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Abstract: The boost converter is mostly used as a DC–DC converter, but two boost converter power
stages can be configured to perform the DC–AC conversion. In this case, the control system of the
power stage must be designed for trajectory tracking (instead of regulation), which brings interesting
challenges. This work deals with the design of a higher-order sliding mode output regulator for a
DC-biased sinusoidal power conversion problem on a single boost converter stage of a boost inverter
for asymptotic trajectory tracking of the voltage capacitor. The steady-state reference signal for
the inductor current is proposed as an approximated solution of the well-known Francis–Isidori–
Byrnes equations. The used approach is the direct control of the output, where the nonminimum
phase variable, i.e., an adequate sliding function, stabilizes the current through the inductor. Lastly,
by means of real-time experimentation, the good performance of the proposed control strategy
is verified.

Keywords: boost inverter; sliding mode control

1. Introduction

Voltage source inverters (VSI) are among the most important power electronic circuits
used in a variety of applications, including renewable energy systems, electric drives, and
motor control. A VSI is a power electronic device that converts a DC voltage input into a
variable-frequency and -amplitude AC output [1–3].

Voltage source inverters (buck inverters) generate an AC output instantaneous voltage
always lower than their DC input [1–3]. When a larger voltage is required, a boost stage
is required between the DC input and the buck inverter depending on the power level re-
quired; this option is a feasible solution, but the additional intermediate converter increases
the cost and volume of the total system, as well as reduces the total efficiency. This is why
the development of boost-type inverters is an active research field [4–26].

One of the main topologies of boost-type inverters is the differential boost inverter,
sometimes simply called the boost inverter, initially introduced in [4]. This converter
gained significant attention from researchers in the following decades due to its ability to
overcome the limitations of the conventional full-bridge inverter, which is well-established.
Specifically, the DC–AC boost converter can generate AC voltages with amplitudes greater
than the input DC voltage without requiring an additional conversion stage or increasing
the number of power semiconductors.

Figure 1a shows the discussed converter, which is made up of two identical cells
that use symmetrical converters. The cells are connected back-to-back or in a bridge
configuration, providing the output voltage differentially between their outputs. The
converter can be divided into two single boost converters, each of them generating a
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DC-biased sinusoidal voltage; see the simplified diagram in Figure 1b. The DC bias is
introduced since the boost converter cannot produce a voltage lower than its input. It is
the same value for both converters, as the load is connected in a differential manner; this
DC value is not reflected on the output. This can also be observed by applying Kirchhoff’s
voltage law (KVL) to the diagram of Figure 1b. From Figure 1b, it is also evident the DC
bias must be the same in both converters to prevent a DC bias at the output voltage, which
is expected to be an AC signal. Furthermore, sinusoidal signals generated by each boost
converter must be shifted by 180◦. In this case, these amplitudes are added at the output
side (see Figure 1c).
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plex than the regulation-oriented control. These challenges require the use of advanced 
control techniques to achieve reliable and robust performance [10–26]. 
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One of the more interesting challenges in the boost converter is its control; it is a
nonminimum phase system, which means that its linearized model has a right-half plane
zero in the transfer function. Nevertheless, control can be performed, and it is widely used
for regulation purposes. An example can be found in Appendix A. Another manner is
to use an indirect method. Instead of directly controlling the capacitor’s voltage, which
makes the inductor current an unstable variable, the inductor current may be directly
controlled with a reference chosen to obtain a certain capacitor’s voltage (see Appendix B).
Additionally, the boost inverter requires a trajectory tracking control which is more complex
than the regulation-oriented control. These challenges require the use of advanced control
techniques to achieve reliable and robust performance [10–26].

Among the different strategies of control applied to the boost inverter, the sliding mode
control is one of the most investigated, and it has been widely recognized as an effective
control strategy for power converters, including power boost converters. Sliding mode
control has several advantages when applied to power boost converters, such as robustness
to parameter variations and disturbances, fast transient response, and insensitivity to
nonlinearities. Additionally, sliding mode control can precisely control the output voltage
and current, making it well-suited for applications requiring high accuracy and efficiency.

Several applications have been reported for converters controlled with sliding-mode-
based controllers. For example, in [20], a high-gain SMC algorithm was designed for the
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power flow regulation of a bidirectional converter; in [21], a generalized super-twisting
algorithm was designed to control a DAB converter. Overall, sliding mode control offers a
promising approach to achieving accurate and efficient control of power boost converters
in various power electronics applications [20–26].

In this work, a direct control approach is used to solve the problem of tracking a
DC-biased sinusoidal signal for the capacitor voltage on a DC–DC boost converter. This
approach is based on a robust higher-order sliding mode output regulation technique
based on the super-twisting algorithm. The unstable zero dynamics related to the inductor
current variable are stabilized with a properly selected sliding surface. The reference signal
chosen for the current through the inductor is an approximate solution to the corresponding
Francis–Isidori–Byrnes equation.

The article is organized in the following manner: Section 1 presents the introduction,
and Section 2 presents the model of the DC–Dc boost converter and the design of its output
regulator based on a higher-order sliding mode controller. Then, Section 3 deals with the
experiments performed to verify its performance. Lastly, Section 4 presents the conclusions.

2. Higher-Order Sliding Mode Regulation for Boost Converter Output

As observed in Figure 1, controlling the converter consists of controlling two con-
verters that have the same parameters and work in the same manner. They are both
boost converters generating a DC-biased sinusoidal signal. For this reason, the main fo-
cus of the problem is controlling a boost converter and forcing it to produce a sinusoidal
DC-biased signal.

This chapter introduces the mathematical model of the DC–DC boost converter, as well
as the formulation of the problem. Then, the higher-order sliding mode output regulation
technique is used to design a controller for the formulated problem.

2.1. Mathematical Model and Problem Formulation for the Boost Converter

Figure 2 shows an electric diagram of a boost converter.
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Using the standard averaging technique, the boost converter mathematical model can
be expressed as follows [27]:

.
x1 = − x2

L
v +

E
L

, (1)

.
x2 =

x1

C
v− x2

RC
, (2)

y = x2, (3)

where x1 is the current through the inductor, and x2 is the voltage across the capacitor. The
control signal v is the transistor switching function, a binary signal which can take values
of 0 and 1, and whose value represents the instantaneous position of the transistor (see
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Figure 2). Moreover, E is the DC input voltage. The output resistance R, the inductance L
and the capacitance C are considered constant parameters.

The control problem can be established by forcing the output y = x2 to track the variable
reference signal x2,r in the presence of perturbations such as load resistance variations.

Now, let us consider the autonomous exosytem described by Equation (4).

.
ω1 = −αω2,

.
ω2 = αω1,

.
ω3 = 0, (4)

with initial conditions w1(0) = w2(0) = a and w3(0) = b, and output

x2,r = q(ω) = ω1 + ω3, (5)

where w1 is a sinusoidal shape signal whose amplitude is the square root of two and whose
frequency is equal to α; w3 is a DC (constant) signal equal to b, which gives the bias value.
Moreover, w = (w1, w2, w3)T. Lastly, the output tracking error is defined as

e = x2 − x2,r. (6)

2.2. Higher-Order Sliding Mode Regulation of a Boost Power Converter

In the below procedure, it is assumed that the load resistance is known, along with the
remaining plant parameters. Now, let us define the steady state error as

z = x− π(ω) = (z1, z2)
T , (7)

where x = (x1, x2)T and π(w) = (π1(w), π2(w))T. Then, the dynamic expression for Equation (7)
with the tracking error in Equation (6) can be obtained from Equations (1)–(3) as follows:

.
z1 = − z2 + π2(ω)

L
v +

E
L
− ∂π1(ω)

∂ω
Sω, (8)

.
z2 =

z1 + π1(ω)

C
v− z2 + π2(ω)

RC
− ∂π2(ω)

∂ω
Sω, (9)

.
ω = Sω, (10)

e = z2 + π2(ω)− q(ω), (11)

where

S =

0 −α 0
α 0 0
0 0 0

. (12)

The smooth mappings π1(w): W0→< and π2(w): W0→< (where W0 is an open
neighborhood of w = 0), with π1(0) = 0 and π2(0) = 0, are such that the pair (π1(w), π2(w))
is the unique solution of the following PDEs (FIB equations [28]):

∂π1(ω)

∂ω
Sω = −π2(ω)

L
c(ω) +

E
L

, (13)

∂π2(ω)

∂ω
Sω =

π1(ω)

C
c(ω)− π2(ω)

RC
, (14)

0 = π2(ω)− q(ω), (15)

where c(w) is the steady state for input v (as in the classical output regulation setting),
which is deduced later on.
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Remark 1. Comparing Equations (15) and (5), it may come to our attention that ω1 + ω3 6= π2(ω).
The control problem (posed in Section 2.1) stated that x2,r is the reference signal for the output of the
system. This reference is proposed by the end user as in Equation (5), i.e., as a function of the state
of the exosystem, i.e., q(ω), particularly depending on the summation of the states ω1 and ω3. The
output error is then defined as e in Equation (11). For that, one calculates

e = y− x2,r, (16)

e = x2 − x2,r, (17)

e = z2 + π2 − x2,r, (18)

e = z2 + π2 − q(ω). (19)

The FIB Equations (13)–(15) are determined under the assumption that the state of the
system corresponds exactly to the ideal steady state, i.e., that all errors are zero. Hence, it is
assumed that z1 = z2 = e = 0, yielding Equation (15).

Now, we introduce the sliding function σ that stabilizes the unstable residual dynamics,
as well as the super-twisting controller [29], as follows:

σ = z2 + c1z1, (20)

v =

(
−k1

√
|σ|sign(σ) + v1

)/
δ(z, ω) , (21)

.
v1 = −k2sign(σ). (22)

That leads to the closed-loop system,

.
σ = η(z, ω)− k1

√
|σ|sign(σ) + v1, (23)

.
v1 = −k2sign(σ), (24)

where k1 and k2 as constant design parameters that are determined in Appendix C, with

η(z, ω) = c1
E
L
− c1

∂π1(ω)

∂ω
Sω− z2 + π2(ω)

RC
− ∂π2(ω)

∂ω
Sω, (25)

δ(z, ω) =
z1 + π1(ω)

C
− c1

z2 + π2(ω)

L
. (26)

Remark 2. The pulse width modulation (PWM) is automatically generated by the DSP board;
nevertheless, this PWM is implemented as usual, i.e., with the comparison of a triangular carrier ctr
vs. the signal v, called the duty cycle in the PWM scheme. The PWM generator ensures that vpwm
is always within the interval [0, 1] with a logical rule in which, if v>, vpwm = 1, and if v<, vpwm = 0.
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2.3. Stability Analysis of the Sliding Mode

When the designed sliding mode happens, i.e., σ(t) = z2(t) + c1z1(t) = 0 ∨t ≥ ts, the
sliding mode dynamics are described by the following first-order system:

.
z1 = − z2 + π2(ω)

L
v +

E
L
− ∂π1(ω)

∂ω
Sω

∣∣∣∣ z2 = −c1z1
v = veq(z, ω)

, (27)

where the equivalent control veq is calculated from
.
σ = 0 as follows:

.
σ = η(z, ω) + δ(z, ω)veq(z, ω) = 0, (28)

veq(z, ω) = −η(z, ω)

δ(z, ω)
. (29)

This results in
.
z1 = f0(z1, ω), (30)

where

f0(z1, ω) =

(
c1z1 + π2(ω)

L

)(
c1

E
L − c1

∂π1(ω)
∂ω Sω− c1z1+π2(ω)

RC − ∂π2(ω)
∂ω Sω

z1+π1(ω)
C − c1

−c1z1+π2(ω)
L

)
+

E
L
− ∂π1(ω)

∂ω
Sω. (31)

Lemma 1. Under the conditions in Equations (13) and (14), origin z1 = 0 is an equilibrium point
of the sliding mode dynamics in Equation (30).

Proof. Assume that z1 = 0; then, the sliding mode dynamics in Equation (30) reduces to the
following expression:

f0(0, ω) =

(
π2(ω)

L

)(
c1

E
L − c1

∂π1(ω)
∂ω Sω− π2(ω)

RC − ∂π2(ω)
∂ω Sω

π1(ω)
C − c1

π2(ω)
L

)
+

E
L
− ∂π1(ω)

∂ω
Sω. (32)

By substituting Equations (13) and (14) into Equation (32), after simple manipulations,
one obtains that

f0(0, ω) = −π2(ω)

L
c(ω) +

π2(ω)

L
c(ω) = 0. (33)

�

Lemma 2. The sliding mode dynamics equilibrium point z1 = 0 (30) is locally attractive if c1 is
selected in a way that

a11 − a12c1 = λ1 < 0, (34)

where

a11 = a11 −
b1(a21 + c1a11)

(b2 + c1b1)
, a12 = a12 −

b1(a22 + c1a12)

(b2 + c1b1)
, (35)

with

a1,j =
∂ fi
∂xj

∣∣∣∣∣
(b2/(RE),b)

, bi =
∂ fi
∂v

∣∣∣∣
(b2/(RE),b),

(36)

where f1 and f2 are the right-hand sides of Equations (8)–(9), respectively.

Proof. The corresponding linear approximation of Equations (13) and (14) is as follows:

Π1Sω = R1ω + b1Γω, (37)
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Π2Sω = R2ω + b2Γω, (38)

with
R1 = a11Π1 + a12Π2, (39)

R2 = a21Π1 + a22Π2, (40)

where

Πi =
∂πi(ω)

∂ω

∣∣∣∣
(0)

, Γ =
∂c(ω)

∂ω

∣∣∣∣
(0)

, i, j = 1, 2. (41)

Let us define the steady-state errors as z1 = x1 − Π1w and z2 = x2 − Π2w, where the
corresponding dynamic equations are as follows:

.
z1 = a11z1 + a12z2 + b1v + R1ω−Π1Sω + φ1(z, ω), (42)

.
z2 = a21z1 + a22z2 + b2v + R2ω−Π2Sω + φ2(z, ω). (43)

The sliding function dynamics (the function defined in Equations (20)–(22)) take the
following form:

.
σ = a21z1 + a22z2 + b2v + R2ω−Π2Sω,

+c1a11z1 + c1a12z2 + c1b1v + c1R1ω− c1Π1Sω + φσ(·),
(44)

with φσ(z,w) = φ2(z,w) + c1φ1(z,w). The equivalent control is calculated as a solution of
.
σ = 0:

veq = − 1
b2+c1b1

(a21z1 + a22z2 + R2ω−Π2Sω),

− 1
b2+c1b1

(+c1a11z1 + c1a12z2 + c1R1ω− c1Π1Sω)− φσ(z, ω).
(45)

When the sliding mode occurs, i.e., σ = 0, the sliding mode dynamics are determined by

.
z1 = a11z1 + a12z2 + b1veq + R1ω−Π1Sω + φ1(z, ω)

∣∣
z2=−c1z1

. (46)

After some algebraic manipulation, the sliding mode Equation (30) can be represented
in the form

.
z1 = (a11 − a12c1)z1 −

b1

b2 + c1b1
(R2ω + c1R1ω)− b1

b2 + c1b1
(−Π2Sω− c1Π1Sω),

+R1ω−Π1Sω + φsm(z, ω), (47)

.
ω = Sω, (48)

e = −c1z1 + π2(ω)− q(ω), (49)

with φsm(z,w) = φ1(z,w) − b1φσ(z,w) as a higher-order function whose terms vanish at the
linearization point with their first derivative. It is clear that Equation (47) can be reduced to
the following expression if the conditions in Equations (37) and (38) hold:

.
z1 = (a11 − a12c1)z1 +

b1

b2 + c1b1
(b2Γω + c1b1Γω)− b1Γω + φsm(z, ω), (50)

= (a11 − a12c1)z1 +
b1

b2 + c1b1
(b2 + c1b1)Γω− b1Γω + φsm(z, ω), (51)
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= (a11 − a12c1)z1 + φsm(z, ω). (52)

Since a11 and a12 explicitly depend on constant c1, one can assign a desired eigenvalue
and solve for c1, i.e.,

a11 − a12c1 = λ1, (53)

with λ1 < 0.
Under this condition, the center manifold z1 = x1—π1(w) on the sliding mode manifold

σ = z2 + c1z1 = 0 is locally attractive, i.e., z1(t)→ 0 => x1(t) = π1(w(t)) and e(t) = z2(t)→ 0 =>
x2(t) = π2(w(t)) = q(w) as t→ ∞. �

2.4. Manifold Calculation

From Equations (5) and (15), one can determine

π2(ω) = ω1 + ω3. (54)

To calculate π1(w), one reckons c(ω) from Equation (14) resulting in the following expression:

c(ω) =
C

π1(ω)

∂π2(ω)

∂ω
Sω +

π2(ω)

Rπ1(ω)
. (55)

Substituting Equation (55) into Equation (13) yields

∂π1(ω)

∂ω
Sω = −Cπ2(ω)

Lπ1(ω)

∂π2(ω)

∂ω
Sω−

π2
2(ω)

LRπ1(ω)
+

E
L

. (56)

In fact, the term c(w) is not explicitly used in the control action of Equation (17).
Therefore, π1(w) can be defined as a solution of Equation (52) for given π2(w). In general,
finding a solution for PDEs is difficult, but one option is to propose an approximation to
the solution [30–32]. In this case, we propose the following as the approximated solution
for π1(w):

π1(ω) = a0 + a1ω3
1 + a2ω2

1 + a3ω2ω2
1 + a4ω3ω2

1 + a5ω1ω2
2

+a6ω1ω2 + a7ω3ω1ω2 + a8ω1 + a9ω3ω1 + a10ω2
3ω1

+a11ω2
3 + a12ω2

2 + a13ω3ω2
2 + a14ω2 + a15ω3ω2

+a16ω2
3ω3 + a17ω3 + a18ω2

3 + a19ω3
3 + O4(‖ω‖1).

(57)

Multiplying Equation (56) by π1(w) and then substituting Equation (57) into the
resulting equation, the values ai (i = 0, . . . , 19) can be determined by equalizing the
polynomial coefficients in both sides of the equation. All coefficients result equal to zero
except for

a2 =
1

RE
, a6 = −αC

E
, a9 =

2
RE

, a15 = −αC
E

, a18 =
1

RE
. (58)

Note that the bias value for π1(w) is the monomial with a18 as coefficient, i.e., b2/(RE).
This fact was used to obtain the linearized sliding mode Equation (47).

2.5. Load Resistor Estimation

Here, we remove the assumption of a known load resistor as stated in Section 2.2, by
designing a sliding mode observer. The estimate of the load resistor is proposed by means
of a super-twisting sliding mode observer for the voltage equation in Equations (1)–(3).

.
x̂2 =

vx1

C
+ l1

√
|x2 − x̂2|sign(x2 − x̂2)− ξ1. (59)

.
ξ1 = −l2sign(x2 − x̂2). (60)
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Then, by means of the equivalent control method, one can retrieve the load resistance
information. For that end, the estimation error is defined as x̃2 = x2 − x̂2 where its dynamics
are as follows:

.
x̃2 = − x2

RC
− l1

√
|x̃2|sign(x̃2) + ξ1, (61)

.
ξ1 = −l2sign(x̃2), (62)

where l1 and l2 are constant design parameters, and ξ1 is an integral action. The observer is
ensured to converge uniformly when the following bound is satisfied for some constants
µ > 0: ∣∣∣ x2

RC

∣∣∣ ≤ µ. (63)

The corresponding sufficient condition for the finite time convergence to the sliding
manifold x̃2 = 0 is

l2 >
µ

Γ2,m
, (64)

where 0 < Γ2,m ≤ 1 ≤ Γ2,M, such that the estimation error x̃2 will tend to zero in finite

time [33]. Using the equivalent method, i.e., setting
.
x̃ ≡ 0 in Equations (61) and (62), one

can determine
ξ1 =

x2

RC
. (65)

If ξ1 6= 0, the resistance estimate is

R̂ =
x2

ξ1C
. (66)

If x̃2 ≡ 0, it is true for t ≥ TS, TS > 0, a finite time instant; then, R̂ = R for t ≥ TS. On
the other hand, for t < TS, the difference R̂ − R remains bounded since the convergence of
x̃2 to zero is in finite time. Lastly, the control action to be implemented is as follows:

σ̂ = z2 + c1ẑ1, (67)

v̂ =

(
−k1

√
|σ̂|sign(σ̂) + v̂1

)
/δ(z, ω), (68)

.
v̂1 = −k2sign(σ̂), (69)

where ẑ1 = x1 − π̂1(w), and π̂1(w) is the updated version of π1(w) in Equation (57) with the
resistor estimate R̂.

Remark 3. The resistance is estimated through a sliding mode observer. Nevertheless, the control
law utilizes the inductance and capacitance. In contrast to the load (which can suffer variations
during the operation), the inductance and capacitance are chosen during the design, and their
variations during the operation are small (e.g., smaller than 5%) in a well-designed converter,
mainly due to the quality (tolerance) of components and to the change in the current in the case
of the inductance. Therefore, considering substantial variations of L and C is out of the scope of
this work. This can be evaluated in future work. Nevertheless, it is worth mentioning that any
mismatch between nominal values and real values for L and C will appear in a perturbation term that
belongs to the control subspace, which the sliding mode controller will reject due to its robustness
property. However, in particular, variations in C will slightly affect the steady-state solution for π1
as appreciated in coefficients a6 and a15, as can be noted in Equation (53).
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3. Experimental Results

The proposed control scheme is illustrated in Figure 3. The EXOSYSTEM block (de-
fined in Equation (4) or (10)) generates the sinusoidal and constant signals that are fed to the
REFERENCES block. This block generates the ideal steady state in Equations (55) and (57)
for the boost circuit. Then, this steady state is compared with the real state of the boost
circuit, obtaining the error signal vector shown in Equation (7). From the elements of this
vector, the sliding function in Equation (20) is constructed as a linear combination and used
in a super-twisting algorithm (Equations (21) and (22)). This control action is fed to the
boost circuit and to the observer in Equation (59), along with the real state. The observer
generates an estimate for the load resistance that is used for updating the ideal steady state
for finally closing the loop.
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Figure 3. Proposed control scheme block diagram.

The proposed control scheme was implemented in a dSPACE 1104 board, represented
by the gray shape; outside the board, a boost converter was connected using a Semikron
module and controlled by the dSPACE board programmed with the control.

Figure 3 represents only the control signals.
The boost converter parameters used for the experimental results were L = 0.098 H,

C = 10 mF, R = 200 Ω, and E = 8 V (actually, this value was considered to be 10 V in the
control algorithm in order to introduce a perturbation for all time). The design parameter
c1 was fixed to a value of −200, which corresponds to an eigenvalue λ1 = −412.2.

Remark 4. In order for Equation (26) not to reach zero, c1 should not be selected as

c1 =
L(z1 + π1)

C(z2 + π2)
=

L(x1)

C(x2)
. (70)

Since x1 > 0 and x2 > 0, it is clear that c1 should at least not be positive in order to
avoid δ(z,ω) = 0.

The input voltage source is made by a three-phase uncontrolled diode rectifier fed
by a three-phase variable transformer (VARIAC). The input voltage can be adjusted by
rotating the VARIAC knob. The resulting DC voltage is used to feed a Semikron power
module. The Semikron power module is used to feed the boost converter. The controller
is programmed in Simulink along with the PWM generator, and the output signals from
Simulink are obtained with a dSPACE 1104 board. The board contains ADC converters to
acquire the current through the inductor and the voltage across the capacitor. The used
voltage and current sensors are the LEM HX 10-P and the LEM LV 25-P. Figure 4 shows a
diagram of the experimental setup, and Figure 5 shows a photo of the prototype.
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Figure 5. Photograph of the prototype.

A first-order Butterworth low-pass filter having an edge frequency of 100 rad/s was
used for filtering the inductor current in order to attenuate the measurement noise. The
used sampling period was h = 60 ms. Initially, v was fixed at a value of 1 to operate the
converter in an open-loop mode, where the output capacitor voltage was the same as the
input voltage E, calibrated at a value of 8 V (actually this value was considered to be 10 V in
the control algorithm in order to introduce a perturbation for all time). Then, the converter
was operated in closed-loop mode, allowing the observation of transient responses. The
load resistance variations were introduced as steps. At time instants 50, 70, and 90 s, the
resistance was reduced to approximately 50% of its nominal value; at time instants 60 and
80 s, the load resistance recovered to its nominal value.

The capacitor voltage was forced to follow a signal with a sine waveform whose
amplitude was equal to 5 V plus a DC (bias) voltage whose amplitude is 20 V. Several
results were obtained with different frequency. Figure 6 shows the results for a frequency
value of 1 rad/s, Figure 7 shows the results for a frequency of 5 rad/s, Figure 8 shows
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the results for a frequency of 10 rad/s, and Figure 9 shows the results for a frequency of
15 rad/s.
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Figure 6. Real-time results at α = 1 rad/s. (a) Capacitor voltage (solid) and capacitor voltage reference
signal (dashed) [V vs. s]. (b) Inductor current (solid) and inductor current reference signal (dashed)
[A vs. s]. (c) Estimated load resistance [Ω vs. s]. (d) Zoomed-in view of the same variables in (a).
(e) Zoomed-in view of the same variables in (b).
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Figure 7. Real-time results with α = 5 rad/s. (a) Capacitor voltage (solid) and capacitor voltage
reference signal (dashed) [V vs. s]. (b) Inductor current (solid) and inductor current reference signal
(dashed) [A vs. s]. (c) Estimated load resistance [Ω vs. s]. (d) Zoomed-in view of the same variables
in (a). (e) Zoomed-in view of the same variables in (b).
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Figure 8. Real-time results with α = 10 rad/s. (a) Capacitor voltage (solid) and capacitor voltage
reference signal (dashed) [V vs. s]. (b) Inductor current (solid) and inductor current reference signal
(dashed) [A vs. s]. (c) Estimated load resistance [Ω vs. s]. (d) Zoomed-in view of the same variables
in (a). (e) Zoomed-in view of the same variables in (b).
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serve that the proposed controller had approximately a zero precision error at all frequen-
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can be drawn between the inductor current and the load resistance. The current increased 
as the load resistance decreased and vice versa. This was expected since π1(w) was up-
dated with the resistance estimation. 

  

Figure 9. Real-time results with α = 15 rad/s. (a) Capacitor voltage (solid) and capacitor voltage
reference signal (dashed) [V vs. s]. (b) Inductor current (solid) and inductor current reference signal
(dashed) [A vs. s]. (c) Estimated load resistance [Ω vs. s]. (d) Zoomed-in view of the same variables
in (a). (e) Zoomed-in view of the same variables in (b).
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In general, a similar behavior can be appreciated in all cases, i e., a good performance
for the voltage across the capacitor where the exponentially transient response (without
overshoot) was due to the natural sliding mode dynamics in all cases, although the inductor
current tracking was not clear due to measurement noise. It is important to mention that,
in all cases, there were minimal transient responses at the voltage across the capacitor
when load resistance variations were introduced. On the contrary, the transient responses
of the output capacitor voltages reported in [34–36], through simulation studies, were
considerably larger.

In order to better evaluate the control performance at all four frequencies, we con-
sidered the precision error Pe and the chattering effect Ch. The former is defined as the
relative error of the output variable and is calculated as the difference between the average
steady-state control output and the reference value, divided by the reference value:

Pe =
|Sr −Vmc|

Sr
× 100, (71)

where Sr is the imposed reference, and Vmc is the average of the output controlled variable
in the steady state. The latter is characterized by the amplitude of the signal, and is given by
the difference between the amplitude of the output variable and the average in the steady
state of the reference signal:

Ch =
|Amc −Vmc|

Vcm
× 100, (72)

where Amc is the maximum amplitude of the deviations of the output signal with respect to
its average value Vmc.

Table 1 summarizes the evaluation parameters for all four frequencies. One can observe
that the proposed controller had approximately a zero precision error at all frequencies,
but the chattering effect decreased as the frequency increased. One final observation can be
drawn between the inductor current and the load resistance. The current increased as the
load resistance decreased and vice versa. This was expected since π1(w) was updated with
the resistance estimation.

Table 1. Evaluation Parameters for all four frequencies.

Frequency Pe Ch

1 rad/s ≈0% 2.2%
5 rad/s ≈0% 1.31%
10 rad/s ≈0% 1.09%
15 rad/s ≈0% 0.44%

4. Conclusions

A second-order SM output regulation control technique was successfully applied to
the DC-biased sinusoidal boost power conversion problem. The inductor current reference
signal was proposed with a third-order polyonomy as an approximated solution for one
of the Francis–Isidori–Byrnes equations with satisfactory accuracy. Additionally, the non-
minimum phase dynamics at the inductor current were stabilized with a proper selection
of the sliding function. Experimental results demonstrated the robust performance of the
proposed control strategy in the presence of plant parameter variations, corroborating the
merits of this technique.
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Appendix A. Direct Control Method

The direct control method consists of directly controlling the output capacitor voltage.
In the case of DC-to-DC conversion, the corresponding reference signals for the inductor
current and output capacitor voltage are as follows [37]:

x1,r =
V2

d
RE

, x2,r = Vd, (A1)

where Vd > E. The tracking errors are defined as e1 = x1 − x1,r and e2 = x2 − x2,r, whose
dynamics are

.
e1 = −

e2 + x2,r

L
v +

E
L

, (A2)

.
e2 =

e1 + x1,r

C
v +

e2 + x2,r

RC
, (A3)

where k2 < 0. This control action leads to
.
e2 = k2e2. In this case, the residual dynamics result

in the following form:

.
e1 = −

e2 + x2,r

L

(
k2e2 +

e2
RC + Vd

RE
e1 + x1,r

)
+

E
L

. (A4)

Linearizing around e1 = 0 yields

.
e1 =

REC
V2

d
e1 + H.O.T., (A5)

where the unstable behavior of the zero dynamics can be appreciated.

Appendix B. Indirect Control Method

The indirect control method consists of controlling the inductor current. Using
Equation (A2), control v is determined as follows:

v = −
(

k1e1 −
E
L

)
L

e2 + x2,r
, (A6)

where k1 < 0. It is clear that the dynamic equation of e1 under the proposed control results
in

.
e1 = k1e1. Then, the residual dynamics are expressed as

.
e2 =

e1 + x1,r

C

(
−
(

k1e1 −
E
L

)
L

e2 + x2,r

)
−

e2 + x2,r

RC
, (A7)

The corresponding zero dynamics when e1 = 0 are of the following form:

.
e2 =

x1,r

C

(
E
L

)
L

e2 + x2,r
−

e2 + x2,r

RC
. (A8)

The linear approximation around e2 = 0 is expressed in the following form:

.
e2 = −

(
1

RC
+ 1
)

e2 + H.O.T., (A9)
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where the minimum phase behavior of the boost converter can be appreciated.

Appendix C. Determination of the Constants in Equations (20)–(22)

The controller stabilizes the boost converter when satisfying the following bound:∣∣∣∣c1
E
L
− c1

∂π1(ω)

∂ω
Sω− z2 + π2(ω)

RC
− ∂π2(ω)

∂ω
Sω

∣∣∣∣ ≤ ηm. (A10)

For some constant ηm > 0. This can be achieved by noting that some terms on the left
side in the above condition are known, where a maximal value, i.e.,

max
{

c1
E
L
− c1

∂π1(ω)

∂ω
Sω− ∂π2(ω)

∂ω
Sω

}
, (A11)

can easily be determined, and by considering that the initial state x2(0) = z2(0) + π2(w)(0).
Once these conditions are verified, the controller gains are selected to satisfy

k2 > ηm, (A12)

k1 ≥
4ηm(k2 + ηm)

(k2 − ηm)
. (A13)

Then, the sliding variable σ(t) converges to zero in finite time tS [33].
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