of 16 GB, and NVIDIA
GeForce RTX 2060 Graphic Card. The code in both techniques was written in Python. A list
of ten passwords with a max length of six characters as a string was generated randomly
with small English characters and numbers. The passwords toward the end of the list are
more complicated compared to those at the start. The reason for the increased difficulty
in cracking these passwords is that they either contain digits (those with digits at the
beginning of the string being particularly difficult) or contain trailing English characters.
The organization or arrangement of characters within a character set has a significant
impact on the ability to crack passwords. A well-structured character set, such as the one

Appl. Sci. 2023,13, 5979

16 of 22

that places English alphabet characters at the beginning followed by digits towards the end,
makes it more challenging for an attacker to use brute force techniques to guess a password
that begins with trailing characters of the character set. While implementing the brute
force technique on very short passwords in a sequential code, we obtained a better score
compared with the parallel code. For instance, the first password (the simplest one) took
0.2471 s in serial code and 0.3286 in parallel. However, the longer and more complicated
the password becomes, the better the parallel code performs compared to the sequential
one. The best improvement obtained was when using the parallel code with the maximum
number of cores of the device (six cores). The speedup was 1.9x times. Below, Figure 11
illustrates the implementation of the first technique.

350

Elapsed Time (Sec)
[[N N w
[[¢)] [[¢)] [}
(=] [=] (=] =]

al
o

=@==Sequential 2-cores ==@=4-cores e=@==6-cOres

Figure 11. Ten various passwords being tested for the Brute Force Attack.

On the other hand, in the implementation of the second technique, “dictionary attack”,
we decided to test the same list of passwords used with the brute force technique to
compare them both. The total number of passwords in the dictionary is almost 14 million,
as mentioned previously. Because the passwords tested were generated randomly (are
not commonly used), only two passwords were able to be cracked in the dictionary attack
technique. There was no improvement noticed between the sequential and parallel codes in
Python because of the process performed by the library “ProcessPoolExecutor”. The process
involves breaking down the task (cracking passwords) and distributing it across multiple
cores, takes some time and resources, and may result in additional work or overhead,
ultimately canceling out any potential benefits of parallel processing. Nevertheless, the
execution time of the dictionary attack was tremendously better than the brute force by
almost 930 times. Figure 12 below shows the results of the dictionary attack experiment.

It is clear that the dictionary attack outperforms the brute force attack in terms of
time due to the limited number of iterations available (almost 14 million iterations in this
case). However, the brute force attack was able to capture all targeted passwords. The
length of the passwords in the brute force attack greatly affects the execution time, whereas,
in the dictionary attack, a very long common password can be easily cracked. The first
password dictionary attack technique with six cores is faster than the brute force attack by
approximately 4.79 x times. The eighth password was cracked approximately 930 x times
faster because it was complicated by the brute force technique.

Appl. Sci. 2023,13, 5979

17 of 22

0.073

0.072
0.071

0.07
0.069
0.068

0.067

Elapsed Time (Sec)

0.066
0.065

0.064

B Sequential 2-cores M 4-cores M 6-cores

Figure 12. Ten various passwords being tested for the Dictionary Attack.

In the third technique, the experiment was conducted on a computer with the following
specifications: 11th Gen Intel(R) Core (TM) i5-1135G7, a RAM of 8 GB, and Intel(R) Iris(R) Xe
Graphics. The experimental outcome showed that the best parameters of parallel processing
in terms of execution time occurred with eight-core static scheduling. The execution time
was improved by 4.4 times, going from 181 to 41 in time elapsed. However, the lower
the number of chunks used in dynamic scheduling, the slower the execution time becomes
compared to the sequential code. In other words, the more chunks we have in the dynamic
scheduling, the higher speedup we obtain in comparison with the sequential program.
Below is a graph that shows the different settings used on ten different passwords with
their elapsed times recorded. Figure 13 below shows the results of the third technique.

In addition, we made sure the output contained the iteration number in which the
password was found (equal to the index of the password in the dictionary list), the thread
number that processed the list of the entered password, and, most importantly, the elapsed
time taken when running the thread. In the screenshot below, one of the tests was captured
related to testing the dynamic scheduling with four chunks in eight threads. For the four
chunks, the program divides the password list into four equal parts, and each part is
processed by a separate thread. This means that the workload is evenly distributed across
four threads, which can lead to faster execution times than sequential processing. However,
if one thread finishes its part of the workload earlier than the others, it does not have to
wait until the remaining threads finish processing their parts because it is dynamic, in
contrast to static, where it has to wait for the remaining threads to finish their parts.

In our fourth approach, we aim to examine the efficiency of various GPU types for
password cracking using the widely known tool Hashcat, as shown in Figure 14. The results
of our study indicate that without including special characters in the Hashcat parameters,
GPU 0 (Intel(R) HD Graphics 630) took 23 s to crack the password list mentioned earlier
with a speed of 254.8 MH /s, whereas GPU 1 (NVIDIA GeForce GTX 1050 Ti) completed the
same task in just 2 s with a speed of 2558.3 MH/s. This means that GPU 1 is approximately
11.5 times faster than GPU 0 for cracking passwords at hand, despite the fact that the
machine’s CPU supported GPU 0. Regarding the inclusion of special characters in the
character set, the combination of CPU and GPU 0 took 197 s to crack the specified password
list, while GPU 1 was able to complete the same task in just 19 s. Therefore, GPU 1 is
approximately 10.4 times faster than the combination of CPU and GPU 0 for the given

Appl. Sci. 2023,13, 5979

18 of 22

task of cracking the password list. Our results reveal that the elapsed time for cracking
passwords increased significantly when special characters were added to the Hashcat
parameters. Specifically, the combination of CPU and GPU 0 required 197 s to complete
the task, which is significantly longer than the 23 s it took to crack the same password
list without special characters. This indicates that the inclusion of special characters in
passwords can make the cracking process more challenging. Similarly, GPU1 required 19 s
to crack the password list when special characters were added, compared to just 2 s when
no special characters were included. Table 5 below shows the brute force attack test results.

450
400
~ 350
[}
E 300
()
g 250 r
; 200
g e ——
a 150 | \/ /\/\
=
= 100
50 —
0 1 1 1 1 1 1 1 1 1
@\, 3& & > 3& @% &‘o «3:\ @% &oj b\’Q
O Q QO Q Q Q QO O Q &
N Q& N Q& N Q& & N Q& &
& & & & & & & & & $
Q’b' Q'b' Q‘b' Q’b Q‘b Q'b' Q’b Q’b' Q’b QQ,%
e Sequential Static-4 cores
=== Static-8 cores e dynamic-8-cores 1-chunk
dynamic-8-cores 2-chunk dynamic-8-cores 4-chunk
Figure 13. A comparison dictionary attack by varying parameters using OpenMP.
Table 5. Brute force attack test results.
GPU 1 Only
Performance CPU +GPU O CPU. +GPUO GPU1 Only CUDA
Metrics (No Spec Chars) (with Spec CUDA (with Spec
P Chars) (No Spec Chars) P
Chars)
Time (s) 23 197 2 19
Speed (MH/s) 254.8 2443 2588.3 2639.8

In the dictionary attack, our experiment demonstrates that GPU 1 (NVIDIA GeForce
GTX 1050 Ti) with CUDA performs significantly better than CPU + GPU 0 (the combi-
nation of Intel(R) Core(TM) i7-7700HQ CPU and Intel(R) HD Graphics 630). In terms of
units, GPU 1 (CUDA) has an average speed of 10,650 kH/s, while the average speed of
CPU + GPU 0 is 2864.3 kH/s. The speed difference between the two is substantial. Re-
garding the elapsed time, CPU + GPU 0 required five more seconds to complete the task,
which is three seconds slower than GPU 1 (CUDA). Table 6 shows the dictionary attack
test results.

Appl. Sci. 2023,13, 5979

19 of 22

200
180 |

160 |
140
120 t
100 }
80 |

Elapsed Time (Sec)

60

40 |
23 19

L e

B CPU + GPU 0 (No Special Chars) CPU + GPU 0 (With Special Chars)

B GPU 1 - CUDA Only (No Special Chars) B GPU 1 - CUDA Only (With Special Chars)

Figure 14. A comparison of elapsed time between various hardware configurations and charsets.

Table 6. Dictionary attack test results.

Performance Metrics CPU + GPU O GPU 1 CUDA Only
Time (s) 5 2
Speed (kH/s) 2864.3 10,650

Table 7 presents improved performance obtained by modifying related parameters for
each of the password-cracking techniques mentioned in this work.

Table 7. Improved performance obtained with modified parameters.

Brute Force . . Dictionary Attack Brute Force Attack with
. . Dictionary Attack with . .
Technique with Pvthon Technicue #2 with OpenMP in C++ Hashcat
Python #1 y 9 Technique #3 Using GPU 1 (CUDA) #4
Execution Time 6.6342 s. 0.0723827 s. 0.041 s. 2s.
No improvement because
of potential overhead
caused by the Python
Speedup 1.9 times. library. However, 4.4 x times. 11.5x times.

tremendous improvement
between the dictionary

attack and the brute force

attack by almost 930 times.

6. Comparison and Analysis

Experiments were performed by the authors of [7] using both brute force and dictio-
nary attack methods. The brute force method effectively cracked relatively short passwords
(six to seven characters) on SHA-1 password hash. However, the tests demonstrated that
brute force was not very successful in cracking passwords consisting of eight or more charac-
ters. Similarly, our experiment showed that the longer the passwords are, the longer it takes
to crack them successfully by the brute force attack. The authors of [7] implemented their
work using a cybersecurity software called “Hashcat” with the 5.1.0 version. Nevertheless,
we have written codes in Python and C++ from scratch to perform brute force and dictio-
nary attacks. Moreover, we assessed hardware configurations for the two cybersecurity
attacks mentioned using Hashcat version 6.2.6. The password encryption employed was
MD?5, which differed from the SHA-1 encryption used in [7]. Although the authors of [7]

Appl. Sci. 2023,13, 5979

20 of 22

used a different method of execution and setup to implement their tests, our experiment
and their experiment both demonstrated that when attempting to crack notably lengthy
passwords, the dictionary attack was more successful than a brute force attack. In the brute
force attack, ref. [7] used a character set that only included small and capital English letters,
while we augmented this set by adding special characters.

When comparing our work with previous work in [28], it can be seen that both
papers aim to explore techniques for parallelizing password cracking, specifically the
dictionary attack. Still, there are significant differences between the two in terms of the
approach and methodology. Reference [28] focuses on parallelizing the MD5 and SHA1
hashing algorithms using the KASTL library on three different systems with varying
hardware specifications. The authors experimented with various word lists of different
sizes and added arbitrary words to them. They compared the performance of CPU and
GPU processing using different tools and libraries and concluded that GPU processing
is much faster than CPU processing. They also had to modify existing code to allow
for parallelization using KASTL. On the other hand, our paper compares four different
techniques for conducting brute force and dictionary attacks on a list of passwords obtained
from the RockYou data breach. The techniques used were ProcessPoolExecutor in Python,
multiprocessing module in Python, and OpenMP in C++. We compared sequential and
parallel execution times for each technique and concluded that multiprocessing in Python
was the most efficient for the dictionary attack, while OpenMP in C++ was the most efficient
for brute force attacks.

7. Conclusions

In conclusion, the results of these four experiments revealed that the performance
of password-cracking techniques could be significantly enhanced by utilizing parallel
processing techniques on hardware configurations such as multiple cores or powerful
GPUs. The efficiency of GPU types was examined using Hashcat. NVIDIA GeForce GTX
1050 Ti was found to be approximately 11.5 times faster than Intel(R) HD Graphics 630
in cracking passwords, and when special characters were added to the character set, the
former was approximately 10.4 times faster than the combination of CPU and GPU 0. In
terms of the dictionary attack, GPU 1 (CUDA) performed significantly better than CPU
+ GPU 0, with an average speed of 10,650 kH/s. On the other hand, one experiment
showed that the parallel code performed better compared to the sequential code, and the
speedup was 1.9 x times with six cores. Another experiment showed that the best perfor-
mance in terms of the execution time was achieved with eight-core static scheduling, with
a speedup of 4.4 x times. In addition, dynamic scheduling with a higher number of chunks
produces a better performance compared to sequential code. These findings emphasize the
importance of using advanced hardware and parallel processing techniques to improve the
efficiency of password cracking. As cyberattacks become increasingly sophisticated, it is
essential that security professionals have access to the most powerful and efficient tools
possible. The use of GPUs and parallel processing techniques can greatly enhance the speed
and accuracy of password cracking, which is a critical component of many cyberattacks.

Author Contributions: Writing—original draft, .A., M.A. (Mohammed Albugami), A.A. (Ali Alkhwaja),
M.A. (Mohammed Alghamdi), H.A. and FA.; writing—review and editing, A.A. (Abdullah Almurayh)
and N.M.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2023,13, 5979 21 of 22

Acknowledgments: The authors wish to acknowledge the anonymous reviewers for providing
valuable feedback on the initial versions of the manuscript. The authors would like to acknowledge
the Department of Computer Science, College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, for supporting and facilitating this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Grover, V.; Gagandeep. An Efficient Brute Force Attack Handling Techniques for Server Virtualization. SSRN Electron.]. 2020.
[CrossRef]

Liu, P; Li, S.; Ding, Q. An Energy-Efficient Accelerator Based on Hybrid CPU-FPGA Devices for Password Recovery. IEEE Trans.
Comput. 2018, 68, 170-181. [CrossRef]

Tirado, E.; Turpin, B.; Beltz, C.; Roshon, P.; Judge, R.; Gagneja, K. A New Distributed Brute-Force Password Cracking Technique.
In Proceedings of the Future Network Systems and Security: 4th International Conference, FNSS 2018, Paris, France, 9-11 July
2018; Springer: Cham, Switzerland, 2018; pp. 117-127.

Hranicky, R. Digital Forensics: The Acceleration of Password Cracking. Ph.D. Thesis, Brno University of Technology, Brno,
Czechia, 2022.

Swathi, K. Brute Force Attack on Real World Passwords. Int. |. Res. Public Rev. 2022, 3, 552-558.

Ge, C,; Xu, L.; Qiu, W,; Huang, Z.; Guo, J.; Liu, G.; Gong, Z. Optimized Password Recovery for SHA-512 on GPUs. In Proceedings
of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21-24 July 2017; IEEE: Piscataway, NJ, USA, 2017;
Volume 2, pp. 226-229.

Laatansa; Saputra, R.; Noranita, B. Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash.
In Proceedings of the 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), Semarang,
Indonesia, 29-30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1-4.

Zhang, Z.; Liu, P. A Hybrid-CPU-FPGA-Based Solution to the Recovery of Sha256crypt-Hashed Passwords. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2020, 1-23. [CrossRef]

Hranicky, R.; Matousek, P; Rysavy, O.; Vesely, V. Experimental Evaluation of Password Recovery in Encrypted Documents. In
Proceedings of the ICISSP, Rome, Italy, 19-21 February 2016; SciTePress-Science and Technology Publications: Setubal, Portugal,
2016; Volume 2016, pp. 299-306.

Nakhila, O.; Attiah, A.; Jinz, Y.; Zou, C. Parallel Active Dictionary Attack on WPA2-PSK Wi-Fi Networks. In Proceedings of the
Proceedings—IEEE Military Communications Conference MILCOM, Tampa, FL, USA, 26-28 October 2015; IEEE: Piscataway, NJ,
USA, 2015; Volume 2015-Decem, pp. 665-670.

Hendarto, I.L.S.; Kurniawan, Y. Performance Factors of a CUDA GPU Parallel Program: A Case Study on a PDF Password
Cracking Brute-Force Algorithm. In Proceedings of the 2017 International Conference on Computer, Control, Informatics and its
Applications (IC3INA), Jakarta, Indonesia, 23-26 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 35-40.

Mount, S.; Newman, R. Energy-Efficient Brute Force Password Cracking. In Proceedings of the 2015 European Intelligence and
Security Informatics Conference, Manchester, UK, 7-9 September 2015; IEEE: Piscataway, NJ, USA, 2015; p. 189.

Wang, E,; Yang, C.; Wu, Q.; Shi, Z. Constant Memory Optimizations in MD5 Crypt Cracking Algorithm on GPU-Accelerated
Supercomputer Using CUDA. In Proceedings of the 2012 7th International Conference on Computer Science & Education (ICCSE),
Melbourne, Australia, 14-17 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 638-642.

Abdelrahman, A.; Khaled, H.; Shaaban, E.; Elkilani, W.S. WPA-WPA2 Psk Cracking Implementation on Parallel Platforms. In
Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18-19
December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 448-453.

Qabalin, M.K,; Arida, Z.A.; Saraereh, O.A.; Wu, F; Khan, I.; Uthansakul, P.; Alsafasfeh, M. An Improved Dictionary Cracking
Scheme Based on Multiple GPUs for Wi-Fi Network. Comput. Mater. Contin. 2021, 66, 2957-2972. [CrossRef]

Apostal, D.; Foerster, K.; Chatterjee, A.; Desell, T. Password Recovery Using MPI and CUDA. In Proceedings of the 2012 19th
International Conference on High Performance Computing, Pune, India, 18-21 December 2012; IEEE: Piscataway, NJ, USA, 2012;
pp- 1-9.

Vu, A.-D.; Han, J.-I.; Nguyen, H.-A_; Kim, Y.-M.; Im, E.-J. A Homogeneous Parallel Brute Force Cracking Algorithm on the GPU.
In Proceedings of the ICTC 2011, Seoul, Republic of Korea, 28-30 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 561-564.
Gillela, M.; Prenosil, V.; Ginjala, V.R. Parallelization of Brute-Force Attack on MD5 Hash Algorithm on FPGA. In Proceedings of
the 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID),
Delhi, India, 5-9 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 88-93.

Ji, Q.; Yin, H. Speedup and Password Recovery for Encrypted WinRAR3 without Encrypting Filename on GPUs. J. Phys. Conf. Ser.
2020, 1673, 12047. [CrossRef]

Ding, Q.; Zhang, Z.; Li, S.; Liu, P. Energy-Efficient RAR3 Password Recovery with Dual-Granularity Data Path Strategy.
In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26-29 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1-5.

https://doi.org/10.2139/ssrn.3564447
https://doi.org/10.1109/TC.2018.2868191
https://doi.org/10.46586/tches.v2020.i4.1-23
https://doi.org/10.32604/cmc.2021.013951
https://doi.org/10.1088/1742-6596/1673/1/012047

Appl. Sci. 2023,13, 5979 22 of 22

21.

22.

23.

24.

25.

26.

27.

28.

Hu, G.; Ma, J.; Huang, B. Password Recovery for RAR Files Using CUDA. In Proceedings of the 2009 Eighth IEEE International
Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 12-14 December 2009; IEEE: Piscataway, NJ,
USA, 2009; pp. 486—490.

Pi, I, De, P; Mueller, K. Using Gpus to Crack Android Pattern-Based Passwords.
In Proceedings of the 2013 International Conference on Parallel and Distributed Systems, Seoul, Republic of Korea,
15-18 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 450-451.

An, X; Jia, H.; Zhang, Y. Optimized Password Recovery for Encrypted RAR on GPUs. In Proceedings of the 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, New York,
NY, USA, 24-26 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 591-598.

Niu, H.; Wu, B.; Wang, Q.; Zhu, Z. Research on Steel Barrel Flattened Seam Recognition Based on Machine Vision. J. Phys. Conf.
Ser. 2020, 1633, 12014. [CrossRef]

Digman, E.S.; Orantoy, R.S.; Velasco,].A.; Blanco, M.C.; Regala, R.; Cortez, D.M. Enhancement of Hakak’s Split-Based Searching
Algorithm through Multiprocessing. Int. J. Innov. Sci. Res. Technol. 2022, 7, 1068-1072.

Norouzi, M.; Wolf, F,; Jannesari, A. Automatic Construct Selection and Variable Classification in OpenMP. In Proceedings of the
ACM International Conference on Supercomputing, Phoenix, AZ, USA, 26-28 June 2019; pp. 330-341.

Burns, W.J. Common Password List (Rockyou.Txt). Available online: https://www.kaggle.com/datasets/wjburns/common-
password-list-rockyoutxt (accessed on 15 February 2023).

Alnoon, H.; Al Awadi, S. Executing Parallelized Dictionary Attacks on Cpus and Gpus. Moais. Imago Fr. 2009. Available
online: https://moais.imag.fr/membres/jean-louis.roch/perso_html/transfert/2009-06-19-IntensiveProjects-M1-SCCI-Reports/
HassanShayma.pdf (accessed on 7 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/1633/1/012014
https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://www.kaggle.com/datasets/wjburns/common-password-list-rockyoutxt
https://moais.imag.fr/membres/jean-louis.roch/perso_html/transfert/2009-06-19-IntensiveProjects-M1-SCCI-Reports/HassanShayma.pdf
https://moais.imag.fr/membres/jean-louis.roch/perso_html/transfert/2009-06-19-IntensiveProjects-M1-SCCI-Reports/HassanShayma.pdf

	Introduction
	Literature Review
	Proposed Techniques
	Applying Brute Force Using “ProcessPoolExecutor” in Python #1
	Applying Dictionary Attack Using “Multiprocessing” Module in Python #2
	Applying Dictionary Attack Using OpenMP in C++ Technique #3
	Applying Brute Force and Dictionary Attacks Using Hashcat #4

	Empirical Studies
	Description of the Dataset
	Experimental Setup
	Brute Force Setup
	Dictionary Attack Setup

	Results and Discussion
	Comparison and Analysis
	Conclusions
	References

