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Abstract: Using appropriate classification and recognition technology can help physicians make
clinical diagnoses and decisions more effectively as a result of the ongoing development of artificial
intelligence technology in the medical field. There are currently a number of issues with the detection
of common pediatric dermatoses, including the challenge of image collection, the low resolution of
some collected images, the intra-class variability and inter-class similarity of disease symptoms, and
the mixing of disease symptom detection results. To resolve these problems, we first introduced the
Random Online Data Augmentation and Selective Image Super-Resolution Reconstruction (RDA-
SSR) method, which successfully avoids overfitting in training, to address the issue of the small
dataset and low resolution of collected images, increase the number of images, and improve the image
quality. Second, for the issue of an imbalance between difficult and simple samples, which is brought
on by the variation within and between classes of disease signs during distinct disease phases. By
increasing the loss contribution of hard samples for classification on the basis of the cross-entropy, we
propose the DK_Loss loss function for two-stage object detection, allowing the model to concentrate
more on the learning of hard samples. Third, in order to reduce redundancy and improve detection
precision, we propose the Fliter_nms post-processing method for the intermingling of detection
results based on the NMS algorithm. We created the CPD-10 image dataset for common pediatric
dermatoses and used the Faster R-CNN network training findings as a benchmark. The experimental
results show that the RDA-SSR technique, while needing a similar collection of parameters, can
improve mAP by more than 4%. Furthermore, experiments were conducted over the CPD-10
dataset and PASCAL VOC2007 dataset to evaluate the effectiveness of DK_Loss over the two-stage
object detection algorithm, and the results of cross-entropy loss-function-based training are used as
baselines. The findings demonstrated that, with DK_Loss taken into account, its mAP is 1–2% above
the baseline. Furthermore, the experiments confirmed that the Fliter_nms post-processing method
can also improve model precision.

Keywords: object detection; common pediatric dermatoses; images dataset; DK_Loss; Fliter_nms

1. Introduction

Pediatric dermatoses are a type of common illness that exhibit clinical traits such as
short duration, rapid changes, unclear medical records, high contagiousness, easily caused
complications, and children who are unable to correctly describe their symptoms [1].

Methods based on deep learning are the foundation of the majority of computer
aided diagnosis (CAD) methods currently in use [2–6]. The Stanford team’s 2017 work
by Esteva et al. [7] is one of the most notable cases. It successfully demonstrated that the
CNN classification model is able to classify keratinocyte carcinomas versus benign sebor-
rheic keratoses and malignant melanomas versus benign nevi on the task of classification,
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which is comparable to professional dermatologists. It utilized the InceptionV3 network
architecture, trained on a clinical dataset that has more than 2000 skin diseases.

Encouraged by the results of this study, various types of neural-network-based medical
photographic studies of dermatoses emerged [8]. Currently, most of the research in this
field is focused on skin tumors and mostly on dermoscopy images, which are acquired
by specialized equipment with simple backgrounds, based on the magnification of the
lesion site, where the lesion area features are very clear. The International Skin Imaging
Collaborative (ISIC) organizes the world’s largest public repository of dermoscopy images
and hosts skin image analysis challenges around the world.

The results of this study inspired the development of numerous neural-network-based
medical photographic studies of dermatoses. The most recent study in this area focuses on
skin tumors and primarily uses dermoscopy images, which are obtained by specialized
equipment with plain backgrounds when the lesion site is magnified, where the lesion area
features are very distinct. The International Skin Imaging Collaborative (ISIC) conducts
skin image analysis competitions and maintains the biggest public database of dermoscopy
images in the world. In order to diagnose cutaneous lesions, N. Gessert et al. [9] integrated
a number of cutting-edge CNN networks with Densenet, SENet, and ResNeXt, placing
second in the ISIC Challenge.

In 2019, Jianpeng Zhang et al. [10] addressing the problems of insufficient training
data, inter-class similarity, intra-class variability, and lack of attention to the semantic lesion
parts proposed an attention residual learning convolutional neural network (ARL-CNN)
model for adaptively focusing on lesion regions of dermoscopic images.

Xin He et al. [11] built the dermatology datasets Skin-10 and Skin-100 from Internet
images, implemented an ensemble approach based on multiple CNN models, and pre-
sented an object-detection-based approach by introducing bounding boxes into the Skin-10
dataset in 2019. XiangyaDerm, a large dermatology clinical image dataset that is primarily
from Asiatic, was proposed by Bin Xie et al. [12] in the same year. InceptionV3, Inception-
ResNetV2, DenseNet, and Xception are four cutting-edge CNN models that have been
chosen to show the classification performance of the CNN models and the applicability of
XiangyaDerm as a benchmark dataset for dermatology diagnostics. Additionally, the neces-
sity of creating distinct dermatological datasets for various areas and ethnicities was shown
through cross-testing. A. Udris, toiu et al. proposed an architecture of CNN to classify skin
lesions, using a public dataset of 10,015 images consisting of seven types [13].

Since the studies on deep-learning-based classification and recognition in pediatric
dermatology are relatively limited, in this paper, we first create a clinical images dataset
named CPD-10 that contains 10 common pediatric dermatoses. All of its images are
crawled from authoritative medical websites, including Hand-Food-And-Mouth Disease,
Chickenpox, Mosquito Bites, Furuncle, Folliculitis, Atopic Dermatitis, Diaper Dermatitis,
Impetigo, Urticaria, and Pyogenic paronychia. To the best of our knowledge, CPD-10 is
the first clinical image dataset with the appropriate label and bounding boxes for common
pediatric dermatoses.

Then, we conduct a benchmarking by using the state-of-the-art CNN models such
as ResNet [14], ResNeXt [15], Res2Net [16], ConvNeXt [17], Swin Transformer [18], and
PVTv2 [19] to learn its inherent characteristics. We discover that there are significant
problems with training overfitting, inconsistent image quality, an imbalance of difficult and
easy samples, and cross-sectionality of detection results when trying to identify common
pediatric dermatological symptoms in natural scenes.

Thirdly, we propose the DKFD algorithm, which employs Random Online Data Aug-
mentation (RDA) and Selective Image Super-Resolution Reconstruction (SSR) techniques
to address the issue of related small data size and low resolution of images. In DKFD, we
also propose the cross-entropy-based loss function DK_Loss for two-stage object detection,
to address the issue of imbalance between hard and easy samples in training by increasing
the loss contribution of hard samples and allowing the model to concentrate more on
hard samples. This problem is caused by intra-class variability and inter-class similarity
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in varying disease periods among various diseases. Furthermore, in order to improve
the detection precision of the model, the Filter_nms technique is also developed for the
intermingling of the detection boxes, which is based on the Non-Maximum Suppression
algorithm [20] (NMS). The Filter_nms can efficiently remove the interference of some
mis-specified detection boxes during the detection.

We train on the CPD-10 dataset to demonstrate the effectiveness of the DKFD algo-
rithm, and the experimental results show that using the RDA-SSR, DK_Loss, and Fliter_nms
can effectively reduce overfitting during training, enhance the robustness of the model,
and improve the learning capacity of the hard samples, which leads to an improvement in
the mAP of the model over 6%. Additionally, using a number of two-stage object detection
algorithms and PASCAL VOC2007 datasets [21], we further confirm the effectiveness of the
DK_Loss. According to the experiment results, the two-stage object detection algorithm
uses the DK_Loss loss function, which not only improves the model’s capability for learning
from difficult samples, but also reduces the issue of overfitting, making it appropriate for
object detection over the small dataset.

The rest of this paper is organized as follows. Section 2 briefly reviews the existing
object detection methods. The essential knowledge of this paper is given in Section 3.
The proposed DKFD algorithm is described in depth in Section 4. The experimental study
is presented in Section 5. Finally, Section 6 draws the concluding remarks and future works.

2. Related Work
2.1. Object Detection Algorithms

The two major types of object detection algorithms are one-stage object detection
algorithms based on regression and two-stage object detection algorithms based on
candidate regions [22,23].

The one-stage algorithm directly regresses at various locations in the image, determin-
ing the object class and locating the coordinates afterward. It is often simple and quick,
but with relatively poor detection accuracy for small and dense objects. YOLO series
approaches [24] and CornerNet [25] belong to this type of work.

The recent two-stage object detection algorithm often employs a Region Proposal
Network (RPN) with better precision and accurate localization and is based on candidate
regions. In 2014, Grishick et al. proposed the R-CNN, which significantly improves de-
tection by using CNN to extract features and selective search to extract candidate boxes.
SPP-Net, which was proposed by Kaiming He et al., implements the multi-scale input of
CNN and only needs to extract the convolutional features once for the original image. In or-
der to significantly increase the detection accuracy and training efficiency, Girshick et al.
proposed Fast R-CNN [26], which uses Softmax rather than SVM for classification and
incorporates the regression task of regions into the training. However, it continues to use
a time-consuming selective search to create candidate boxes. Faster R-CNN [27] was pro-
posed with the RPN, which uses a convolutional neural network to generate the candidate
boxes, and the RPN and the subsequent detection network share the convolutional fea-
tures. It is the first real end-to-end object detection network. Based on the straightforward
network connection changes without increasing the model’s computation, the Feature
Pyramid Network was proposed to improve the effectiveness of small object detection.
Faster R-CNN is a classical network for two-stage object detection, and there are numer-
ous derivative networks, such as the HyperNet based on feature fusion, R-FCN based
on full convolutional network, Mask R-CNN based on instance segmentation, Cascada
R-CNN [28] based on cascade network, and Dynamic R-CNN [29], which can automatically
adjust the label assignment criteria and the shape of the regression loss function.

Taking high accuracy as the main metric of common pediatric dermatoses, we choose
Faster R-CNN, a classical algorithm of two-stage object detection, as the benchmark [30].
We improve the Faster R-CNN network for the problem of training overfitting, unstable
image quality, unbalanced difficult and easy samples, and intermingling of detection results
in the detection of common pediatric dermatoses.
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2.2. Faster R-CNN

The faster R-CNN algorithm consists of three main components: Features Extraction
Network, RPN, and Fast R-CNN network, and the basic structure is shown in Figure 1.
Firstly, the Feature Extraction Network obtains the common feature map, and conveys the
feature map to the RPN and the Fast R-CNN network, respectively. RPN performs the
probability prediction of background and foreground and coordinates point regression.
Subsequently, the top N proposal boxes with higher confidence scores are selected by the
NMS algorithm. The Fast R-CNN network extracts relevant features from the common
feature map, combined with the proposal box coordinates, and performs ROI Pooling,
to perform category detection and anchor box fixing.

Figure 1. Structure of the fundamental Faster R-CNN.

2.3. Data Augmentation

While the amount of data available in real scenarios is very limited, the performance
of deep learning models quite often exhibits a positive correlation with the number of
training samples. As a fundamental approach to addressing the issue of the small dataset,
data augmentation [31–33] can enhance the robustness of the model by broadening the
diversity of the training sample and significantly reduce the overfitting phenomenon of the
model during training.

The data augmentation techniques can be divided into four categories based on the
data generation methods: single-data deformation, multi-data mixing, learning data dis-
tribution patterns, and learning enhancement strategies [34]. Single-image deformation
techniques such as Random Erasing [35], Cutout [36], and GridMask [37], which can pro-
duce new samples quickly, simply, and easily, have been used extensively in the image
field for a long time in data augmentation. Single-data deformation and multi-data mixing
are considered to be basic image transformations. While multi-data mixing involves com-
bining data from different sources, such as image space or features, it lacks interpretability.
Typical approaches include CutMix [38], AugMix [39], and RICAP [40]. Contrarily, learning
data distribution and learning augmentation strategies primarily rely on deep learning
techniques, such as Generative Adversarial Networks [41], Image Migration [42], Meta-
Learning-based strategies [43] and Reinforcement Learning-based strategies [44], which are
inapplicable for datasets that are initially small since they require a large quantity of data
for training. Generally, when using data augmentation, it should first take into account
the applicability of the methods in the context of real scenarios. It is simple to combine
different transformation methods to generate more samples, but inappropriate changes
may have the opposite effect and be counterproductive instead.
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2.4. Super-Resolution Reconstruction

Super-resolution reconstruction can partially help compensate for issues such as blurry
images, poor quality, insignificant interest areas [45], etc. Super-resolution reconstruction
is frequently used in real-world applications such as satellite, remote sensing, astronomy,
and biomedical feature identification due to the limitations of the image acquisition en-
vironment [46]. Traditional image super-resolution reconstruction techniques, such as
the iterative inverse projection method, convex set projection method, and interpolation
method, are quicker in reconstruction, but lose a lot of detail due to the small amount of
prior knowledge used, which may make them less useful. The reconstructed image may
also be relatively blurry. In recent years, image super-resolution reconstruction based on
deep learning has made it possible to recover the detailed information in the images by
transforming low-resolution images into high-resolution images using a variety of learning
models. Learned from the real-world image super-resolution reconstruction tasks [47] and
the characteristics of ESRGAN [48], RealSR [49], BSRGAN [50], and Real-ESRGAN [51],
the SwinIR [52] proposed by Jingyun Liang et al., which is based on Swin Transformer, not
only has fewer parameters and a lower training difficulty, but can also produce sharp and
clear images.

2.5. Loss Function

The selection of the loss function is vital for the design of a deep learning algorithm
because it can accelerate the algorithm’s learning. Cross-entropy, which has the same
weights for all samples and is the most popular loss function for deep learning classifica-
tion tasks, is unable to handle the issue of unbalanced hard and easy samples, making
it unsuitable for tasks requiring the classification and recognition of natural images of
common pediatric dermatoses [53].

Since 2012, academics have been developing loss functions for particular domains in an
effort to improve the performance of their datasets [54]. By weighing positive and negative
samples, balanced cross-entropy, such as that found in Xie’s 2015 Holistic Nested ED [55],
was developed to address the sample imbalance between groups. Abhinav Shrivastava et al.
proposed Online Hard Example Mining (OHEM) [56] in 2016 to address the imbalance
between hard and easy samples. By sampling negative samples in accordance with the
confidence error, OHEM reduces the imbalance between hard and easy samples and boosts
algorithmic recognition rates, but it also results in the model losing its ability to distinguish
between easy samples during learning. By increasing the algorithm’s attention to hard
samples, Tsung-Yi Lin et al. [57] propose Focal Loss in their study on the issue of positive
and negative sample imbalance and difficult and easy sample imbalance in the one-stage
object detection algorithm. It basically consists of multiple binary classification problems
that cannot be applied to a two-stage network of multiple classification problems and
that can only be used to determine the detection difficulty of a detection box based on
the prediction probability distribution. As a result, the confidence level still needs to
be increased.

3. Preliminaries
3.1. Online Data Augmentation

Online data augmentation is the process of applying graphical or geometric image
transformations to training data that has already been collected. Since there is rarely
intermingling between dermatoses, using multi-sample mixing data augmentation for
disease representation identification in natural images of prevalent pediatric dermatoses
may result in the superimposition, intermingling, and distortion of symptoms. As a
result, we use single-image augmentation strategies in this paper. At present, single-image
augmentation strategies primarily include the following five types, and some example
data-augmented image results are displayed in Figure 2.
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• Color Gamut Variation: To make the model more resilient to changes in lighting, add
deviations of light brightness, saturation, contrast, and equalization to the picture;

• Geometric Changes: Flipping the dataset horizontally or vertically, rotating it, trans-
lating it, cropping it, and scaling it to introduce deviations in viewpoint and position;

• Sharpness Change: Sharpening or blurring the image for sharpness change;
• Local Random Erasure: The erasure of all pixel information in a local area at random

or artificially, resulting in the addition of some occlusion to the picture;
• Copy-Paste Strategy: Oversampling images with tiny objects, followed by copy-paste

strategy for the sample’s sample’s small objects.

Figure 2. Example of the result after data augmentation.

3.2. Super-Resolution Reconstruction

By using a specific algorithm, image super-resolution reconstruction creates a high-
resolution picture from a low-resolution source image. With three sizes of ×2, ×4, and ×8,
the deep learning-based image super-resolution reconstruction typically enlarges the im-
age’s border length by k times and boosts the pixel density by k2 times. The ideal can be
expressed as Equation (1), and it is essential to ensure that the reconstructed image can
closely resemble the original image while it is being enlarged.

ŷ = argminy[L(Fsr(x), y) + λφ(y)] (1)

where x represents the low-resolution image, y is the corresponding real image, Fsr(x) is
the high-resolution image after reconstruction using a specific algorithm, λ is the balance
parameter, and φ(y) is the regularization item. Figure 3 illustrates a comparison of the
original image with k times super-resolution and k times magnified using the SwinIR
method used in this work.

In this paper, we adopt the SwinIR to reconstruct the original image, an example of
comparison with k times super-resolution and k times magnified is shown in Figure 3.
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(a) (b)

(c) (d)

Figure 3. Example of comparison with k times super-resolution and k times magnified. (a,c) are the
original images after k-fold magnification. (b,d) are the reconstructed images of the original images
after k-fold super-resolution.

3.3. Non-Maximum Suppression

The anchor box overlap and confidence number serve as the foundation for the NMS
algorithm. Searching for detection boxes with the local maximum score, removing detection
boxes whose overlap with the predicted box of the local maximum score surpasses the
predetermined threshold, and keeping the ideal object bounding box are the main steps of
the algorithm.

The Intersection-over-Union (IoU) value is used by Faster R-CNN to measure the
amount of overlap between two detection boxes. According to Figure 4, the overlap region
between detection boxes A and B is denoted by the symbol A ∩ B. The IoU value between
the two detection boxes is determined as shown in Equation (2) if the area of prediction
boxes A and B are indicated by area(A) and area(B), respectively.

IoU(A, B) =
area(A) ∩ area(B)
area(A) ∪ area(B)

(2)

Figure 4. The overlap of the detection box A and B.
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Any proposal box with a score below the score threshold would not be allowed to par-
ticipate in the NMS. The NMS algorithm includes two adjustable parameters, the IoU thresh-
old and the score threshold. The initial boxes B = {b1, . . . , bn} and the confidence scores
S = {s1, . . . , sn} corresponding to each box are then obtained. The boxes B = {b1, . . . , bn},
confidence scores S = {s1, . . . , sn}, and the set IoU thresholds Nt are then used as inputs.
After that, remove the detection box with the greatest confidence score that is currently
available, include it in the output result, and compare it to the other pending detection
boxes. The two detection boxes will be combined into one detection box when the combined
scores of the two detection boxes exceed the specified score level and the combined IoU
exceeds the specified IoU threshold. Assuming that M stands for the detection box with
the greatest score at the moment, bi for the detection box that needs to be processed, si for
the detection box’s corresponding score, and Nt for the set IoU threshold, the calculation
formula for the NMS is displayed in Equation (3).

si =

{
si IoU(M, bi) < Nt
0 IoU(M, bi) > Nt

(3)

3.4. Loss Function

Loss is the term used to describe the discrepancy between each sample’s actual and
predicted values in deep learning. The loss function, which is typically a non-negative
function and can be denoted by L(y, f (x)), is a function that is used to determine the loss.
The impact of a model prediction is measured by the loss function; the smaller the loss,
the better the trained model.

The cross-entropy loss function is frequently used in deep learning classification tasks,
typically in conjunction with the sigmoid or softmax function. The cross-entropy can be
expressed as Equation (4) for situations involving multiple classifications.

CE(p, q) = −
n

∑
i=1

p(xi) log(q(xi)) (4)

where p(x) denotes the true category probability distribution of the detection boxes and n
denotes the number of categories in the dataset. With the exception of the true category
chance, which is 1, all categories in the true labels have probabilities of 0. The expected
probability distribution of the detection boxes is represented by q(x). As a result, sample
imbalance issues such as positive and negative sample imbalance, difficult and easy sample
imbalance, and sample imbalance between categories cannot be resolved by the cross-
entropy because it handles all samples equally. Classical techniques such as OHEM and
Focal Loss have become more popular in recent years in the study of the difficult and
simple sample imbalance problem.

It is inherent to OHEM to determine the loss value of each proposal box in the Fast
R-CNN, rank the proposal boxes incrementally based on the loss value, and choose the top
N hard samples. Only these N proposal boxes’ gradients are transmitted back during back-
propagation, while the gradients of the other proposal boxes are set to 0. Although OHEM
can partially address the imbalance between hard and easy samples by only keeping the
samples with higher loss and completely discarding the easy samples, this naturally al-
ters the input distribution during training and results in the model losing its ability to
distinguish easy samples.

The Focal Loss operates on all training-proposed boxes, in contrast to the OHEM
technique. Increase coefficient αt based on the traditional cross-entropy loss function to
balance the weights of positive and negative data. The hard-easy sample weights are
simultaneously adjusted by using the (1− pt)γ function, where pt denotes the predicted
probability score matching the true category of the detection box. When a box is incorrectly
classified, its loss is almost unaffected, pt is smaller, and (1− pt)γ is close to 1. The clas-
sification prediction is improved and the sample is easier to analyze when pt is close to
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1, (1− pt)γ is close to 0, and the loss is minimized. Equation (5) illustrates the suggested
Focal Loss function based on these two methods, with pt defined as in Equation (6).

FL(pt) = −αt(1− pt)
γ log(pt), (5)

pt =

{
pt i f y = 1

1− pt otherwise
(6)

Based on the aforementioned ideas for making improvements, one of the most im-
portant ways to address the imbalance between difficult and easy samples is to adjust the
weight penalty. This imbalance can be addressed by increasing the relative loss contribution
of difficult samples for classifying, which will result in an increase in the penalty that the
model imposes on these samples.

However, at present, most researchers only consider the predicted score to measure
the difficulty of object detection, without taking into account the global distribution and
disregarding the obstacles caused by inter-class similarity and intra-class variability. In the
dataset, if a category has a similarity with k categories, the difficulty of detection will vary
with the value of k. In the training, based on the valid detection boxes after NMS filtering,
to some extent, the difficulty can be assessed by the number of different categories, which
are predicted by multiple detection boxes that can be identified as detecting the same
object region.

As shown in Figure 5a, the intersecting area is designated as A ∩ B for detection
box A if detection box B exists and intersects with A. Assume that Equation (7) is met by
observation box B’s area being area(B) and region A ∩ B’s area being area(A ∩ B).

area(A ∩ B)
area(B)

> 0.95 (7)

Detection box A and B are considered to be two detection boxes that pick up on the
same object area. It goes without saying that while numerous detection boxes can be
thought of as predicting the same object detection region for samples that are difficult to
classify, there is probably diversity in the prediction results. Three distinct classification
outcomes for the same lesion region can be seen in Figure 5b.

(a) (b)

Figure 5. In (a), if the ratio of the area of A ∩ B to the area of detection box B is more than 95%, then
detection box B is considered to detect the same object region as detection box A. (b) is an example of
diversity detection results generated by multiple detection boxes that can be identified as detecting
the same lesion region.

Thus, combining the target box score, and the number of different categories predicted
by multiple validated boxes, which can be considered as predicting the same lesion region
with that target box, as indicators that integrate information on the global distribution and
local scores of the detection results, can better assess the detection difficulty of the boxes.
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4. Detection Model
4.1. DKFD Algorithm

The structure of the DKFD algorithm is shown in Figure 6. Prior to using the random
online data augmentation technique in training, the input images are selectively recon-
structed with super-resolution and used as part of the training dataset. The PVTv2 is used
by the base feature extraction network to retrieve features. Following the generation of
the proposal boxes by the RPN, the proposal boxes are categorized and regressed using a
combination of the derived features, the DK_Loss loss function, and backpropagation to
update the network parameters. Each image in the test was used to create a set of proposal
boxes using RPN; these boxes were then classified and regressed in a Fast R-CNN network,
and the Fliter_nms algorithm was used to filter partially incorrect detection boxes before
the final output was produced.

Figure 6. Framework of DKFD algorithm.

4.2. Random Online Data Augmentation

Must appear on the skin. Because it is simple to have the anomaly that the symptom
is outside the skin region, it is not appropriate to use the oversampling copy–paste strategy.
In order to create twelve data augmentation strategies, this paper uses four different kinds
of data augmentation strategies: color gamut change, geometric change, sharpness change,
and local random erasure strategy. The detailed strategies are listed in Table 1.

Table 1. Twelve data augmentation strategies.

Strategy Methods

Color Brightness & Contrast

Geometric Shift & Rotate
Rotate & Shear

Color & Geometric

Scaling & brightness
Brightness & Translate

Color & Translate & Rotate
Contrast & Shear & Brightness

Color & Sharpness HueSaturationValue & MedianBlurt

Color & Random Erasing Contrast & CutOut

Geometric & Random Erasing Rotate & CutOut

Geometric & Sharpness Rotate & Blur
Translation & Blur & Rotation

4.3. Selective Super-Resolution Reconstruction

The statistical findings show that the original image’s aspect ratio closely fits the
width/height ratio of 1.2:1. We divide the height pixels of the original image into three ranges
of (0, 200), (200, 400), and (400, 3000), counting the number of images in each range, re-
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spectively. Using (1000, 800) as the scale criterion of the reconstructed image, the statistical
findings are displayed in Table 2.

Table 2. Distribution of original image height resolution.

Height Pixels Number

(0, 200] 379
(200, 400] 647
(400, 3000] 379

The results suggest that more than 70% of the images collected are of poor quality,
which affects how accurately symptoms are identified. The research found that precise
disease identification depends on having high-quality medical images. By converting
low-resolution to high-resolution images using image super-resolution reconstruction,
the limitations of hardware devices and other issues can be effectively addressed. In this
research, we used SwinIR to perform 2 and 4 super-resolution reconstructions on images
with height resolutions of (0, 200) and (200, 400), respectively. The number of RSTB, STL,
window size, number of channels, and number of attention heads were set to 6, 6, 8, 180,
and 6, respectively.

4.4. DK_Loss

The classification and recognition of symptoms representation of common pediatric
dermatoses focus on the imbalance between difficult and simple samples, and a novel
loss function called DK_Loss is proposed. It is reconstructed to lessen the relative loss
weights of easy samples based on the cross-entropy loss function, which is the most
frequently applied to solve classification issues. Assume the dataset has n detection
categories, q(x) is the predicted probability distribution of the detection boxes, p(x) is the
true probability distribution of the detection boxes, and q(xt) is the expected probability
score corresponding to the true category of the detection boxes. The number of distinct
predicted categories with multiple detection boxes that may be deemed to detect the same
lesion region is represented by dkt, and the highest value of dkt within the normal range is
represented by kmax. The precise formulation of the loss function for DK_Loss is shown in
Equation (8), where dkt is defined in Equation (9).

DK_Loss = −dkt×(1− q(xt))×
n

∑
i=1

p(xi) log(q(xi)) (8)

dkt =

{
dkt, dkt ≤ kmax

kmax, dkt > kmax
(9)

First, we add the coefficient 1− q(xt) for each detection box that is classified and
regressed in the Fast R-CNN network during training in order to quantify the probability
distribution of the detection box category scores. If a detection box’s true category’s
corresponding prediction score, q(xt), is low, the detection box can be thought of as the
hard sample, and the accompanying 1− q(xt) value is nearer to one. In contrast, if the
prediction score q(xt) goes to 0 and 1 − q(xt) is closer to 1, the detection box can be
thought of as the simple sample. In order to focus the model on the learning capacity of
hard samples, the loss contribution of simple samples can be decreased by increasing the
coefficient 1− q(xt).

Then, in training, for multiple detection boxes that can be identified as predicting the
same region, the number of distinct predicted categories dkt is calculated as a parameter to
measure the detection box’s probability of classification. Assume the dataset contains n
categories, the number of proposal boxes retained after random sampling is m, the regres-
sion coordinates of detection boxes are expressed as bboxes, the corresponding scores are
scores, the corresponding true labels of detection boxes are gt_labels, and the initialization
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dkt of m detection boxes is set to 1. Using the condition max(scores) > 0.90 as the criterion.
If it is satisfied, it indicates that the output of network classification already encloses a
certain category bias, and the dkt parameter of the detection box is calculated and updated;
otherwise, dkt is output directly, as depicted in Figure 7.

1. Background_delete (bg_d): Remove the background score and only consider the
misidentification probability between object categories;

2. Updated_gt_bboxes_select (gt_s): The set of detection box coordinates gt_bboxes that
need to update the dkt parameters are determined by the regression coordinates
bboxes and the true labels gt_labels of the detection boxes, which correspond to the
true label of each detection box;

3. Comparable_boxes_filter (cb_f ): Flatten the detection box coordinates and category
score tensor, so that each detection box prediction category, confidence score, and de-
tection box regression coordinates correspond one-to-one, and filter the invalid detec-
tion box with scores < 0.05, forming the set of det_bboxes for comparison;

4. Calculate_dkt_update (dkt_u): Iterate through the detection box in gt_bboxes and
compare it with all the detection boxes in det_bboxes. Determine the number of distinct
categories dkt that can be identified as predicting the same region for numerous
detection boxes. Unless otherwise specified, dkt stays unchanged if dkt = kmax.

Figure 7. Flow of dkt calculation.

According to the experiment, the majority of detection boxes have dkt ∈ {1, 2, 3}, but a
few have abnormal values. Other variables, such as poor image quality, an unfavorable
shooting environment, the loss of small object feature information due to repeated pooling,
etc., may also contribute to the abnormal value. Instead, the network learning capability
will suffer if the model concentrates more on learning abnormal data. Therefore, setting
the maximum threshold kmax, during the calculation, if dkt > kmax, setting dkt = kmax, can
not only save training time, but can also eliminate the influence of abnormal samples. This
will enable the model to concentrate on learning the majority of normal hard samples and
reduce the influence brought by abnormal samples.
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The dkt(1− q(xt)) coefficient is added to adjust the weight of difficult and simple
samples. When a detection box has dkt predicted categories, the true category probability
score q(xt) is relatively low, so 1− q(xt) is extensive and the loss is multiplied by dkt.
When dkt = 1, its classification is improved, 1− q(xt) is relatively small, it is regarded as a
simple sample, and the loss becomes relatively small. Consequently, the loss contribution
of simple samples is decreased, allowing the model to concentrate more on learning normal
difficult samples.

4.5. Fliter_nms

According to medical knowledge, it is uncommon for the symptoms of the same
dermatological disease to coexist, so one symptom representation cannot hold another
symptom representation inside. The NMS algorithm keeps the detection boxes that have in-
clusion or contained relationships, IoU values below the threshold, or that can be identified
as predicting the same symptom region but are predicted to belong to different categories.
This mixing of detection results makes it difficult to detect symptoms accurately.

Assuming that for detection boxes A(x11, y11, x12, y12) and B(x21, y21, x22, y22), if simulta-
neously satisfied by x11 > x21, x12 < x22, y11 > y12, y12 < y22, detection box A is considered to
be contained by detection box B, and if satisfied by x11 < x21, x12 > x22, y11 < y12, y12 > y22,
detection box A is considered to contain detection box B. The specific example is shown
in Figure 8.

A

B

C

D E

(a) (b) (c)

Figure 8. The intermingling of detection results. (a,c) correspond to a part of the detection results in
the realistic scenario (b), respectively. According to the determination criteria, detection box D and
detection box E in (a) can be identified as detecting the same lesion region with different prediction
results, while detection box B in (c) is contained by detection box A and also contains detection box C.

In order to make the mixing of detection results easier, we propose the Fliter_nms
algorithm in this paper, which is based on the NMS algorithm. Set the confidence score
difference limits conthr and crothr assuming that the NMS algorithm returns boxes with
the notation B = {b1, . . . , bN} and corresponding scores with the notation S = {s1, . . . , sN}.
Firstly, the pre-selected box si is added to the output set B

′
, and the detection box of B

with the biggest si is chosen as the pre-selected box in order. The remaining boxes in B
are then considered to be pending boxes. There are various prediction categories and
si − sj > cro_thr if there is a pending box bj that is included or contained with the bi.
Alternatively, if the pending box bj is found to be predicting the same lesion area as bi but
with different prediction categories, it is removed to dispose of the redundant boxes and
increase the accuracy of detection. Repeat the loop until the set B is exhausted, and then
output the set B

′
.

5. Experiments and Discussion

This section evaluates the DKFD algorithm through four experiments. In the
first experiment, Random Online Data Augmentation, which is based on the Faster
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R-CNN algorithm, was applied to the CPD-10 dataset to assess the effect of random
online augmentation strategies on the mAP of detection. The second experiment in-
vestigates the effects of Selective Super-Resolution Reconstruction. Using the SwinIR
super-resolution reconstruction model, it aims to observe the influence of the first exper-
iment’s findings on the improvement of mAP and Precision. Utilizing three two-stage
object detection algorithms, the third experiment estimates the DK_Loss loss function:
Faster R-CNN, Cascade R-CNN, and Dynamic R-CNN. It was performed on the original
CPD-10 dataset and the augmented dataset with selective super-resolution reconstruction
using cross-entropy and the DK_Loss loss function, investigating the effect of applying
the DK Loss loss function on improving the mAP of the model, and was validated on
the PASCAL VOC2007 dataset to ensure the universality of the DK Loss loss function.
The objective of the fourth experiment was performed to evaluate the effectiveness of the
Filter_nms post-processing algorithm, which is based on the experimental results of the
Faster R-CNN algorithm with the DK_Loss loss function. The third experiment was con-
ducted on the CPD-10 augmented dataset using the NMS and Fliter_nms post-processing
methods, respectively, to observe the impact of model Precision enhancement.

For the aforementioned experiments, the backbone networks included the 50-layer
Resnet network (Resnet-50), the 101-layer Res2Net network (Res2Net-101), the 101-layer
ResNeXt network (ResNeXt-101), the Swin Transformer network (Swin-T) with chan-
nel number C = 96 and layer number = (2, 2, 6, 2), the C(number of input channels of
4 stages) = (96, 192, 384, 768), (PVTv2 has 6 different variants of different sizes from B0–B5,
according to the hyperparameter settings). Our dataset, experimental settings, evaluation
metrics, and experimental details are described below.

5.1. Dataset

In this paper, we annotate clinical image dataset CPD-10 of common pediatric der-
matoses in VOC2007 format using the LabelImg annotation software, manually labeling the
location of disease symptoms using rectangular boxes of varying sizes, and assigning cate-
gory labels. The CPD-10 dataset contains 1453 images of 10 prevalent pediatric dermatoses,
whose distribution is shown in Table 3. We randomly divide the CPD-10 dataset images
into a training dataset consisting of 1163 images and a test dataset containing 290 images.

Table 3. CPD-10: Clinical image statistics of common pediatric dermatoses.

Name Number

Furuncle 109
Impetigo 117
Urticaria 138

Chickenpox 171
Insect bite 104
Folliculitis 159

Diaper dermatitis 36
Hand-Food-And-Mouth 164

Atopic dermatitis 343
Pyogenic paronychia 112

Out of 1453 images, there are only 53 images of Caucasians, 20 images of Black
individuals, and only 1 image of Brown individuals, which can be ignored, and the rest
are Asian, which constitute up to 95% of the total, so the model proposed will be biased to
Asians to some extent.

5.2. Setting

Our experimental evaluation is based on the MMDetection 2.25.0 object detection
repository, a PyTorch deep learning utility. The experimental environment is depicted in
Table 4, and the training hyperparameter configurations are shown in Table 5.
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Table 4. Experimental environment setting.

Type Version

CUDA 11.0
cuDNN 7.6.5
Python 3.7.16
Pytorch 1.7.1

Graphics Card GeForce RTX 2080Ti
Operating System Ubuntu 16.04.7

Table 5. Training parameter setting.

Hyper-Parameter Type

Optimizer AdamW
Betas (0.9, 0.999)

Weight_decay 0.05
Learning Rate 0.0001
Random Seed 1,848,043,090

5.3. Metric

This paper’s evaluation metric is comprised of three components: Precision, Recall,
and mAP. The Recall is used to evaluate the coverage of detection, and the Precision is used
to evaluate the accuracy of the detection result; then, based on the precision and recall of
each category, the area under the PR curve is plotted to obtain the AP value, and the model
mAP is calculated by averaging the values of all category APs. Precision and mAP are used
as the major metrics, with the Precision of prediction serving as the additional metric for
evaluating the detection.

5.4. Experimental Results and Analysis
5.4.1. Random Online Data Augmentation

In this experiment, we use ResNet-50, ConvNeXt-T, Swin-T, Res2Net-101, ResNeXt-101,
and PVTv2-B2 , as the feature extraction networks, based on the Faster R-CNN algorithm.
In training on the CPD-10 dataset, we observe varying degrees of overfitting and inad-
equate generalization ability. This is primarily due to the tiny data size. In this paper,
we employ the Random Online Data Augmentation preprocessing method. Table 6 dis-
plays a comparison of model mAP values, with RDA denoting the Random Online Data
Augmentation method.

It is apparent that, in the classification and identification of natural images of com-
mon pediatric dermatoses, PVTv2-B2 has a superior feature extraction ability for dis-
ease representation in comparison to the convolutional networks ResNet-50, Res2Net-101,
ResNeXt-101, and ConvNeXt-T, which possess local feature extraction ability, and the Swin-
T network, which disregards the local feature continuity of the image. This is primarily due
to the fact that the PVTv2-B2 backbone network is not only capable of extracting global
information, but also contains more local continuity of the image, allowing it to effectively
extract the overall characteristics of the disease representation. No matter which backbone
network is used, however, there is overfitting in training due to the small scope of the
dataset and the data’s homogeneity.

To address this issue, we employ the combined Random Online Augmentation method,
which can improve the model’s mAP by more than 2%, with the AP of small, medium,
and large objects all being improved to varying degrees. This is primarily because stochas-
tic data augmentation can increase the diversity of training data, thereby alleviating the
overfitting problem during training, making the model more robust and generalizable,
and decreasing the leakage detection rate. However, the randomness of the data augmen-
tation strategy causes instability in training. As shown in Table 6, although the overall
performance of the model was improved after using the Random Online Data Augmenta-
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tion method, the accuracy for small objects decreased instead with the ResNet-50, Swin-T,
and Res2Net-101 networks, which may be because some small lesion representations are
impacted by the stochastic augmentation strategy, e.g., chickenpox discrimination may be
weakened under increasing illumination. To prove it, using ResNet-50 as the backbone
network, we conducted repeated experiments with the Random Online Data Augmentation
method, with RDA denoting the Random Online Data Augmentation method, the results
of which are shown in Table 7.

Table 6. Comparison of mAP for Random Online Data Augmentation, where APS represents the AP
for small objects with area < 322, APM represents the AP for medium objects with 322 < area < 962,
and APL represents the AP for large objects with area > 962. All the results are the best of 5 runs.

Method Backbone mAP APS APM APL

Faster R-CNN

ResNet-50 0.485 0.458 0.439 0.499

ResNet-50 0.522 0.413 0.499 0.529
(RDA) (+0.037) (−0.045) (+0.060) (+0.030)

ConvNeXt-T 0.521 0.414 0.475 0.526

ConvNeXt-T 0.542 0.501 0.494 0.589
(RDA) (+0.021) (+0.087) (+0.019) (+0.063)

Swin-T 0.542 0.533 0.463 0.533

Swin-T 0.566 0.488 0.490 0.534
(RDA) (+0.024) (−0.045) (+0.027) (+0.001)

Res2Net-101 0.465 0.441 0.406 0.457

Res2Net-101 0.509 0.430 0.464 0.477
(RDA) (+0.044) (−0.011) (+0.058) (+0.020)

ResNeXt-101 0.497 0.345 0.428 0.520

ResNeXt-101 0.534 0.428 0.494 0.540
(RDA) (+0.031) (+0.083) (+0.066) (+0.020)

PVTv2-B2 0.549 0.537 0.527 0.537

PVTv2-B2 0.583 0.566 0.548 0.592
(RDA) (+0.034) (+0.029) (+0.021) (+0.055)

Table 7. Comparison of the accuracy of small objects with RDA. where APS represents the AP for
small objects with area < 322, APM represents the AP for medium objects with 322 < area < 962,
and APL represents the AP for large objects with area > 962.

Method Backbone mAP APS APM APL

Faster R-CNN

ResNet-50 0.485 0.458 0.439 0.499

ResNet-50(RDA)
0.522 0.413 0.499 0.529
0.527 0.434 0.508 0.535
0.516 0.481 0.509 0.524

It can be seen from Table 7 that, while the overall performance of the model was
improved in repeated experiments, small target detection accuracy enhancement was not
stable, which is inextricably related to the randomness augmentation strategy, as well as
the sensitivity of the network on small objects. In addition, although random online data
enhancement improves the detection accuracy, the model’s precision is relatively low. This
is due, in part, to the low resolution and subpar quality of the majority of the original
images, which makes training difficult.
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5.4.2. Selective Super-Resolution Reconstruction

In order to increase the Precision of disease symptom recognition, it is important to
address the hardware equipment limitations and other issues that result in fuzziness, poor
quality, and insignificant interest regions. SwinIR was used to conduct super-resolution
reconstruction on some low-quality original images that had been filtered-out based on
the findings of Random Online Data Augmentation. The experimental results are shown
in Table 8.

Table 8. Comparison of experimental results with Selective Super-Resolution Reconstruction, RDA
in the table represents Random Online Data Augmentation, and SSR represents Selective Super-
Resolution Reconstruction. All the results are the best of 5 runs.

Method Backbone Pre-Processing mAP

Faster R-CNN

ResNet-50

RDA 0.522

RDA-SSR 0.535
(+0.013)

ConvNeXt-T

RDA 0.542

RDA-SSR 0.558
(+0.016)

Swin-T

RDA 0.566

RDA-SSR 0.580
(+0.014)

Res2Net-101

RDA 0.509

RDA-SSR 0.536
(+0.027)

ResNeXt-101

RDA 0.534

RDA-SSR 0.545
(+0.011)

PVTv2-B2

RDA 0.583

RDA-SSR 0.602
(+0.019)

The experimental results demonstrate that using Super Resolution Reconstruction
not only improves image quality, but also increases the accuracy of model detection and
the mAP. The PVTv2-B2 feature extraction network, which achieves the greatest detection
effect at present, was chosen to compare the precision of detecting 10 types of diseases.
Figure 9 depicts the estimation of the effect of Selective Super Resolution Reconstruction.

It is evident that, after selective picture super-resolution reconstruction, the model’s
disease detection accuracy increased. This is primarily due to the fact that, following image
Super-Resolution Reconstruction, can more effectively enhance the clarity of the lesion area,
sharpen the edge features, and reduce the impact of image noise, improving the accuracy
of model detection.

5.4.3. DK_Loss

There are 10 diseases involved in the CPD-10 dataset, and it has similarities and varia-
tions within each class that affect how challenging it is to diagnose different diseases. We
developed the DK_Loss loss function to address this issue and enable the two-stage object
recognition algorithm to concentrate more on the difficult-to-classify samples. We com-
pare DK_Loss with the frequently used cross-entropy loss function in the two-stage object
identification algorithm. The evaluation is conducted over the CPD-10 original dataset and
the CPD-10 augmented dataset, which was created through online data augmentation and
Selective Super-Resolution Reconstruction, respectively. When kmax = 1, only the impact of



Appl. Sci. 2023, 13, 5958 18 of 25

the coefficients 1− q(xt) is verified. Various values for kmax are established and compared,
and the optimal parameter values for kmax are then determined. In Table 9, the testing
findings are displayed.

Figure 9. Comparison of model detection precision.

Table 9. Performance comparison over CPD-10 original dataset and augmented dataset based on
different loss functions, where CPD-10 (RDA-SSR) represents the augmented dataset of CPD-10. All
the results are the best of 5 runs.

Method Loss Function Backbone Parameter
mAP

CPD-10 CPD-10
(RDA-SSR)

Faster R-CNN

Cross-Entropy
ResNeXt-101 — 0.497 0.545

Swin-T — 0.542 0.580
PVTv2-B2 — 0.549 0.602

DK_Loss

ResNeXt-101

kmax = 1 0.510 (+0.013) 0.551 (+0.006)
kmax = 2 0.512 (+0.015) 0.552 (+0.007)
kmax = 3 0.517 (+0.020) 0.554 (+0.009)
kmax = 4 0.521 (+0.024) 0.556 (+0.011)

Swin-T

kmax = 1 0.550 (+0.008) 0.585 (+0.005)
kmax = 2 0.553 (+0.011) 0.591 (+0.011)
kmax = 3 0.562 (+0.020) 0.590 (+0.010)
kmax = 4 0.560 (+0.018) 0.588 (+0.008)

PVTv2-B2

kmax = 1 0.562 (+0.013) 0.613 (+0.011)
kmax = 2 0.570 (+0.021) 0.619 (+0.017)
kmax = 3 0.576 (+0.027) 0.622 (+0.020)
kmax = 4 0.572 (+0.023) 0.617 (+0.015)
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Table 9. Cont.

Method Loss Function Backbone Parameter
mAP

CPD-10 CPD-10
(RDA-SSR)

Cascade R-CNN

Cross-Entropy Swin-T — 0.538 0.577
PVTv2-B2 — 0.549 0.590

DK_Loss

Swin-T

kmax = 1 0.545 (+0.007) 0.582 (+0.005)
kmax = 2 0.549 (+0.011) 0.583 (+0.006)
kmax = 3 0.551 (+0.013) 0.589 (+0.012)
kmax = 4 0.548 (+0.010) 0.581 (+0.004)

PVTv2-B2

kmax = 1 0.565 (+0.016) 0.599 (+0.009)
kmax = 2 0.568 (+0.019) 0.610 (+0.020)
kmax = 3 0.570 (+0.021) 0.605 (+0.015)
kmax = 4 0.557 (+0.008) 0.597 (+0.007)

Dynamic R-CNN

Cross-Entropy ResNet-50 — 0.465 0.528
PVTv2-B2 — 0.536 0.582

DK_Loss

ResNet-50

kmax = 1 0.471 (+0.006) 0.539 (+0.011)
kmax = 2 0.483 (+0.018) 0.540 (+0.012)
kmax = 3 0.485 (+0.020) 0.544 (+0.016)
kmax = 4 0.472 (+0.007) 0.531 (+0.003)

PVTv2-B2

kmax = 1 0.556 (+0.020) 0.594 (+0.012)
kmax = 2 0.563 (+0.027) 0.599 (+0.017)
kmax = 3 0.567 (+0.031) 0.604 (+0.022)
kmax = 4 0.558 (+0.022) 0.595 (+0.013)

Combining the experimental results of DK Loss on the original CPD-10 dataset and
the augmented dataset in Table 9, we can observe that when kmax = 1, i.e., only increasing
the coefficient 1− q(xt), the mAP of the model can be improved, which has a positive
influence on training. This is because the corresponding score q(xt) of a sample’s true
category can, to some extent, reflect the classification difficulty of a sample. The closer
q(xt) is to 1, the more easily the sample can be considered a simple sample, and the closer
the coefficient 1− q(xt) is to 0, the easier the sample is. In contrast, the coefficient q(xt) is
closer to 1 than to 0. By adding coefficients 1− q(xt), the loss contribution of the samples
that are simple to classify can be reduced, allowing the model to focus on the learning of
samples that are difficult to classify.

Meanwhile, by varying kmax, we can also determine, for multiple detection boxes that
can be identified as detecting the same lesion region, the predicted number of distinct
categories dkt, which play a complementary role to the coefficient 1− q(xt). On the original
CPD-10 dataset, the model mAP can be enhanced by more than 2%. When kmax = 2 or
kmax = 3, i.e., dkt ∈ {1, 2, 3}, it not only reduces the influence of anomalous samples within
a certain range, but also improves the model’s mAP. By increasing the contribution of
loss to hard samples, the model focuses on learning the majority of normal hard samples.
In contrast, model training is degraded when kmax = 4, i.e., dkt > 3, is influenced by the
anomalous samples.

In addition, there is a significant disparity between the effect of model enhancement
on the original CPD-10 dataset and the augmented dataset. When training on the CPD-10
original dataset, the PVTv2-B2 backbone network has the highest degree of overfitting and
the most apparent improvement. This is primarily due to overfitting of varying degrees. It
can be seen that the DK_Loss loss function not only addresses the problem of unbalanced
hard and easy samples from the dataset, but also reduces overfitting during training,
which is more pertinent to object detection on small datasets, for which data collection is
more challenging.

Random Online Data Augmentation has a destabilizing effect on the experimental
outcomes of the CPD-10 augmented dataset. To more accurately determine the value of
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kmax, we conduct experiments on the PASCAL VOC dataset, utilizing the VOC2007 training
set, and evaluate the results on the VOC2007 test set. Additionally, we demonstrate the
efficacy of the DK_Loss loss function.

As shown in Table 10, when the parameter kmax = 3 is set in the DK_Loss loss func-
tion, the mAP improves by 1.4% for the Faster R-CNN, 1.9% for the Cascade R-CNN,
and 1.6% for the Dynamic R-CNN, which is the current optimal, but taken as 4, the perfor-
mance decreases instead, primarily because the DK_Loss loss function makes the model
focus more on learning difficult samples, by increasing the loss contribution of difficult
samples. If the value of dkt is not restricted with kmax, the focus of the model will always be
on the abnormal hard-to-classify samples, which may not be correctly identified for other
reasons, and mislead the subsequent optimization direction of the model. Therefore, kmax
is not as large as possible, but depends on the number of misclassification categories of
most normal samples in the dataset, making the model focus on the global situation of
the distribution of normal difficult samples rather than extreme data. Additionally, the
kmax’s value mainly depends on the likelihood of the misclassification category number for
most samples. For example, for the PASCAL VOC2007 dataset, the confusion matrix of the
model trained using the Cascade R-CNN is shown in Figure 10. It can be seen that most of
the category confusion category numbers are less than or equal to 3, Consistent with the
experimental results, so the proposed value of kmax is set to 3.

Figure 10. Confusion matrix using the Cascade R-CNN trained on PASCAL VOC2007.

The similarity between the conclusion and the CPD-10 dataset results validates the
validity and generalizability of the DK_Loss loss function. Noting that the specific value
of kmax may vary across datasets, when kmax is not applicable, you can observe the rough
interval of kmax value through the confusion matrix, based on the likelihood of the misclassi-
fication category number for most samples, and then experimentally set the optimal value.



Appl. Sci. 2023, 13, 5958 21 of 25

Table 10. Experimental results using ResNet-50-FPN backbone on PASCAL VOC2007 test set. All the
results are the best of 5 runs.

Method Cross-Entropy
DK_Loss

kmax = 1 kmax = 2 kmax = 3 kmax = 4

Faster 0.775 0.783 0.787 0.789 0.787
R-CNN (+0.008) (+0.012) (+0.014) (+0.012)

Cascade 0.763 0.778 0.780 0.782 0.780
R-CNN (+0.015) (+0.017) (+0.019) (+0.017)

Dynamic 0.774 0.785 0.788 0.790 0.787
R-CNN (+0.011) (+0.014) (+0.016) (+0.013)

5.4.4. Fliter_nms

The experiments in this section are based on the outcomes of the DK_Loss experiments
conducted in the previous section. The evaluation employs the PVTv2-B2 backbone net-
work with different con_thr and cro_thr threshold parameters. First, eliminate the detection
boxes for inclusion and contained relationships, and have distinct prediction categories
and greater than con_thr confidence score differences. Then, the detection boxes that
can be identified as detecting the same lesion region, have distinct prediction categories,
and where the difference in confidence scores is greater than the set value cro_thr are
deleted. The results of the experiments are presented in Table 11.

Table 11. Comparison of adjustment results of different post-processing methods.

Method Post-Processing con_thr cro_thr mAP

Faster R-CNN

NMS — — 0.622

Fliter_nms

0.70 — 0.620

0.800 — 0.622

0.90 — 0.622

0.80 0.10 0.621

0.80 0.20 0.621

According to the experiment results, the mAP of the model with various con_thr
and cro_thr threshold settings is relatively smooth. In addition, when con_thr = 0.8 and
cro_thr = 0.1 are set, the best filtering effect is achieved for the misclassified boxes. Setting
con_thr = 0.8 and cro_thr = 0.1 and utilizing various post-processing algorithms, Figure 11
compares the detection precision of 10 disease representations with con_thr = 0.8 and
cro_thr = 0.1.

In Figure 11, it is clear that the Fliter_nms post-processing algorithm can increase accu-
racy while largely maintaining mAP. The Fliter_nms algorithm can reduce the interference
caused by the messy detection boxes and satisfy the requirement of natural image object
detection of common pediatric dermatoses, which takes precision as the first criterion,
by filtering parts of the detection boxes that are obviously incorrect in prediction categories.

Simultaneously, we can observe an improvement in the precision of disease detec-
tion; however, compared to four diseases, namely insect bite, diaper dermatitis, furuncle,
and pyogenic paronychia, there is no significant improvement. This is because of the fact
that, for the screened detection boxes with evident prediction errors, the disease features in
the prediction region cannot share a high degree of similarity with other disease features.
Otherwise, it is highly probable that multiple prediction categories and their corresponding
probabilities do not differ significantly, thereby failing to meet the threshold requirement.
There are similarities between hand-foot-and-mouth disease, varicella, and folliculitis,
as well as urticaria, atopic dermatitis, and impetigo, among the 10 diseases in the CPD-10



Appl. Sci. 2023, 13, 5958 22 of 25

dataset. Consequently, the detection precision of these six diseases has not substantially
improved. Real scenarios of natural images of common pediatric dermatoses after different
post-processing methods are evaluated in Figure 12.

Figure 11. Compare the effect of different post-processing methods.

(a) (b) (c) (d)

Figure 12. Comparison of NMS and Fliter_nms post-processing methods. (a) is the effect of the
NMS post-processing method; (b) is the effect of removing the detection box with the contained
relationship; (c) is the effect of removing the detection box deemed to detect the same symptomatic
region; (d) is the effect of the Fliter_nms post-processing method that combines the (b,c).

6. Conclusions

In this study, we create the clinical image dataset CPD-10 for common pediatric
dermatologic diseases, which addresses the issues of a lack of image data, low resolution,
unbalanced difficult and easy samples resulting from intra-class variability and inter-class
similarity of disease representations, as well as the mixing of detection results, faced by the
detection of common pediatric dermatologic diseases in natural scenes. In order to improve
the expressiveness of the model, which focuses more on the learning of hard samples by
increasing the loss contribution of hard samples within a certain range, we propose the
DK_Loss loss function for the two-stage object detection algorithm. This algorithm is based
on the two-stage object detection algorithm Faster R-CNN. To reduce the impact of false
positive detection boxes and increase the accuracy of symptom representation detection,
the Filter_nms post-processing method is proposed based on the NMS algorithm.

According to our extensive experiment results, we can draw the conclusion that object
recognition can be significantly improved by using image pre-processing techniques such as
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Random Online Data Augmentation and Selective Image Super-resolution Reconstruction
methods. Our loss function DK_Loss not only improves the model’s ability to learn from
difficult samples, but it can also alleviate the overfitting issue, making it suitable for object
detection on small datasets and significantly raising the mAP of detection. We also verified
that the proposed Fliter_nms post-processing technique can reduce overlapping in the
detection results and, additionally, increase precision.
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