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Abstract: There are a lot of interference factors in the operating environment of machinery, which
makes it ineffective to use traditional detection methods to judge the fault location and type of fault
of the machinery, and even misjudgment of the fault location and type may occur. In order to solve
these problems, this paper proposes a bearing fault diagnosis method based on wavelet denoising
and machine learning. We use sensors to detect the operating conditions of rolling bearings under
different working conditions to obtain datasets of different types of bearing failures. On the basis of
using the wavelet denoising algorithm to reduce noise, we comprehensively evaluated five machine
learning models, including K-means clustering, decision tree, random forest, and support vector
machine to classify bearing faults and compare their results. By designing the fault classification
evaluation prediction criteria, the following conclusions are drawn. The model proposed in this
paper is significantly better than other traditional diagnostic models for bearing faults. In order
to solve the problem of weak signal strength and background noise interference, this paper selects
a better noise reduction algorithm under different quantitative evaluation indicators for wavelet
denoising, which can better restore the true characteristics of the fault signal. Using unsupervised
learning and supervised machine learning classification algorithms, the evaluation indicators before
and after denoising are compared to make the classification results more accurate and reliable. This
article will help researchers to intelligently diagnose the faults of rolling bearing equipment in
rotating machinery.

Keywords: fault detection; wavelet denoising; K-means clustering; decision trees; random forests;
support vector machines; AdaBoost algorithm

1. Introduction

With the rise of global industrialization and the widespread use of machinery, fault
data have become increasingly dense and unrelated. The goal of fault diagnosis technol-
ogy for instruments and equipment is to monitor the operational state of machines and
determine their overall or partial functionality. By employing data mining and machine
learning techniques, faults and their underlying causes can be identified, and future fault
developments can be predicted.

The technical characteristics of fault type identification are as follows: reducing the
impact of environmental noise or abnormal data on original data, extracting reliable wave-
form feature criteria, and selecting or improving existing machine learning methods. The
work of [1–3] has received long-term attention in the industry [4]. As a key component of
machinery, bearings can fix objects and provide loads [5]. If the bearing fails, it will lead to
a decline in the quality of the product and cause serious economic losses [6]. So bearing
fault detection is the focus and difficulty of current research [7]. Abdul et al. summarize
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recently published work on the application of artificial intelligence to bearing fault detec-
tion in rotating machinery [8,9]. Scholars have proposed many intelligent fault detection
methods for the pulse vibration signals generated by bearings. Among these methods, the
bearing detection method of deep learning is used the most. Compared with the traditional
bearing detection method, deep learning can accurately identify fault information in the
context of big data, and reduces the requirement for professional knowledge [10]. Zhang
et al. improved the feature extraction method of the convolutional neural network and
performed fault diagnosis on bearings.

Although the above methods have achieved great success, there is a strong dependence
on the fault data, and more labels are required when training the model. Such research
is contrary to the real industrial environment: in the real industrial environment, there
are far more normal data than fault data. Such a dataset will greatly reduce the training
effect of the deep learning model. Ref. [11] has attracted widespread attention in the
academic community.

In order to solve the above-mentioned problems in the industry, Ref. [12] Sun et al.
used traditional machine learning, an artificial neural network, deep learning and transfer
learning to carry out a typical fault diagnosis method of a wind power system based on
the ML method from the theoretical basis and industrial application. An overview is given
and its advantages and disadvantages are discussed [13]. He et al. worked on improving
the model structure and classification loss function, proposing to optimize support vector
machines with dynamic penalty factors [14]. Praneeth Chandra et al. used unsupervised
machine learning and the DBSCAN algorithm to detect defects on rail fixtures [15]. Pra-
neeth Chandra et al. diagnosed defects using supervised machine learning. The learning
data are acquired by sensors, and six machine learning models are used. The result values
are best when using the the AdaBoost model [16]. Yoon et al. found unexpected test
accuracy in cross-validation for machine learning [17]. Yang et al. proposed a new machine
learning model for automatic labeling, feature extraction, model building, model fusion,
and evaluation of railway data [18]. Nason et al. described a stationary wavelet transform
and used it in astronomy as well as veterinary anatomy [19]. Baydar et al. used wavelet
transform to compare acoustic signals and vibration signals, and the results showed that
acoustic signals have a strong influence on early fault detection [20]. Firas et al. used an
optimized stationary wavelet packet transform to provide identification for detecting IM
bearing faults at an early stage and verified the effectiveness of the method experimen-
tally [21]. Lu et al. proposed a higher-density wavelet packet neighborhood coefficient
denoising algorithm, and experiments showed that the algorithm can significantly improve
the signal-to-noise ratio [22]. Aslam et al. proposed a fault detection method based on
SNR [23]. Shim et al. used the improved CNN LeNet-5 model to detect railway anomalies.
Ref. [24] M. F. Palangar et al. trained a classifier based on two indicators of experimental
data and confirmed the reliable performance of ADD [25]. Stępień K et al. present a
method for evaluating the surface texture of machine parts using wavelet transform of
three selected indices.

This paper proposes a fault type classification and identification model based on
wavelet denoising and machine learning. There are a lot of interference factors in the
operating environment of machinery, which makes it ineffective to use traditional detection
methods to judge the fault location and type of fault of the machinery, and even misjudg-
ment of the fault location and type may occur. Therefore, how to realize intelligent fault
diagnosis in an environment full of a large number of interference factors is an urgent
problem to be solved. We use two methods of wavelet soft threshold denoising and wavelet
packet analysis to denoise the original fault signal data. Eliminate the interference factors
in the environment, check the correctness of the denoising results, and select the denoising
method with better effect on the basis of quantitative indicators. Based on the wavelet
denoising algorithm, five of the most widely used machine learning models are applied:
K-means clustering, quadratic support vector machine (SVM), random forest (RF), decision
tree (DT) and AdaBoost algorithm. These machine learning algorithms are used for binary
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classification of bearing faults and to compare their results. By designing the fault classifi-
cation evaluation prediction criteria, the following conclusions are drawn. If unsupervised
machine learning methods are used, K-means clustering can achieve good classification
results; if supervised machine learning methods are used, decision tree classification can
achieve the best results. In addition, the focus of our future work is as follows: First,
increase the types of rolling bearing faults, narrow the characteristic differences of fault
signals, and improve the adaptability and flexibility of the model. Second, more types of
faults and larger datasets are considered to improve the generalization ability of the model.
Finally, the wavelet denoising algorithm can be further optimized by selecting different
wavelet bases, decomposition levels and threshold functions according to different types of
signals. Additionally, machine learning models can further improve their performance by
tuning parameters, selecting features, or combining multiple models. In this paper, it is of
great significance to intelligently diagnose the faults of instruments and equipment.

2. Methods
2.1. Wavelet Soft Thresholding Denoising

Wavelet transform can process the signal in a more subtle way, and can also better
express some characteristics of the signal. There are also many denoising methods in
wavelet analysis, and these different denoising methods will also have a great impact on
the denoising effect of each signal. The Wavelet threshold denoising method is the most
widely used method in engineering. The basic idea is as follows: a noise-containing one-
dimensional signal model can be expressed as f (t) = s(t) + n(t), where s(t) is the original
signal, and n(t) is Gaussian white noise with variance σ2, obeying N

(
0, σ2). Wavelet

transform belongs to linear transformation, and the wavelet coefficient obtained after
discrete wavelet transform of f (t) is divided into two parts: signal and noise. The wavelet
coefficients with larger amplitudes are useful signals. The wavelet coefficient with smaller
amplitude is the energy of the noise signal. Therefore, an appropriate threshold λ can be
found for distinguishing noise and signal, and the useful signal is retained with reference to
this threshold. For this problem, we use the soft threshold method [26] for denoising, first
transforming the actual signal into the wavelet domain using wavelet transform. Then the
wavelet coefficients are processed by the nonlinear shrinkage rule; finally, the thresholded
wavelet coefficients are subjected to inverse wavelet transform to obtain the denoising
signal. The soft threshold function is defined as follows:

w̄i,j =

 sign
(

wj,k

)(∣∣∣wj,k

∣∣∣− λ
) ∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ < λ
(1)

2.2. Wavelet Packet Analysis Denoising

The idea of wavelet packet analysis and wavelet soft threshold denoising [27] is
basically the same, but the analysis method of wavelet packet is more complex and flexible.
When analyzing, it decomposes the low-frequency part and high-frequency part of the
previous level at the same time, making the local analysis capability more accurate. The
wavelet packet decomposition also needs to choose the wavelet packet base and level
of decomposition. For the selection of the wavelet packet base, it is necessary to choose
the wavelet packet base with better symmetry and regularity. The wavelet with better
symmetry does not produce phase distortion, and it is easy to obtain a smooth reconstructed
signal with the wavelet with better regularity. In the wavelet base family, the Symlets
family is similar to the Daubechies family, which also has orthogonality, biorthogonality,
compact support and approximate symmetry, and can perform discrete wavelet transform.
Therefore, in the part of wavelet packet analysis and denoising, the wavelet packet base of
this family is used for denoising.
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2.3. Wavelet Denoising Index

We used wavelet soft threshold denoising and wavelet packet analysis denoising
to perform denoising respectively and selected six indicators: mean square error (MSE),
sum square error (SSE), root mean square error (RMSE), coefficient of determination (R2),
mean absolute error (MAE) and signal-to-noise ratio (SNR) to evaluate the denoising effect.
Among these six evaluation indexes, except for the coefficient of determination (R2) and
SNR which are maximum indexes, the other four indexes are minimum indexes. In addition
to quantitative evaluation indicators, the denoising effect can also be intuitively displayed
by comparing the original signal with the denoised signal image.

Let yi be the sampling point of the original signal, ŷi be the sampling point of the
signal after denoising, and m be the number of sampling points.

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (2)

SSE =
m

∑
i=1

(yi − ŷi)
2 (3)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (4)

R2 = 1− ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − ȳi)

2 (5)

MAE =
1
m

m

∑
i=1
|yi − ŷi| (6)

SNR = 10× lg

[
∑m

i=1 y2
i

∑m
i=1(yi − ŷi)

2

]
(7)

2.4. K-Means Clustering Algorithm

The strategy of K-means clustering is to select the optimal partition by minimizing the
loss function. The optimal partition is selected by minimizing the loss function.

First use the square of the Euclidean distance as the distance between samples:

d(xi, yi) =
m

∑
k=1

(
xki − xkj

)2
=
∥∥xi − xj

∥∥2 (8)

Then the sum of the distances between the sample and the center of the class to which
it belongs is the loss function, namely,

W(C) =
k

∑
i=1

∑
c(i)=1

‖xi − x̄l‖2 (9)

where x̄l = (x̄1l , x̄2l... x̄nl)
T is the mean center of classes, namely,

nl =
n

∑
i=1

I(C(i) = l) (10)

It is an indicator function, which takes a value of 1 or 0. The function W(C), also
known as energy, represents the similarity of samples in the same class.

Therefore, K-means clustering can be transformed into solving an optimization problem:

C∗ = arg min
C

W(C) (11)
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The flow chart of the steps of the K-means clustering algorithm is shown in Figure 1.

Figure 1. 5-layer decomposition of original signal and denoised signal.

2.5. Support Vector Machine (SVM)

Support vector machines map vectors into a higher dimensional space and, for linearly
separable tasks, find a hyperplane with the largest margin. Two parallel hyperplanes are
built on both sides of the hyperplane separating the data, and the separating hyperplane
maximizes the distance between the two parallel hyperplanes. The larger the distance or
gap between parallel hyperplanes, the smaller the overall error of the classifier. The steps
are as follows:

• Import data;
• Normalize the data;
• Execute the support vector machine to find the optimal hyperplane;
• Draw classification hyperplane kernel support vector;
• Using polynomial features to perform support vector machines in high-dimensional

space;
• Select an appropriate kernel function and execute a nonlinear support vector machine.

2.6. Decision Tree (DT)

Decision tree is a typical supervised classification method that approximates discrete
function values to classify data. First, it processes data and uses an inductive algorithm to
generate readable rules and decision trees. Then, it uses the decision to analyze new data.
Essentially, decision trees classify data through a series of rules.

2.7. Random Forest (RF)

As an idea of integrated learning, random forest inputs the data obtained by random
sampling into many decision trees, performs voting, and obtains the final output result.

Constructing a random forest requires the following four steps:
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• A sample with a sample size of N is drawn N times with replacement, and one sample
is drawn each time, then N samples can be formed. These N samples are used to train
a decision tree as samples of the root node of the decision tree;

• If each sample has M attributes, when each node of the decision tree needs to be split,
randomly select m attributes from the M attributes to meet the condition m � M.
From these attributes, information gain is used to select an attribute as the splitting
attribute of the node;

• During the formation of the decision tree, each node is split according to step 2;
• Build a large number of decision trees according to steps 1–3, and then construct the

entire random forest.

2.8. AdaBoost Algorithm

The AdaBoosting algorithm [28] is an important ensemble learning technique, which
can enhance a weak learner whose prediction accuracy is only slightly higher than random
guessing into a strong learner with high prediction accuracy, which provides a new idea
for solving the difficulty of directly constructing a strong learner. AdaBoost is one of the
most successful algorithms.

A brief description of the AdaBoost algorithm is as follows:

• First initialize the weight distribution D1 of the training data. When there are N
training sample data, each training sample is given the same weight at the beginning:
w1 = 1

N ;
• Then, train the weak classifier H. In the specific training process, if a certain training

sample point is accurately classified by the weak classifier H, then its corresponding
weight should be reduced when constructing the next training set. Conversely, if a
training sample point is misclassified, its weight should be increased. The sample set
whose weights have been updated is used to train the next classifier, and the entire
training process will continue to iterate.

• Finally, combine the weak classifiers obtained from each training into a strong classifier.
After the training process of each weak classifier is over, the weight of the weak
classifier with a small classification error rate is increased so that it plays a greater
decisive role in the final classification function. The weight of the weak classifier with
a large classification error rate is reduced so that it plays a less decisive role in the final
classification function.

2.9. Clustering Evaluation Index

When evaluating the prediction results, select the following six indicators: accuracy
rate, recall rate, time-consuming, contour coefficient, F value and entropy value. The
calculation formulas of precision rate, recall rate and contour coefficient index are as follows:

There are four situations in the data test results: TP: predicted positive, actually
positive; TN: predicted negative, actually negative; FP: predicted positive, actually negative;
FN: predicted negative, actually positive.

The calculation formula of the indicator is as follows:

• Accuracy:

Accuracy =
TP + TN

TP + TN + FN + FP
(12)

• Recall rate:

R =
TP

TP + FN
(13)
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• Silhouette coefficient:

S(i) =


1− a(i)

b(i) a(i) < b(i)

0 a(i) = b(i)
b(i)
a(i) − 1 a(i) > b(i)

(14)

where a(i) represents the cohesion of the sample point, and the calculation method is
as follows:

a(i) =
1

n− 1

n

∑
j 6=i

distance(i, j) (15)

where j represents other sample points in the same class as sample i, and distance
represents the distance between i and j. So the smaller a(i) is, the closer the class is.
b(i) is calculated similarly to a(i). However, it is necessary to traverse other clusters to
obtain multiple values {b1(i), b2(i), b3(i) . . . bm(i)}and select the smallest value as the
final result.

• The entropy value of the entire cluster division is:

e =
K

∑
i=1

mi
m

ei (16)

where K is the number of clusters, m is the number of members involved in the overall
cluster division, mi is the number of all members in cluster i, and ei is the entropy
value of each cluster:

ei = −
L

∑
j=1

Pij log2 Pij (17)

In this formula, Pij refers to the probability that a member in cluster i belongs to class j,

Pij =
mij

mi
(18)

mij is the number of members in cluster i belonging to class j.
• The F value is the weighted proportion of different categories of data in the total

number of samples. Its formula is as follows:

F =
ni
n

Fi +
nj

n
Fj (19)

where ni, nj is the number of samples of each category, and Fi, Fj is the F value of each
type of sample:

Fi =
2 · Pi · Ri
Pi + Ri

(20)

Pi is the precision rate, and its calculation formula is:

P =
TP

TP + FP
(21)

Use the above formula to calculate each evaluation index.

3. Results and Discussion
3.1. Dataset Introduction

We have measured the fault data of rolling bearing wheel sets in a factory in Wuhan.
The operating status of rolling bearings in rotating machinery includes normal, inner ring
faults and outer ring faults. The inner ring fault and the outer ring fault are recorded as
type A and type B faults, respectively. Consider the FFT transformation, choose 2048 as the
sample sampling length, and make sample sets in an overlapping manner. In the training
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set, the normal data contain 200 samples, and each fault dataset of class A and class B
contains 100 samples.

3.2. Display of Various Index Results of Different Noise Reduction Methods
3.2.1. Index Analysis of Wavelet Soft Threshold Denoising

When performing wavelet soft threshold denoising, it is necessary to set multiple
parameters, including threshold selection criteria, wavelet basis functions, and wavelet
levels of decomposition. Among the wavelet basis functions of Haar, Daubechies, Coiflets
and other wavelet basis functions of the wavelet basis family, the wavelet basis of the
Daubechies family has orthogonality, biorthogonality, compact support, and approximate
symmetry, and can perform discrete wavelet transform. Therefore, wavelet transformation
is performed using this wavelet basis function. At the same time, wavelet bases with
different vanishing moments in the Daubechies family are used to process the denoised
signal, and the processing results are compared. In practice, the basic wavelet is often not
only required to meet the admissible condition, but also to impose the so-called vanishing
moment condition, so that as many wavelet coefficients as possible are zero or as few non-
zero wavelet coefficients as possible are generated, which is conducive to data compression
and noise elimination. The larger the vanishing moment, the more wavelet coefficients are
zeroed out. But in general, the higher the vanishing moment is, the longer the support
length is, and the smoother the wavelet is. Therefore, in terms of support length and
vanishing moment, we must make a compromise. Considering the general situation, the
selected level of decomposition is 4. Change the vanishing moments of the Daubechies
wavelet family, and take db3, db6, and db9 three vanishing moments for noise reduction,
and analyze the influence of different vanishing moments on noise reduction.

Tables 1 and 2 show the index analysis results of the first fault signal of type A and
type B after wavelet soft threshold denoising.

Table 1. Analysis results of the first signal index of Type A fault.

Type of
Wavelet MSE SSE RMSE R2 MAE SNR

db3 1.20 × 103 5.04 × 100 3.50 × 10−2 9.88 × 10−1 4.46 × 10−6 1.96 × 101

db6 6.40 × 10−4 2.61 × 100 2.52 × 10−2 9.94 × 10−1 2.59 × 10−6 2.25 × 101

db9 4.60 × 10−4 1.89 × 100 2.15 × 10−2 9.96 × 10−1 2.30 × 10−5 2.39 × 101

Table 2. Analysis results of the first signal index of Type B fault.

Type of
Wavelet MSE SSE RMSE R2 MAE SNR

db3 3.87 × 10−3 1.59 × 101 6.22 × 10−2 8.64 × 10−1 3.56 × 10−6 8.69 × 100

db6 1.91 × 10−3 7.82 × 100 4.37 × 10−2 9.33 × 10−1 4.72 × 10−6 1.18 × 101

db9 1.33 × 10−3 5.47 × 100 3.65 × 10−2 9.53 × 10−1 5.06 × 10−6 1.33 × 101

3.2.2. Wavelet Packet Analysis Denoising Index Analysis

The level of decomposition has a great influence on the denoising effect. If there are
too many levels of decomposition, all the wavelet space coefficients of each level will be
processed. It is easy to cause serious information signal loss, decrease in signal-to-noise
ratio after denoising, and slow processing due to increased computation. If the level of
decomposition is too small, the denoising effect is not ideal. For each signal, there is a
level of decomposition that denoises best or is close to best. Therefore, when dealing
with this problem, on the premise that the wavelet packet base and its vanishing moment
are fixed, different levels of decomposition are selected, and the denoising effects are
compared to find the most suitable level of decomposition for the denoising signal. Select
the Symlets wavelet family, fix its vanishing moment to 6, change its level of decomposition,
and perform four-level of decomposition and five-level of decomposition, respectively.
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Tables 3 and 4 show the index analysis results of the first fault signal of type A and type B
after denoising by wavelet packet analysis.

Table 3. Analysis results of the first signal index of Type A fault.

Levels MSE SSE RMSE R2 MAE SNR

4 6.25 × 10−4 2.56 × 100 2.50 × 10−2 9.94 × 10−1 4.46 × 10−6 2.26 × 101

5 1.10 × 10−2 4.50 × 101 1.05 × 10−1 8.95 × 10−1 4.46 × 10−6 1.01 × 101

Table 4. Analysis results of the first signal index of Type B fault.

levels MSE SSE RMSE R2 MAE SNR

4 1.88 × 10−3 7.74 × 100 4.35 × 10−2 9.34 × 10−1 5.06 × 10−6 1.18 × 101

5 2.67 × 10−2 1.09 × 102 1.63 × 10−1 6.50 × 10−2 1.32 × 10−6 3.00 × 10−1

3.3. Comparative Analysis of Noise Reduction Results

For type A faults, the comparative analysis of wavelet threshold denoising shows that
under the condition of constant level of decomposition, with the increase of vanishing mo-
ment, the indicators after denoising basically become better. However, when the vanishing
moment increases to 9, the mean absolute error MAE increases sharply. It is considered
that the signal after denoising changes greatly compared with the original signal, and
some characteristics of the original signal may be lost, so it is not used. For wavelet packet
analysis denoising, when the wavelet base is determined to be sym6, the denoising effect of
wavelet packet analysis with four-level of decomposition is better than that with five-level
of decomposition. Then we compare the denoising effects of wavelet soft thresholding
and wavelet packet analysis. It is judged that the noise reduction effect of four-level of
decomposition with wavelet base sym6 in wavelet packet analysis is better than that of
four-level of decomposition with wavelet base db6 in wavelet soft threshold analysis.

Taking the four-level of decomposition whose wavelet base is sym6 in the first four
signals of type A fault as an example, the denoising results of wavelet packet analysis are
shown in Figure 2.

Figure 2. The original signal and denoised signal of the first four signals of Type A fault.

For the four signals of type B fault, the result analysis is basically consistent with the
four signals of type A fault. However, in the comparison between wavelet soft threshold
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and wavelet packet analysis, it is found that the noise reduction effect of 4-level of decom-
position with wavelet base db9 in wavelet packet analysis is better than that of four-level
of decomposition with wavelet base sym6 in wavelet soft threshold analysis.

Taking the four-level of decomposition with wavelet base as db9 in the four signals of
Type B fault as an example, the denoising results of wavelet packet analysis are shown in
Figure 3.

Figure 3. The original signal and denoised signal of the four signals of Type B fault.

It should be noted that, from the wavelet packet analysis results of the first signal of the
Type B fault, it can be seen that the excessive level of decomposition has a serious impact
on the denoising effect. From the SNR point of view, using the five-level of decomposition
of the sym6 wavelet base, the signal-to-noise ratio is significantly lower than that of the
four-level of decomposition, indicating that this denoising method loses a lot of useful
signals. This can also be illustrated from the signal images before and after denoising, as
shown in Figure 4.

Figure 4. 5-level of decomposition of original signal and denoised signal.

3.4. Applications of Unsupervised Learning

For unsupervised clustering requirements, we use different scales of Shannon entropy
E5, E6, E7, E8 and seven indicators of kurtosis, margin, and center of gravity frequency
as clustering indicators for clustering. Among them, indicators E5, E6, E7, and E8 are
energy indicators.

During data processing, it was observed that direct K-means clustering analysis on
the original data is not effective, because K-means clustering only considers the absolute
distance between each sample point and is not sensitive to data of different orders of
magnitude. Therefore, it is considered to perform logarithmic transformation on the data
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to expand the influence of the order of magnitude on the distance, so that it meets the
requirements of cluster analysis. It is found that the clustering effect is better and the
clustering result is stable. At this time, the effect diagram of K-means cluster analysis is
shown in Figure 5.

Figure 5. K-means cluster analysis effect diagram.

Table 5 shows the evaluation results of 100 K-means clustering.

Table 5. Evaluation index table of clustering results.

Number of
Experiments Accuracy/% Recall Rate/% Time Cost/ms Silhouette

Coefficient F Value Entropy Value

1 96 97.1 1.9 0.93 0.96 0.24
2 94 95.7 1.8 0.91 0.94 0.26
...

...
...

...
...

...
...

100 92 91.6 1.9 0.92 0.95 0.27
average 94 94.8 1.87 0.92 0.95 0.26
standard
deviation 1.63 2.33 0.05 0.01 0.01 0.01

For this result, the mean accuracy was 94%, and each item achieved 90%. The clustering
result is stable, and the standard deviation of accuracy is 1.63.

3.5. Applications of Supervised Learning

In order to solve the binary classification problem based on the supervised learning
method, quadratic support vector machine (SVM), random forest (RF), decision tree (DT)
and AdaBoost algorithm are used for binary classification.

On the basis of the evaluation index of unsupervised learning, the evaluation index of
entropy value and contour coefficient is removed, and the evaluation index AUC value and
precision rate are added. The AUC value is an evaluation index dedicated to the binary
classification, which is used to evaluate the quality of the binary classification classifier. Its
advantage is that it can avoid converting probability predictions into categories. A classifier
with a larger AUC value has a higher correct rate.

Figure 6 shows the clustering results of the double SVM.
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Figure 6. Double SVM clustering result graph.

Table 6 shows the results of classification evaluation metrics using various supervised
machine learning algorithms.

Table 6. Evaluation index table of clustering results of different classifiers.

Classification
Method Accuracy/% Recall Rate/% Time Cost/ms Silhouette

Coefficient F Value Entropy Value

decision tree 96.7 96.7 18 0.968 0.966 0.987
random forest 96.7 96.7 1040 0.968 0.966 0.91

Adaboost 96.7 96.7 867 0.968 0.967 0.986
double SVM 96 95.8 1690 0.96 0.96 0.987

It can be seen from the table that the accuracy of double SVM classification is the lowest,
and when the accuracy of other classification methods is the same, the time-consumption
of the decision tree is the shortest and the AUC value is the highest. From this analysis, it
can be concluded that for the binary classification algorithm using supervised learning, the
effect of equipment fault diagnosis using decision tree classification is the most ideal.

Using the decision tree algorithm to conduct 100 classification experiments, the fol-
lowing evaluation Table 7 can be obtained:

Table 7. Evaluation table for 100 classification experiments.

Number of
Experiments Accuracy/% Recall Rate/% Time Cost/ms Silhouette

Coefficient F Value Entropy Value

1 96.7 96.7 18 0.968 0.966 0.987
2 97.2 97.2 18 0.973 0.974 0.987
...

...
...

...
...

...
...

100 96.4 96.4 18 0.965 0.962 0.987
average 96.8 96.8 18 0.969 0.967 0.987
standard
deviation 0.33 0.33 0 0.003 0.005 0

For this result, the mean accuracy rate is 96.8%, and each item is above 95%. Therefore,
the clustering result is stable, and the standard deviation of the accuracy rate is 0.330.
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3.6. The Effect of Denoising on the Effect of Clustering Experiments

In order to compare and analyze the impact of denoising on the test results, we
counted the changes in the classification indicators of unsupervised machine learning and
supervised machine learning, respectively.

It can be seen from Table 8 that if unsupervised learning is used for binary classifica-
tion experiments, the accuracy and recall rate of the data after denoising will be greatly
improved and the time spent will be shortened compared with that before denoising. It
proves that the data features after denoising are more obvious than those before denoising.
After noise reduction, the redundant data that need to be processed by the algorithm are
reduced, so the usage time is reduced. The silhouette coefficient before noise reduction has
a slight increase compared with that after noise reduction, which proves that the clustering
effect is better after noise removal. The F value in the evaluation index indicates that the
results of the test sample can represent the true degree of the whole. Because the data
before and after denoising are clustered with all the signal samples, no test samples are
proposed for learning, so the F value before and after denoising has not changed. The
entropy value reflects the reliability of the information. A small decrease in the entropy
value after denoising indicates that the original signal tends to be stable after removing the
messy noise signal.

Table 8. Unsupervised clustering features of signals before and after denoising.

Accuracy/% Time Cost/ms Recall Rate/% Silhouette
Coefficient F Value Entropy Value

Before denoising 77 3.5 71 0.834 0.96 0.242
After denoising 96 1.92 97.14 0.928 0.96 0.237

For the classification effect of supervised learning, the signal features before and after
denoising are shown in Tables 9 and 10.

Table 9. Supervised clustering features of signals before denoising.

Classification
Method Accuracy/% Time Cost/ms Recall Rate Silhouette

Coefficient F Value Entropy Value

decision tree 93.3 93.3 20 0.933 0.933 0.987
Adaboost 93.3 93.3 899 0.933 0.933 0.986

double SVM 96.0 95.8 1690 0.960 0.960 0.987

Table 10. Supervised clustering features of signals after denoising.

Classification
Method Accuracy/% Time Cost/ms Recall Rate Silhouette

Coefficient F Value Entropy Value

decision tree 96.7 96.7 18 0.968 0.966 0.987
Adaboost 96.7 96.7 867 0.968 0.967 0.986

double SVM 96.1 95.8 1690 0.960 0.960 0.987

From the results obtained in these two tables, it can be seen that for the decision tree
algorithm and the AdaBoost algorithm, the accuracy and recall rates are slightly improved.
However, for the double SVM algorithm, the accuracy and recall rate did not increase
significantly, which shows that for the supervised clustering algorithm, whether denoising
has an impact on the clustering accuracy, but the impact is not significant. There is no
significant difference in time consumption, indicating that noise does not affect the time
complexity of supervised clustering algorithms. The same as the unsupervised clustering
algorithm, the F value in the evaluation index indicates that the results of the test sample
can represent the true degree of the whole. However, because the supervised algorithm



Appl. Sci. 2023, 13, 5936 14 of 15

obtains the classification label in advance, and the denoised samples can better show the
characteristics of their own category, the F value increases after denoising.

Combining the tables of unsupervised learning and supervised learning, we can con-
clude that whether using the clustering method of unsupervised learning or the clustering
method of supervised learning, signal denoising can significantly improve classification
performance, making the results more accurate and reliable.

4. Conclusions

This paper proposes a machine learning fault signal diagnosis and classification
model based on wavelet denoising, which can be used for intelligent diagnosis of rolling
bearing faults in rotating machinery in practical mechanical applications. Experimental
results show that the proposed model is significantly better than traditional diagnostic
models on instrument faults. Aiming at weak signal strength and background noise
interference, under the quantitative evaluation index, a better noise reduction algorithm
is selected for wavelet denoising, which can better restore the true characteristics of the
fault signal. Using unsupervised learning and supervised machine learning classification
algorithms, the evaluation indicators before and after denoising are compared to make
the classification results more accurate and reliable. By designing the fault classification
evaluation prediction criteria, the following conclusions are drawn. In equipment fault
diagnosis, if the unsupervised machine learning method is used, K-means clustering can
achieve good classification results. If the supervised machine learning method is used, the
effect of classification by decision tree is the most ideal. This article will help researchers to
intelligently diagnose the faults of instruments and equipment.Therefore, the classification
model is widely used in industrial production.

In addition, increasing the types of rolling bearing faults, narrowing the characteristic
differences of fault signals and improving the adaptability and flexibility of the model will
be the focus of our future work. The dataset used in this paper is limited to one hundred
groups of two types of faults under different working conditions. More types of faults and
larger datasets can be considered in future research to improve the generalization ability of
the model. The wavelet denoising algorithm can be further optimized by selecting different
wavelet bases, levels of decomposition and threshold functions according to different types
of signals. Machine learning models can further improve their performance by tuning
parameters, selecting features, or combining multiple models.
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