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Abstract: The paper presents an original solution for modeling and simulation of the teeth movement
biomedical processes which occur in the case of orthodontic treatments. The direct application of
this method consists in the possibility to approximate, with high precision, the orthodontic treatment
duration, depending on the physical characteristics of each patient. This aspect represents a novelty
element in the biomedical processes’ domain since, until now, the research activities in the mentioned
field did not generate a solution for the approximation of the orthodontic treatment’s duration.
Analog modeling of the biomedical process operates with a fictional shaft defined to highlight the
tooth symmetry axis. The tooth considered as an example is approximated as having a parabolic
shape with an elliptical section. The digital simulation refers to the spatial-temporal evolution
of this fictional shaft in the orthodontic dynamics, being made through the run of four computer
programming algorithms. Interpretation of the obtained performance indicators will lead to an
interesting study regarding the dynamics’ process in orthodontics, having a pronounced unitary
and systematic characteristic. Using the developed programs for obtaining the simulations results
presented in the four tables and in the 18 figures shown in the paper, several case studies can be
elaborated, associated with a wide variety of orthodontic treatments.

Keywords: digital simulation; mathematical modeling; orthodontic treatment; teeth dynamics

1. Introduction

The orthodontic treatment implies moving misplaced teeth with the purpose of ob-
taining aligned teeth in the arch and a functional occlusion. In severe crowding cases, the
orthodontic treatment involves creating space, therefore frequently extractions of the first or
of the second premolars. Regardless of the tooth extracted, the orthodontic treatment will
consequently have the purpose of closing the space created after the extraction by reducing
the crowding, obtaining perfectly aligned teeth—as an objective within the arch—and a
functional occlusion. Thus, more frequently, in anterior crowding situations, the obvious
treatment plan will imply first premolar extractions and canine distal retraction—if the
situation requires a maximum or medium anchorage.

A bodily tooth movement-pure translation is obtained if the force passes at the level
of the center of resistance of the tooth (CRz) [1]. For a free-in-space object, the CRz is the
same as the center of mass. If an object is partially fixed, the determination of the CRz must
take into consideration the nature of the external compression. Since teeth have their roots

Appl. Sci. 2023, 13, 5932. https://doi.org/10.3390/app13105932 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13105932
https://doi.org/10.3390/app13105932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3377-593X
https://orcid.org/0000-0002-2006-9633
https://orcid.org/0000-0001-9193-6741
https://doi.org/10.3390/app13105932
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13105932?type=check_update&version=2


Appl. Sci. 2023, 13, 5932 2 of 29

fixed in the alveolar bone, with the aid of ligaments, the position of the CRz is considered
to be at the level of the implanted part of the root [2,3].

Obviously, the position of the CRz varies for different types of tooth morphologies and
is directly related to the bony structures in which the tooth is implanted. It is considered
that for a tooth with one root, as it is the case of the upper central incisor and that of
the maxillary canine, with a normal alveolar bone level, the CRz is situated between the
middle and the cervical thirds of the root. Since braces can be applied only at the level
of the clinical crown of teeth, there are very few situations in which a force can pass at
the level of the CRz [4]. As the application point of the force is situated at the level of the
clinical crown, the obvious tooth movement will not be a bodily one (pure translation),
but a tipping one-rotation. Therefore, a new point appears—the rotation center [5,6].

The purpose of orthodontic treatments is to try to obtain teeth movements that resem-
ble rather a translation than a rotation, in order to obtain a full functioning occlusion. There
are multiple factors that influence the outcome of the orthodontic treatment: biological
factors, mechanical factors, external factors. The biological factors—tooth morphology,
bone density and soft tissue (PDL—periodontal ligaments)—are the ones that have the
greatest influence on the outcome of the treatment. Determining the properties of each
of these biological factors, as well as their dynamics and joint effect, has been a constant
challenge for researchers in the field [7–11].

Given the fact that the properties of the tooth-supporting structures are extremely dif-
ficult to determine, that loading conditions stress may increase bone loss in time, and given
the particularities of each human body, the orthodontic treatment can only approximate
the movement mechanism of teeth. In this situation, it is only obvious to use numerical
simulation programs in order to clarify the phenomenon of tooth movement.

Finite Element Analysis has been used frequently in the field of dental biomechanics,
as the evolution of orthodontics has created a stimulating environment [12–15]. Neverthe-
less, results do not yet answer all the orthodontic questions. An alternative method would
be the use of Partial Differential Equations for modeling the teeth movement biomechan-
ical processes and their solving using some specific algorithms (for example, using the
method of the “Matrix of partial derivatives of the state vector (Mpdx), associated to Taylor
series” [16].

This paper’s aim is to introduce an analogical-digital alternative study approaching
a simplified computational form of analysis stages and synthesis in the spatial-temporal
dynamics [17] of orthodontic tooth movement. The proposed mathematical model is ex-
pressed using an approximating solution, which reproduces with accuracy the orthodontic
process behavior during the treatment. In future works, besides the modeling of the or-
thodontic process using Partial Differential Equations, other modeling possibilities, based
on neural networks [18–20], will be studied.

2. Materials and Methods

A. Geometrical Core Concepts

In order to highlight the tooth volume, the three-dimensional Cartesian coordinate
system, with the origin in (O) and with the axes (Op), (Oq), and (Or), oriented as shown by
the drawn arrows in Figure 1, is defined. The fictional axis with the (Orf) length (figured
with red line) is associated with the elliptic parabolic (with (P) and (Q) radii) expressed by:

p2

P2 +
q2

Q2 = 2 · r f (1)

Which, in the assumption that p = P and q = Q, corresponds to the height rf = 1.
In Figure 1a, the upper central incisor is presented in its normal position in the tissue,

highlighting the fact that its form can be approximated with high accuracy with an elliptic
parabolic. In Figure 1b, the same upper central incisor is presented rotated at 1800. This
representation is used in order to “normalize” the parabolic position in order for its peak
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to correspond with the origin of the Cartesian system. This procedure does not change
the physical evolution and applicability of the orthodontic treatment, but it simplifies the
treatment presentation manner, which becomes a more intuitive one. In Figure 1c, only the
approximating elliptic parabolic, for the considered upper central incisor, is presented. Next,
the tooth properties are computed using the geometrical properties of the approximating
elliptic parabolic.
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For the fictional shaft presented in Figure 1, having the Or = r  length, in Figure 2 
we associate the following notations: 

Figure 1. Schematic representation of the upper central incisor, which is the subject of the orthodontic
movement and of the elliptic approximating parabolic [21]. (a) The upper central incisor in normal
position. (b) The upper central incisor rotated by 180◦. (c) The elliptic parabolic which is used for the
approximation of the upper central incisor surface.

It can be easily observed that the parabolic volume (V) is equal to:

V =
1
2
· π · P ·Q · r f , (2)

In the scenario that a tooth has P = 2 mm, Q = 3 mm, and height rf = 24 mm, its volume
will be equal to: V = 1

2 · π · 2 · 3 · 24 ∼= 226.2 mm3.
For the fictional shaft presented in Figure 1, having the Orf = rf length, in Figure 2 we

associate the following notations:

r f = s′f = s f + s̃′ + s̃ (3)
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Moreover, yβ0 = 0 represents the tooth apex (tip of the tooth root) and (y′α0) is the
visible part of the tooth crown-incisal edge, both in the initial position. The overall tooth
length, represented with the following statement:

s f = s′f − (s̃ + s̃′), (4)

is considered to be located inside the plastic environment (inside the tissue) subject to de-
formation. Additionally, the actuation point where the driving force u0 = u0(t), generated
by the elastomeric chain, u0 = u0(t), is applied, is considered to be at the distance (sf + s̃)
from the tip of the tooth root (apex).
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Figure 2. Possible orthodontic tooth movement [21].

As a consequence of the orthodontic treatment (of the u0 = u0(t) force application)
during a period of time t = tf, on the visible part of the tooth’s incisal edge will appear a
position modification having the value (+y′α). The fictional axis of the tooth can describe
either rototranslation or translational movements, cases in which the tooth apex shows a
shift from the current position yβ0 = 0 to negative (−yβ) or positive (+yβ) values.

The translational movement variation (+yβ) in the same direction with the driving
force u0 = u0(t) and with the following movements (displacements) (y′α), (yα), and (+yβ)
ensures the fact that the desired orthodontic movement occurred, with the remark that the
recommended variation is enclosed between [+yβ = (0.5→ 0.9) · y′α]. It is important to
mention that y′α = y′α(tf) can be precisely observed by the orthodontist, but the movement
of the tooth’s apex (±yβ) can only be approximated, sometimes with a considerable error.

Certainly, the (Orf) axis from Figure 1 can be associated with other parabolic shapes
defining more complicated volumetric tooth shapes. However, the proposed approximation
is accurate enough for the upper central incisor in the context of the orthodontic process
dynamics modeling.
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B. Analogical Model of Visible Deformation (y′α(t, s)) in Elastic-Plastic Regime. Scaling
the Ky Coefficient

The proposed analytical approximating solution which models the tooth position
deformation during the orthodontic treatment has the following form:

y′α(t, s) = y′00(t, s) = Ky · FOS(s) · [FOT(t) ∗ u0(t)], (5)

where the elastic resort force (u0(t)) from Figure 2 is applied at a distance (̃s′) from the
visible incisal edge of the tooth

(
y′α0

)
or at a distance (sf + s̃) from the tooth apex yβ0 = 0.

Moreover, the notation “*” signifies the convolution product between (FOT(t)) and (u0(t))
functions, respectively; (s) represents the second independent variable which highlights the
position on the (Or) axis (the “length” independent variable). In the case of the functions
from Equation (5), the numerical indices show their differentiation order (for (FOT(t)) and
u0(t) in relation to (t), for F0S(s) in relation to (s) and for y′00(t, s) in relation to both (t) and
(s)—the first index being associated to (t)). Practically, the analytical approximating solution
can be mathematically interpreted as the solution of a second-order partial differential
equation, with two independent variables, (t) and (s).

By scaling the proportionality coefficient (Ky), the equality between the observable
left member y′00(t, s) and the right-member (which represents the approximation of the
biomedical process model) of Equation (5) can be ensured.

The elastic force (u0(t)) of the spring from Equation (5) is approximated by:

u0(t) = ũ f + (Ku − ũ f ) · (
T1u

T1u − T2u
· e−

t
T1u +

T2u

T2u − T1u
· e−

t
T2u ) (6)

where (Ku) represents the maximum value of the (u0(t)) force, right after its application
at t = t0 (t0 signifying the initial moment of the force application which corresponds with
the orthodontic treatment start). Further on, the strength (u0(t)) decreases exponentially
towards the asymptote ũf representing the residual (remanent) plastic strength (usually
ũf = (0.05÷ 0.20) ·Ku). In Figure 3, both the variation of the input signal in the biomedical
process (u0(t) force) in relation to time and the variation of the output signal from the
biomedical process (y′00(t, s) movement) in relation to both independent variables (t) and (s),
are qualitatively presented. Figure 3 is presented in order to highlight in an intuitive manner
the variation form of the signal which occurs in the model of the treated biomedical process.

From Figure 3, the decreasing evolution of the (u0(t)) signal in relation to (t) can be
observed. Additionally, both the increasing evolution of y′00(t, s) signal in relation to (t) and
its decreasing evolution in relation to (s) can be remarked. The position (s0) is associated to
the visible incisal edge of the tooth and (sf) is associated with the tooth apex.

In Equation (6), it can be remarked that for t = t0 = 0, we obtain u0(t) = Ku, and for
t = tfu, the plastic residual force (ũf) is obtained. Usually, it can be considered that the
time interval (tfu) is equal to (or at least comparable to) the duration (tf) of the orthodontic
activation cycle (usually 4 weeks) time between two force applications. Moreover, (T1u)
and (T2u) are the time constants of the elastomeric chain which highlight the (u0(t)) force
dynamics in relation to time.

The exponential function (FOT(t)) which appears in Equation (5) is the component
which generates the exponential-damped increase of y′00(t, s) movement in relation to time,

having the equation F0T(t) = 1
T1−T2

· e−
t

T1 + 1
T2−T1

· e−
t

T2 , where (T1) and (T2) are the time
constants of the biomedical (orthodontic) process. In order to choose the time constants
(T1) and (T2), a common variant is proposed, based on the following relations: µ = tf

T1+T2
,

T1 = tf
µ·(1+α)

, and T2 = λ · T1. Considering these equations, for the particular value of the
coefficients µ = 4 and λ = 1.5, we have obtained the following forms for the time constants:
T1 = 0.1 · tf and T2 = 0.15 · tf. The (µ) and (λ) coefficients represent degrees of freedom
in the orthodontic process, their values having the possibility of being modified, taking
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in consideration the physical particularities of each patient (for example, for the different
tissue resistances).
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It can be easily remarked that for t = t0 = 0 and for the final duration of the orthodontic
activation cycle (t = tf), the exponential function is F0T(t0) = 0. The (K′y) coefficient, where
K′y= Ky · ũf represents the steady state value of the y′α response.

The function F0S(s) from Equation (5), having the form:

FOS(s) = γ0 + γ1 · s (7)

is referring to a straight line equation, located on the tooth’s fictional axis enclosed between
the following points: α = y′α = y′00(tf, s0) and β = ±yβ = ±y′00(tf, sf). As can be
observed in Figure 2, the deformation

(
−yβ

)
corresponds to a rotation movement and

the deformation (+yβ) corresponds to a rototranslational movement. This last movement
represents the closest movement to a pure translation, which would be ideal in orthodontic
treatment. In Figure 4, the possible evolutions of the F0S(s) function, in relation to the (s)
independent variable, are presented. From Figure 4 one can observe that the ramp of the
F0S(s) function depends on the position of the point (β).
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Therefore, the values of the (γ0) and (γ1) coefficients also result from Figure 4 and are
presented in Equations (8) and (9):

F0S(s0) = y′α = γ0 (8)

F0S(s f ) = yβ = y′α + γ1 · s f (9)

having to mention the fact that γ0 = y′α and γ1 =
yβ−y′α

sf
< 0 when we consider the case

where yβ > 0. Going back to the y′00(t, s0) evolution from Figure 3, we must mention
that this deformation is easily observable by the orthodontist in the oral cavity during
an orthodontic activation cycle (from t0 to tf). The evolution y′00(t, s0 < s < sf) can
be only estimated, since the deformation (+yβ) of the tooth apex cannot be precisely
known, due to its positioning in the alveolar bone. The median between the y′00(t, s0) and
y′00(t, sf) deformations corresponds to the fictional axis of the tooth for which the equation
FOS(s) = γ0 + γ1 · s was presented in Equation (7). This median slides its ends between
the points (t0, s0) and (t0, sf) and the points (tf, s0) and (tf, sf) from Figure 3. Consequently,
this right line is the geometric locus of the points disposed along the entire length of the
fictional axis of the tooth during the entire orthodontic activation cycle. Only the observable
relative deformation y′00(t, s0) presented in Equation (5) is considered to be rigorous and,
therefore, can be taken into consideration.

C. General Example for Scaling Ky Coefficient Based on Main Initial Data

Orthodontic teeth movement occurs only after force application. One way of applying
force is using elastomeric chains, especially in situations that imply closing spaces. Usually,
the force decreases in time. The literature offers multiple and various studies regarding the
force degradation of these elastomeric chains. Depending on the fabrication materials, the
manufacturers, and the different conditions in the oral cavity, studies show that various
levels of force decrease in time. Some state that the force of the plastic chains decreases by
half in only one week, compared to the memory chains which lose only 20% of their initial
value in the same amount of time [23]. Others proved that the force of the elastomeric chains
decreases by 20% after only 24 h [24]. An in vitro study, conducted by Aldrees A et al.,
demonstrated that the AO-Memory and the Ormco chains keep most of their initial force
at the end of a four-week time interval [25]. Kumar K et al. state that, in different condi-
tions in the oral cavity, the elastomeric chains have a substantial force decay in the first
seven days [26]. Another in vitro study shows that force degradation of the elastomeric
chains reaches levels of 10–40% after the first 4 h; 20–50% alter 24 h, 30–60% after four
weeks [27]. Mirhashemi A et al. showed that after four weeks, only 30–40% of the force of
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the traditional orthodontic chains was retained [28]. After careful analysis of the literature,
the conclusion is that every study offers different results regarding the force degradation of
the orthodontic elastomeric chains during an orthodontic activation cycle-period between
two force applications. In this context, further research is imperatively needed.

The initial data used in the simulation example are:

(1) Tooth’s parameters: s′f = 24 mm; s̃ = 4 mm; s̃′ = 4 mm; sf = s′f −
(
s̃ + s̃′

)
= 16 mm

(2) Duration of active force: tfu = 1.2 weeks
(3) Orthodontic activation cycle period (as effect of one activation): tf = 7 week
(4) The elastomeric chain: Ku = 100 gramsforce (grf); ũf = 0.1 ·Ku
(5) Time constants:
(6) µ = µT = µTu = 4; λ = λT = λTu = 1.5; T1 = 10·tfu

µT(1+λT)
; T2 = λT ·T1; T1u = tfu

µTu·(1+λTu)
;

T2u = λTu · T1u

(7) The fictional axis of the tooth: y′α = 1 mm; yβ = (0.5÷ 0.9) mm;γ0 = y′α; γ1 =
yβ−y′α

sf

(8) u0(t) = ũ f+ (Ku − ũ f ) · ( T1u
T1u−T2u

· e−
t

T1u + T2u
T2u−T1u

· e−
t

T2u )

(9) FOT(t) = 1
T1−T2

· e−
t

T1 + 1
T2−T1

· e−
t

T2 ,
(10) FOS(s0) = y′α = γ0
(11) s = s0, . . . , s f

(12) Scaled value for Ky = 0.1 mm/grf

Due to the positive values of (yβ), it results that in this example, we should consider
the translation regime.

The proportionality coefficient (constant) (Ky) makes the connection between the input
signal (u0(t)) and the output signal y′00(t, s). Knowing the applied force, the y′α = 1 mm
average value is obtained (by observing the clinical evolution of the tooth’s movement and
according to the data in the orthodontic literature). More exactly, y′α = 1 mm represents
the average of the steady-state values of the y′00(t, s0) movements obtained as effects of the
force application. Obviously, for all patients, the same force (having the same Ku = 100 grf
coefficient) is used in the treatment procedure, and the treatment objective is to modify the
position of the upper central incisor. After obtaining the average value y′α = 1 mm, we have
analyzed the proportionality between it and ũf = 0.1 ·Ku residual force, resulting in the
value Ky = 0.1 mm/grf for the biomedical process proportionality coefficient. For the
determined (scaled) value of the proportionality coefficient (Ky = 0.1 mm/grf), the equality
between the right and the left member of Equation (5), in steady-state regime, is verified.

All the simulations presented in this paper are made in MATLAB/SIMULINK.
In Table 1 (under numerical form) and in Figure 5 (under graphical form), the results

of the simulation of the (u0(t)) input signal (of the applied force in relation to (t)), are
presented, using the corresponding parameters defined between the initial data.

Table 1. The results of the u0(t) input signal simulation, in numerical form.

t [Weeks] u0 [grf]

0 100

0.1 75.77

0.2 46.22

0.3 27.92

0.4 18.41

0.5 13.83

0.6 11.71

0.7 10.76

0.8 10.33

0.9 10.14

1 10.06
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From Table 1 and Figure 5, the decreasing evolution of the (u0(t)) input signal, in rela-
tion to (t), can be observed, between the value of (Ku) and the value of (ũf). The dynamics
of (u0(t)) are determined by the values of (T1u) and (T2u).
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The value (tfu = 1.2 weeks) was determined by the technical characteristics of the
elastomer. The values of the time constants (T1u) and (T2u) (presented between the initial
data) were appropriately determined in order for the (u0(t)) signal to respect the settling
time equal to (tfu). The validity of the data presented in Table 1 was documented in the
orthodontic literature. Since the error between the data in the literature and the data
presented in Table 1 (obtained through simulation) is insignificant, the validities, both of
Equation (6) and of the structure parameters (T1u) and (T2u) values, are proven.

Considering a treatment procedure in which the apex movement yβ = 0.5 mm
is obtained, the simulation results obtained through the simulation of the model from
Equation (5), using the scaled value Ky = 0.1 mm/grf of the proportionality constant, are
presented in Table 2 (under the numerical form) and in Figure 6 (under graphical form).

Table 2. The results of the biomedical process model simulation in relation to both independent
variables (t) and (s).

y’
00(t,s)

t [Weeks] y’
α(s=s0=0)[mm] s=

~
s

’
=4 [mm] yα (s=

~
s

’
+

~
s=8) [mm] s=12 [mm] s=16 [mm] s=20 [mm] yβ(s=24) [mm]

0 0 0 0 0 0 0 0

0.5 0.24 0.22 0.2 0.18 0.16 0.14 0.12

1 0.49 0.45 0.41 0.37 0.33 0.29 0.249

1.5 0.669 0.61 0.55 0.5 0.44 0.39 0.33

2 0.78 0.71 0.65 0.58 0.52 0.45 0.39

2.5 0.85 0.78 0.71 0.64 0.57 0.499 0.42

3 0.9 0.83 0.75 0.679 0.6 0.52 0.45

3.5 0.93 0.86 0.78 0.7 0.62 0.54 0.469

4 0.96 0.88 0.8 0.72 0.64 0.56 0.48

4.5 0.97 0.89 0.81 0.73 0.649 0.56 0.48

5 0.98 0.9 0.819 0.73 0.655 0.57 0.49

5.5 0.989 0.907 0.824 0.742 0.659 0.57 0.494

6 0.993 0.91 0.828 0.745 0.662 0.579 0.496

6.5 0.996 0.913 0.83 0.747 0.664 0.581 0.498

7 0.997 0.914 0.831 0.748 0.665 0.582 0.4989
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Figure 6. The evolution of the y′00(t, s) output signal, in relation to both time (t) and (s).

The interpretation of the simulation results presented in Tables 1 and 2 and in Figures 5
and 6, respectively, for the scaled value Ky = 0.1 mm/grf of the model proportionality
coefficient, can be synthetized as follows:

(1) The orthodontic activation cycle duration is t′f = 7 weeks (the period in which the
signals from Figure 6 accurately reach the new steady state regime implied by the
application of the u0(t) input signal), but from Figure 6 and Table 2, it results that only
after four weeks, the output signal y′00(t, s) (for all values of (s) independent variable)
reaches with more than 96% from the total increase due to the current activation;

(2) The evolution of the force delivered by the elastomeric chain (u0(t)) [grams force] is
an exponentially decreasing one, from the initial value Ku = 100 [grf] to the residual
plastic strength ũf = 10 [grf];

(3) The incisal edge of the tooth y′α(t, s0) [mm] follows an exponentially increasing move-
ment evolution, which superposes, in steady state regime, to the y′α = 1 [mm] asymptote;

(4) All the evolutions of the output signal y′00(t, s) presented in Figure 6 follow increasing
exponential evolutions, their dynamics being given by (T1) and (T2) time constants;

(5) As it results from Figure 6, the lower the value of (s) independent variable is, the higher
the values of the corresponding y′00(t, s) signals are (the maximum steady-state value
of the output signal is y′α = 1 [mm] obtained for s = s0 = 0 mm and the minimum
steady-state value of the output signal is yyβ = 0.5 mm obtained for s = s′f = 24 mm);

(6) Even if the applied force (u0(t)) accurately decreases to the residual value (ũf) in
1.2 weeks, its effect lasts approximately seven weeks; practically, relative to the
settling time of the responses presented in Figure 6, the input signal (u0(t)) can be
assimilated with an impulse type signal; the graphical representation from Figure 3,
being a qualitative one, does not respect the scale between the input and the output
signal (for a better highlighting of the signals variation form).

The (T1) and (T2) time constants were determined for the settling time of the curves
from Figure 6 (experimentally determined) to be respected. Moreover, in the case of the
(T1) and (T2) time constants identification procedure, some intermediary values of y′00(t, s0)
signal were used, obtained through the expert method (these values were provided by the
orthodontist, based on his experimental experience).

As an important remark, we must mention that the movement evolution y′00(t, s0)
during the entire orthodontic activation cycle can be monitored by the orthodontist in order
to verify the scaling correctness of the (Ky) coefficient (at the Ky = 0.1 mm/grf value).
Since we have used the y′α = 1 mm determined as an average of experimental data, the
perfect match of the evolution y′00(t, s0) from Figure 6 with an experimental curve can be
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only a coincidence, but the relative match (with a relative small error) with all experimental
curves, from which we have extracted the information used for the (Ky) coefficient scaling,
is viable. Another important remark is the fact that, experimentally, we have obtained some
intermediary values of the mentioned curves, from which we have approximated their
most probable form. In the case of considering a larger group of patients, the mathematical
model of the biomedical process presented in Equation (5) remains valid (being a general
model), but the structure parameters (Ky), (T1), and (T2) depend on the tissue resistance of
each patient. Possibilities to measure or to estimate the tissue resistance for each patient
will be presented in future research papers written by this paper’s authors.

3. Results
3.1. Digital Approximation of the Rotation Center (sc) and of the Tooth Apex (Tooth Depth)
Movement (yβ)

Based on the analysis of the physical properties of the tooth’s dynamics during the
treatment procedure, in this paragraph, we propose an original method to prove, through
simulation, that the rotation center can have variable positions, inside or outside the
tooth structure.

The digital approximation of the rotation center (sc) and of the apex movement (yβ)
is based on the numerical integration of a transcendental balance equation between the
elastic and the plastic moments, the two moments being given by:

ME(t, s) = u0(t) · (sc) (10)

MP(t, s) =
∫ s̃+sf

s̃
σ · (γ0 + γ1 · s) · (sc − s) · ds (11)

In Equation (10), ME(t, s) the elastic moment of the elastic force (u0(t)) is presented
and, in Equation (11), MP(t, s) the plastic moment of the tissue reacting force is presented.

In Equation (11), the term σ · (γ0 + γ1 · s) · ds represents the necessary elementary
force for the deformation of the plastic environment that is approximated to be linear
with the movement of the tooth’s fictional axis (y(s)), located between the yα0 = y(s̃)
and yβ0 = y(s̃ + sf) ends of the translation regime (Figure 7), and of the rotation regime
(Figure 8). The force weighting coefficient (σ) presented in Equation (11) shows a more
or a less resistant behavior of the plastic environment which is the subject to deformation
(the biological tissue which is deformed). With (sc − s) from Equation (11), the arm of
σ · (γ0 + γ1 · s) · ds elementary force is demonstrated, which is coaxial with the tooth’s
fictional axis.

In Figures 7 and 8, the arrows with the opposite direction in relation to the tooth’s
movement (y) highlighted, in an intuitive manner, the action of the tissue-reacting force, in
different points from the tooth’s fictional axis (for different values of the (s) independent
variable). Also, Equations (10) and (11) are valid for both cases presented in Figures 7 and 8.

By integrating in relation to the depth, expressed through the (s) variable from
Equation (11), the arm (sc − s) has the maximum value for the lower limit of integration
where s = s̃, or it becomes the minimum of the highest integration limit s = s̃ + sf.

The mathematical equations of the fictional axis from Figures 7 and 8, in relation to (s),
are formally identical, in both cases the coefficients (γ0) and (γ1) having the same values;

respectively, they are γ0 = y′α and γ1 =
yβ−y′α

sf
. It is important to observe that only the

(y′α) evolution can be rigorously observed by the orthodontist and all other items on the
fictional axis of the tooth can be estimated.
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Returning to Figure 7, two similar triangles can be observed, from which we can obtain
the (y′β) movement of the tooth’s apex:

yβ =
sc − (sf + s̃)

sc + s̃′
· y′α (12)
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This result is valid for Figure 8, too, and, when replaced in Equation (9), it effortlessly
leads to:

γ1 = − sf + s̃ + s̃′

sf ·
(
sc + s̃′

) · y′α (13)

As a consequence, for the right line equation from relation (7), together with the
equations from relations (8) and (9), the γ0 = y′α coefficient stays valid, but the coefficient

γ1 =
yβ−y′α

sf
can be expressed through Equation (13), too. It results the possibility to express

the (yβ) tooth’s apex movement in relation to the rotation point (center) (sc) position, which
implies an advantage in the computations’ interpretation, presented next in the paper.

By replacing in Equation (11) the (γ0) and (γ1) coefficients from Equations (8) and
(13), and considering the equality between Equations (10) and (11), we obtain:

u0(t) · sc =
∫ s̃+sf

s̃ σ ·
(
δ0 + δ1s + δ2s2)ds

= σ ·
[
δ0 · [(s̃ + sf)− s̃]+δ1

2 ·[(s̃ + sf)
2 − s̃2]+δ2

3 ·[(s̃ + sf)
3 − s̃3)]

]
= σ ·

[
δ0 · sf +

δ1
2 ·
(
sf

2 + 2 · sf · s̃
)
+ δ2

3 · (sf
3 + 3 · sf

2 · s̃ + 3 · sf · s̃2)
] (14)

This transcendent equation in relation to variables (t) and (s) represents the balance
(equality) equation between the elastic moment from the left member and the plastic
moment, expressed through an integral expression from (s̃) to (s̃ + sf).

After the computation of the integral presented in Equation (11), the (δ0), (δ1), and (δ2)
coefficients result, respectively: δ0 = γ0 · sc; δ1 = γ1 · sc − γ0; and δ2 = −γ1. Moreover, we

have previously proven that γ0 = y′α and γ1 = − sf+s̃+s̃′

sf·(sc+s̃′)
· y′α.

Of all the coefficients presented in this paragraph, only (σ) and (γ0) are constant.
The other coefficients (δ0), (δ1), (δ2), and (γ1) depend on the rotation center (sc), which
is collinear with the tooth’s fictional axis (which has the (̃s′ + s̃ + sf) length) presented in
Figures 7 and 8.

The elastic force (u0(t)) highlighted in Equation (14) has the extended form presented
in Equation (6), and (sc) represents the arm of this force (torque’s arm). The result of the mul-
tiplication between (u0(t)) and (sc) gives the elastic moment (torque) which, consequently,
becomes dependent on the (t) and (s) variables.

The iterative solving of the transcendental equation presented in Equation (14), through
numerical integration, is made for the following constant moments tk = {0; 0.5; 1; . . . 6.5; 7}
weeks, using the same initial data as in the case of the (Ky) proportionality coefficient scaling
(the same initial data used for obtaining the simulations results presented in Tables 1 and 2).
As it was proven in Table 2 and Figure 6, after four weeks the orthodontic process can
be considered in steady-state regime (the value of the y′00(t, s) signal, for any value of (s)
independent variable, reaches a value higher than 95% compared to the steady state value
(the value of y′00(t, s) signal reached after seven weeks); practically the output signal, after
four weeks, presents value variations which are enclosed between the steady state band of
±5% near its steady state value). In this context, for the process dynamics, at a first analysis,
it is relevant to consider the first four weeks of the treatment. A more complex analysis will
be presented next, based on the simulation results.

For every u0(tk) = constant, the iterative increasing with λ = (1, 2, 3, · · ·) of the
sλ = s̃ + λ · ∆sc variable is ensured, where the rotation center testing step (∆sc) is chosen
small enough in order for the numerical integration to be made correctly (for example
∆sc = sf/1000).

If for a moment in time (tk) and obviously for (u0(tk)), as a consequence of the
iteratively increase of the variable sλ = s̃ + λ · ∆sc, the equality between the elastic and the
plastic moment is obtained (ME(tk, sλ) = MP(sλ)), it results that the (sλ) value corresponds
with the value of the rotation center (sc). The rotation center will change its position on the
extension in the depth of the tooth’s fictional shaft, progressively upward through the top
of the tooth’s apex, as exemplified in Table 3. We must mention that we have used the same
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initial propagation conditions that were used for obtaining the simulation results presented
in the case of Tables 1 and 2. The results from Table 3 are obtained for the particular value
of σ = 2 grf/mm2.

Table 3. The orthodontic process simulation results, for σ = 2 grf/mm2.

Sigma (σ) [grf/mm2] 2

t [Weeks] u0 [grf] y’
α(s=s0) [mm] sc [mm] yβ [mm]

0 100 0 - 0

0.5 13.83 0.247 79.808 0.1763

1 10.06 0.4995 25.744 0.0965

1.5 10.001 0.669 17.808 −0.0672

2 10 0.782 14.48 −0.2336

2.5 10 0.844 13.024 −0.3458

3 10 0.906 11.76 −0.4737

3.5 10 0.939 11.152 −0.5483

4 10 0.9606 10.768 −0.6005

4.5 10 0.97 10.608 −0.623

5 10 0.98 10.448 −0.647

5.5 10 0.989 10.304 −0.6704

6 10 0.993 10.24 −0.6806

6.5 10 0.996 10.192 −0.688

7 10 0.997 10.176 −0.691

The simulation results presented in Table 3 are also presented in graphical form, in
Figures 9 and 10.
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As presented in Table 3, the tissue resistance (σ) is measured in grf/mm2, and it can
be interpreted as a measure of the tissue’s property to oppose the deformation due to the
mechanical strain application (during the orthodontic procedure throughout the elastomer
usage); (σ) can be also referred to as the strength coefficient of the plastic environment.

As an important remark, the (σ) coefficient is only a weighting coefficient of the tissue
resistance, not being the tissue resistance itself. In the presented approach, as it results from
Equation (14), due to the fact that the coefficients (δ0), (δ1), (δ2) depend on the position of
the rotation center (sc )and due to the multiplication of the term from the straight brackets
(associated to y (δ1), (δ2)) with (σ), it results that the tissue resistance is given by the value
of (sc) as well. In this context, the equality between the two members of Equation (14) is
verified following this explanation: If the tissue resistance is high, according to Figure 7,
the value of (sc) is also high, implying a smaller value of the (σ) coefficient; if the tissue
resistance is small, according to Figure 8, the value of (sc) is low, too, implying a higher
value of the (σ) coefficient. The tissue resistance is measured in grf/mm2, since it results as
the multiplication between the (σ) coefficient (expressed in grf/mm2) and the multiplicative
variation of the term from the bracket introduced by the (sc) variation (referring strictly to
the value variation of the mentioned term, it is a dimensionless one; for example, if the (sc)
value increases with 30%, than its new value will be 1.3·sc, and consequently the introduced
multiplicative variation is 1.3).

In the transcendent Equation (14), the (σ) coefficient is introduced in order to com-
paratively determine the plastic environmental resistance in relation to the moment of the
elastomeric chain. If 0 < σ < 1 grf/mm2, then the plastic environmental (tissue) resistance is
high, and if (σ) is greater than 1, the plastic environmental resistance becomes progressively
lower. From Equation (14) it can be easily deduced that σ = σ(t, s):

σ = σ(t, s) =
u0(t) · sc

δ0 · sf +
δ1
2 · (sf

2 + 2 · sf · s̃) + δ2
3 · (sf

3 + 3 · sf
2 · s̃ + 3 · sf · s̃2)

(15)

This approach presented in Equation (15) could lead to the possibility of developing an
interesting study on the localization of the plastic environmental resistance, in relation to the
depth variation (s) and in relation to the evolution in time (t) of the orthodontic treatment.

As previously mentioned, the simulations results presented in Table 3 and Figures 9 and 10
are made for the particular constant value of the tissue resistance coefficient σ = 2 grf/mm2.
From the practical perspective (perspective which the aim of the paper addresses), the
approximation that (σ) is constant stands with accuracy. This aspect is due to the fact that,
in this paper, we do not study the tissue resistance on intervals of (s) independent variable,
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our focus being to determine the total value of the plastic moment of the tissue-reacting
force (in this case, the integration limits from Equation (14) remain the same). Moreover,
the (σ) value presents small variations in relation to time, variations which can be neglected
from the practical point of view (even if (σ) would present consistent variations in relation
to time (t), its most important value, for the process dynamics, is the initial one).

The value σ = 2 grf/mm2, being higher than 1, highlights a small resistance of the
tissue. This value was chosen for the simulation since it implies approximately the same
variation of y′α(t) as in the case of the simulation presented in Table 2 and in Figure 6,
but in contrast to the previous simulation, it generates a negative value of the yβ(t) signal,
in steady-state regime.

Using the evolution of the rotation center (sc) obtained by applying the previously
presented procedure, we could compute using Equation (12) the tooth’s apex movement
(yβ), which being smaller than zero (excepting the first 1.35 weeks from the orthodontic
treatment procedure start, as it results from Table 3 and Figure 9) shows that the orthodontic
treatment regime corresponds to the rotation from Figure 8. Although (y′α) increases
progressively, it is remarked (in Table 3 and Figure 9) that after a period t = 0.45 weeks
the (yβ) movement begins to decrease. The explanation of this phenomenon is based on
the low value of the tissue resistance coefficient (σ = 2 grf/mm2), the initial applied force
u0 = 100 grf having a too high value for the corresponding treatment. In this case, as a
result of the force action, the incisal edge of the tooth will be quickly accelerated, and the
tooth root cannot follow its movement with a comparable acceleration. As consequence,
the rotation regime occurs.

In some particular cases, in which the tissues have high resistance (small values of (σ)),
the decrease of the (yβ) signal can occur, too. The medical explanation for this phenomenon
would be that the elastomer used in order to generate the movement begins to decrease
its force in a few days after appliance, so the force initially applied represents only a
stimulus (mathematically interpreted as an impulse). After the force has decreased and
after the tooth has moved, the remaining time of the activation cycle presumes vascular
and periodontal restructuring, but the periodontal ligaments tend to pull the root closer to
its initial position implying the (yβ) movement decrease. In this hypothesis, the decrease
in (yβ) movement has much smaller values than in the case when the tissue resistance has
low values, and (yβ) signal remains at consistent positive values (case of translation from
Figure 7).

It is important to mention again that, in order to solve the transcendental Equation (14),
with the fact that σ = 2 grf/mm2 was used and the elastic and plastic moments were equal.

In Figure 9, the comparative graph between the tooth’s top and tooth’s apex move-
ments, (in relation to time and between the y′α(t) and yβ(t) signals), during the orthodontic
treatment and for σ = 2 grf/mm2, are presented. As mentioned before, the y′α(t) signal
presents approximately the same dynamics as in Figure 6. The main difference between
the two figures occurs in the case of yβ(t) signal dynamics. Due to the tissue resistance
(although it has a relatively small value) in the first part of the treatment, the yβ(t) signal
follows the evolution of y′α(t) signal, having positive values. In the treated case, the value
of the applied force u0(t) = 100 grf is too high relative to the small tissue resistance (given
by the weighting coefficient σ = 2 grf/mm2). In this context, the incisal edge of the tooth
is quickly accelerated, and the tooth’s apex changes its movement direction. Practically,
the tooth rotation regime occurs. After approximately four days, the yβ(t) signal starts to
decrease, remaining at positive values until the moment ta = 1.35 weeks (the positive values
are associated with the movement of the tooth’s apex in the same direction as the tooth’s
crown). At the moment ta = 1.35 weeks, the tooth’s apex is returning to the initial position
(the position before the treatment: yβ = 0 mm). After ta, the values of yβ(t) signal become
negative (the negative values are associated with the movement of the tooth’s apex in the
opposite direction of the tooth’s crown). The obtained steady-state value of the tooth’s
apex movement, for the considered case, is yβ = −0.7 mm. As can be observed from
Figure 9, due to its initial increase, the yβ(t) signal value reaches with delay, the steady
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regime (the steady state regime starts at the moment tb ≈ 5.35 weeks when the yβ(t) signal
value reaches 96% of its final steady state value), compared to its evolution from Figure 6.
The delay introduced by the initial increase of the yβ(t) signal value implies that the incisal
edge of the tooth’s movement more quickly reaches the steady-state regime (in other words,
practically, the tooth’s apex presents a more consistent variation than the incisal edge in the
final part of the treatment). In Figure 9, another important aspect is proven, too; specifically,
the fact that the treated time constants of the biomedical orthodontic process preserve
their values for any values of the (s) independent variable (which highlight positions in
the tooth’s volume). This conclusion is reached since from the moment (ta) when yβ(t)
signal reaches the value of 0 mm to the moment (tb) when it reaches the steady state regime,
the same time interval tc = 4 weeks passes as in the case of the y′α(t) signal stabilization.

In Figure 10, the evolution in relation to time (t) of the rotation center (sc), during the
orthodontic treatment and for σ = 2 grf/mm2, are presented. From Figure 10, it results
that until the moment t1 = ta, the value of the rotation center (sc) is higher than 20 mm;
more exactly, its position is higher than the tooth’s apex position, outside of the tooth’s
volume. This aspect is due to the positive values of the yβ(t) signal (Figure 9) between the
time interval [0; ta] weeks (in this time interval, from a mathematical perspective, the tooth
behavior is similar to the case of the translation regime). At the moment t1 = ta = 1.35 weeks,
the rotation center has the position sc = 20 mm, which corresponds to the tooth’s apex
position. Practically, when sc = 20 mm, then yβ(t) = 0 mm; the tooth’s apex reaches again
the initial position in its movement to negative values. After t1 = ta = 1.35 weeks, the value
of (sc) becomes lower than 20 mm, highlighting positions inside the tooth’s volume. This
aspect, according to Figure 8, proves the tooth’s rotation regime during the orthodontic
treatment (for values of (sc) smaller than 20 mm, on Figure 10, the signal yβ(t) has negative
values). After the moment (tb), the (sc) enters the steady state regime (its steady state value
being sc = 10.15 mm), which signifies the end of the tooth’s movement (in the case of the
applied orthodontic treatment procedure).

A very important and interesting study is represented by the analysis of the tooth’s
movement dynamics in relation to the value of the tissue resistance weighting coefficient
(σ). In Figure 11, the function (sc(σ)) is represented, for different values of time (t).
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Figure 11. The evolution of the rotation center (sc) in relation to the weighting coefficient (σ),
for different values of the time (t) independent variable.

The curves from Figure 11 highlight two important aspects regarding the tooth’s
dynamics during the orthodontic treatment. First, analyzing Figure 11, it can be observed
that for higher values of the time independent variable (t), we obtain lower values of the
rotation center position (sc). Consequently, on the entire range of time (t) values (on the
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entire period of the orthodontic activation cycle) the evolution of the (sc(t)) function is a
monotone, decreasing one. This remark is proved by both the simulations presented in
Figures 10 and 11. It is obvious that immediately after the treatment starts, the position of
the rotation center is far from the tooth’s top; after that, during the treatment, the position
of the rotation center becomes closer to the tooth’s top and, in the final part of the treatment,
the position of the rotation center is the closest in relation to the tooth’s top. Secondly,
analyzing Figure 11, the decreasing evolution of the (sc(σ)) function, on the entire range
of (σ) values and for any value of the time independent variable (t), can be remarked.
For any value of (t), the lower the value of the (σ) weighting coefficient, the higher the
value of the tissue resistance and, implicitly, the higher the value of the (sc(σ)) function.
This phenomenon is physically explained by the fact that the higher the tissue’s resistance,
the translation movement during the treatment has a more pronounced character, the dif-
ferences between the values of the movements y′α(t) and yβ(t) being a smaller one and
implicitly the position of the rotation center (sc(t,σ)) being more distant in relation to the
tooth’s apex. For any value of (t), the higher the value of (σ) weighting coefficient, the lower
the value of the tissue resistance, and, implicitly, the lower the value of the (sc(σ)) function.
This phenomenon is physically explained by the fact that the lower the tissue resistance,
the rotation movement occurs during the treatment and it has a more pronounced character,
the differences between the values of the movements y′α(t) and yβ(t) being a higher one
(they have, almost on the entire range of time (t) different signs, in the case of the tooth
rotation regime) and, implicitly, the position of the rotation center (sc(t,σ)) being more close
in relation to the tooth’s apex. On the abscissa, the representation was made only for values
of (σ) weighting coefficient higher than 0.1 grf/mm2 since, in practice, smaller values are
unlikely. Moreover, in the range of theoretical values of (σ) smaller than 0.1 grf/mm2,
the biomedical process behavior becomes strongly nonlinear, and the representation of the
curves from Figure 11 on the corresponding domain would become irrelevant.

Another important problem is represented by the apex’s movement evolution (yβ),
both in relation to time (t) and to the weighting coefficient (σ). The evolution of the (yβ)
movement in relation to (σ), for different values of time (t = {0.5; 1; 4} weeks), is presented
in Figure 12.
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From Figure 12, the approximately linear evolution of the (yβ) apex movement,
in relation to (σ), can be observed, for each value of (t). On the abscissa, the representation
starts only from the value σ = 0.1 grf/mm2 for the same reason as in the case of Figure 11.
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For the weighting coefficient σ = 2 grf/mm2, we can identify the same values obtained
for (yβ) in Figure 9 (at the moments t = {0.5; 1; 4} weeks). Taking into consideration
the comparative evolution in relation to time of the three curves presented in Figure 12,
the tooth’s dynamics can be classified in relation to (σ) in four domains. The first domain,
D1, contains the interval of values σ ∈ [0.1, 0.832) grf/mm2. In this interval, the tooth
presents a pure translation movement, in the sense that the apex’s movement does not
present monotonous variations (the yβ(t) evolution presents a strictly increasing evolution
during the treatment). In D1, the yβ(t) movement has only positive values. The second
domain, D2, contains the interval of values σ ∈ [0.832, 0.991) grf/mm2, in which the yβ(t)
movement presents only positive values. In the second interval, the yβ(t) signal has a
decreasing evolution on a particular subdomain of time (t) values enclosed in the time
domain TDA = (1,4) weeks. Practically, the evolution of the yβ(t) signal presents a relatively
small “overshoot” before stabilization. The occurrence of the mentioned increase of y over
the steady state value obtained after the treatment application has the same cause (which
was previously presented) due to the action of periodontal ligaments, which tend to pull
the root closer to its initial position. The third domain, D3, contains the interval of values
σ ∈ [0.991, 1.245) grf/mm2, in which yβ(t) movement presents only positive values. This
domain makes the passing from the translation to the rotation regime.

The yβ(t) movement will have the same evolution as in the case of D2, but its decrease
will be much consistent (in other words, the “overshoot” will be much consistent as a value).
Finally, the fourth domain, D4, contains the interval of values σ ∈ [1.245, 2] grf/mm2. In the
case of D4, the yβ(t) movement will have the same type of evolution (the same rates) as in
the case of Figure 9 (the green curve), the explanation being the same. Consequently, in D4,
yβ(t) takes negative values, too, which signifies that the tooth’s movement is made in
pure rotation regime. From the practical point of view, the dividing of D4 in two intervals,
in relation to the intersection point between the blue and the green curves, is not justified.

In Figure 13, the same simulation as in the case of Figure 11 is made, including the
curves associated to the time moments t = 2 weeks and t = 3 weeks. From Figure 13, the same
conclusions as in the case of Figure 11 result. The purpose of the simulation presented
in Figure 13 is to determine the moment when the position of the rotation center (sc)
coincides with the considered tooth apex, more exactly, the moment when sc = sf = 16 mm.
Due to the high values of (sc) for small values of (σ), the value sc = sf = 16 mm cannot be
properly highlighted. In this context, the same simulation as in Figure 13 is presented
in Figure 14, but highlighting only the domain of (σ) values higher than 1.4 grf/mm2.
We chose this domain due to the fact that for the (σ) values enclosed in it, we obtained
the rotation regime and only in the rotation regime we can have sc = sf = 16 mm (only in
the rotation regime (sc) has small enough values to equal, at a certain moment, the (sf)
value). The curves associated to the values t = 0.5 weeks and t = 1 week do not occur in
Figure 14, since, even for high values of (σ), the value of (sc) does not decrease so fast to
the value of (sf). The notation (σcr) is referring to the critical value of (σ) for which, at a
certain moment in time, (sc) corresponds to the tooth’s apex. From Figure 14, it results
that the higher the value of the time (t) independent variable, the lower the value of (σcr)
(σcr1 = 1.76 > σcr2 = 1.58 > σcr3 = 1.481). Physically, since the higher the value of
the tissue resistance (implicitly the lower the value of the weighting coefficient (σ)), the
rotation center reaches positions inside the tooth’s volume later (for example, for (σcr3) the
rotation center corresponds with the tooth apex after four weeks from the beginning of
the treatment).
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Figure 13. The evolution of the rotation center (sc) in relation to the weighting coefficient (σ), for five
values of the time (t) independent variable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 30 
 

 
Figure 13. The evolution of the rotation center (sc) in relation to the weighting coefficient (𝜎), for five 
values of the time (t) independent variable. 

 
Figure 14. The simulation presented in Figure 13, for a restricted domain of (𝜎) values. 

The equality sc = sf can be obtained only in the rotation regime. In the case of the 
translation regime (obtained for smaller values of (σ)), the value of (sc) is much higher than 
(sf). 

3.2. Simulation of the Evolutions of the Elastic Moment (𝑀 ) and of the Mechanical Work in 
Elastic Regime (𝐿 ), during Orthodontic Treatment 

The mathematical model of the biomedical process proposed above opens the possi-
bility to simulate the evolution during the orthodontic treatment of two important physi-
cal quantities: the elastic moment (M ) and the mechanical work in elastic regime (𝐿 ). In 
this context, we take into consideration an orthodontic treatment with initial data identical 
to the ones defined in Section 2, but with the following changes: s = 27 mm; s = 5.5 mm; s = 4.5 mm. These data automatically lead to s = s − (s + s ) = 17 mm. Practically, we 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

200

400

600

800

1000

1200

1400

1600

1800

SC
 [m

m
]

SIGMA [grf/mm2]
 

 

t = 0.5 weeks

t = 1 week

t = 2 weeks

t = 3 weeks

t = 4 weeks

Sigma = 0.1 grf/mm2

1.4 1.5 1.6 1.7 1.8 1.9 2
6

8

10

12

14

16

18

20

22

24

SC
 [m

m
]

SIGMA [grf/mm2]

 

 

t = 3 weeks

t = 2 weeks

sf = 16 mm

t = 4 weeks

SigmaCr1
SigmaCr2

SigmaCr3

Figure 14. The simulation presented in Figure 13, for a restricted domain of (σ) values.

The equality sc = sf can be obtained only in the rotation regime. In the case of the
translation regime (obtained for smaller values of (σ)), the value of (sc) is much higher
than (sf).

3.2. Simulation of the Evolutions of the Elastic Moment (ME) and of the Mechanical Work in
Elastic Regime (LE), during Orthodontic Treatment

The mathematical model of the biomedical process proposed above opens the possibil-
ity to simulate the evolution during the orthodontic treatment of two important physical
quantities: the elastic moment (ME) and the mechanical work in elastic regime (LE). In this
context, we take into consideration an orthodontic treatment with initial data identical to
the ones defined in Section 2, but with the following changes: s′f = 27 mm; s̃ = 5.5 mm;
s̃′ = 4.5 mm. These data automatically lead to sf = s′f −

(
s̃ + s̃′

)
= 17 mm. Practically, we

consider the case of another tooth, the upper canine. As was previously mentioned, for this
example, we have to simulate the following physical quantities:
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(1) The elastic moment given by the equation: ME = u0(t) · sc(t) expressed in [grf·mm]
or in [mN ·m];

(2) The mechanical work in elastic regime given by the equation: LE = u0AV(t) · ∆y′′α(t),

where y′′α(t) = sc(t)+s̃
sc(t)+s̃+s̃′

· y′α(t), y′α(t) = sc(t)+s̃′

sc(t)−(sf+s̃) · yβ(t) and (∆y′′α(t)) represent

the variation of (y′′α(t)) on the considered time interval; with (y′′α(t)), the teeth’s
movement for s = s̃′ is logged (the movement of the point from the tooth’s fictional
axis which belongs to the tooth’s transversal section upon which the force (through
the bracket) is applied; the mechanical work is expressed in [grf·mm] or in [µJ].

As notations, we mention: the submultiple m = 10−3; the submultiple µ = 10−6; the
measurement unit for force grf = grams force; the gravity acceleration g = 9.80665 m

s2 ; the

measurement unit for force, in international system, N = Newton = 1 Kgf
g ; the measurement

unit for work, in international system, J = Joule = 1N · 1m. Moreover, the simulations
in this paragraph are made for the value σ = 0.6 grf/mm2 of the weighting coefficient
associated to the tissue resistance. As was previously mentioned in the paper, this small
value of the (σ) coefficient (smaller than 1) highlights a high tissue resistance, which
implicitly generates the tooth movement in translation regime. In the approached case, we
have considered another tooth with other dimensions as in the case of Section 2 and we,
also, have considered the (σ) coefficient sensibly higher than in the case of the simulation
from Figure 6 (implicitly a sensibly lower tissue resistance), and the value y′α(t) = 1.27 mm
is obtained for the movement of the tooth’s apex, in steady-state regime. In Table 4,
the simulations’ results, obtained for this example, are presented.

Table 4. The simulations’ results for the biomedical process.

t [Weeks] u0 [grf] sc [mm] yβ [mm] ME [grf ×mm] ME [mNm] y’’
α(s=

~
s

’
)[mm] LE [grf ×mm] LE ([mJ]) ΣLE[grf·mm] ([µJ])

0 100 - 0 0 0 0 0 0 0

0.1 75.77 19,933 0.0189 1,510,300 154 0.0191 1.656 0.169 1.656
(0.169)

0.2 46.22 3538 0.0648 163,530 16.675 0.0652 2.811 0.286 4.467
(0.455)

0.3 27.92 1120.2 0.1215 31,276 3.189 0.124 2.179 0.222 6.646
(0.675)

0.4 18.41 488.342 0.1779 8990.4 0.916 0.1865 1.447 0.147 8.093
(0.822)

0.5 13.83 273.258 0.228 3779.2 0.385 0.2485 0.999 0.101 9.092
(0.923)

0.6 11.71 185.283 0.2707 2169.7 0.221 0.3081 0.761 0.077 9.853
(1.000)

0.7 10.76 143.038 0.3074 1539.1 0.156 0.3648 0.637 0.065 10.49
(1.065)

0.8 10.33 119.34 0.3392 1232.8 0.125 0.418 0.561 0.057 11.051
(1.122)

0.9 10.14 104.363 0.367 1058.2 0.107 0.4679 0.51 0.052 11.561
(1.174)

1 10.06 93.959 0.3914 945.227 0.0964 0.5146 0.471 0.048 12.032
(1.222)

1.1 10.02 86.173 0.4125 863.453 0.088 0.5583 0.438 0.044 12.470
(1.266)

1.2 10.01 80.155 0.431 802.351 0.0818 0.5992 0.409 0.041 12.879
(1.307)

1.3 10.005 75.276 0.4469 753.136 76.798 0.6374 0.382 0.039 13.261
(1.346)

1.4 10.002 71.264 0.4608 712.782 72.683 0.6734 0.36 0.036 13.621
(1.382)

1.5 10.001 67.898 0.4727 679.047 69.243 0.707 0.336 0.034 13.957
(1.416)

1.6 10 65.042 0.483 650.42 66.324 0.7385 0.315 0.032 14.272
(1.448)
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Table 4. Cont.

t [Weeks] u0 [grf] sc [mm] yβ [mm] ME [grf ×mm] ME [mNm] y’’
α(s=

~
s

’
)[mm] LE [grf ×mm] LE ([mJ]) ΣLE[grf·mm] ([µJ])

1.7 10 62.594 0.4919 625.94 63.828 0.7679 0.294 0.03 14.566
(1.478)

1.8 10 60.486 0.4997 604.86 61.678 0.7957 0.278 0.028 14.844
(1.506)

1.9 10 58.65 0.5064 586.5 59.806 0.8216 0.259 0.026 15.103
(1.532)

2 10 57.052 0.5122 570.52 58.176 0.8457 0.241 0.024 15.344
(1.556)

2.1 10 55.641 0.5172 556.41 56.738 0.8683 0.226 0.023 15.570
(1.579)

2.2 10 55.4 0.5216 544 55.472 0.8895 0.212 0.021 15.782
(1.600)

2.3 10 53.295 0.5254 532.95 54.345 0.9093 0.198 0.02 15.980
(1.62)

2.4 10 52.309 0.5287 523.09 53.34 0.9278 0.185 0.018 16.165
(1.638)

2.5 10 51.442 0.5317 514.42 52.456 0.9451 0.173 0.017 16.338
(1.655)

2.6 10 50.66 0.5342 506.6 51.658 0.961 0.159 0.016 16.497
(1.671)

2.7 10 49.946 0.5364 499.46 50.93 0.9761 0.515 0.015 16.648
(1.686)

2.8 10 49.317 0.5383 493.17 50.289 0.9899 0.138 0.014 16.786
(1.700)

2.9 10 48.739 0.54 487.39 49.699 1.0031 0.132 0.013 16.918
(1.713)

3 10 48.229 0.5415 482.29 49.179 1.015 0.129 0.012 17.047
(1.725)

3.1 10 47.705 0.5428 477.05 48.645 1.0273 0.123 0.012 17.17
(1.737)

3.2 10 47.332 0.5439 473.32 48.265 1.0367 0.104 0.009 17.274
(1.746)

3.2 10 46.954 0.545 469.54 47.879 1.0465 0.098 0.009 17.372
(1.755)

3.4 10 46.614 0.546 466.14 47.533 1.0555 0.09 0.009 17.462
(1.764)

3.5 10 46.291 0.5467 462.91 47.203 1.0637 0.082 0.008 17.544
(1.772)

3.6 10 46.002 0.5474 460.02 46.909 1.0715 0.078 0.008 17.622
(1.789)

3.7 10 45.747 0.5481 457.47 46.649 1.0786 0.071 0.007 17.693
(1.787)

3.8 10 45.509 0.5486 455.09 46.406 1.0851 0.065 0.006 17.758
(1.793)

3.9 10 45.288 0.5491 452.88 46.18 1.0913 0.062 0.006 17.82
(1.799)

4 10 45.045 0.5495 450.45 45.933 1.0981 0.06 0.006 17.88
(1.805)

Table 4 contains the simulations in relation to time of the following signals: the applied
force (u0(t)) (which, in this application, has the same values and the same dynamics as in
Figure 5); the position of the rotation center (sc(t)); the movement of the tooth’s section
on which the force is applied (y′′α(t)); the movement of the tooth’s apex (yβ(t)); the elastic
moment (ME(t)) expressed both in [grf·mm] and in [mN ·m]; the mechanical work (LE(t))
on each considered time interval expressed both in [grf·mm] and in [µJ]; the cumulated
(the total) mechanical work (ΣLE(t)) during the orthodontic treatment expressed both in
[grf·mm] and in [µJ]. From Table 4, the translation regime can be directly identified due to
the following results: the tooth’s movement has an increasing evolution in relation to time,
for any value of (s) independent variable (both the apex movement (yβ(t)) and the upper
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part of the tooth represented through (y′′α(t)) movement are increasing functions in relation
to time (t)); the position of the rotation center has a decreasing evolution in relation to time
(t), but, for the entire time domain, it is outside the tooth’s volume (the minimum value of
(sc) is 45.045 mm, which is much higher than the tooth’s length—27 mm). The simulations’
results are presented in Table 4 only for the first four weeks of the treatment due to the
same explanations as in the case of the simulations’ results presented in Figure 6.

The evolution in relation to time (t) of the elastic moment (ME) (expressed in mN·m),
using the data from Table 4, is presented in Figure 15.
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Figure 15. The evolution of the Elastic moment (ME) during the orthodontic treatment, in relation to
time (t).

Both from Table 4 (lines 5 and 6) and from Figure 15, the decreasing evolution of the
elastic moment (ME(t)) in relation to time, can be observed. This aspect is due both to the
fast decrease of the input force (u0(t)) in relation to time (property which is specific to the
elastomers) and to the decrease of the position of the rotation center (sc(t)) in relation to
time (as it was previously proved, this property is generally valid both for translation and
rotation regimes—in steady state regime the (sc(t)) value is minimal). Practically, the curve
presented in Figure 15 highlights, again, the impulsive character of the treatment. Due to the
nonlinear behavior of the process, for very small time (t) values (t < 0.15 weeks), the values
obtained for the elastic moment (ME(t)) are quite big (for t = 0.1 weeks, ME = 154 mN·m)
in relation to all other values. Based on this remark, these values are at the validity limit,
and for t < 0.1 weeks, the obtained values for (ME(t)) are higher than the real ones. In this
context, the representation from Figure 15 starts only from the time value t = 0.2 weeks
(for a clearer representation, the extremely high values of ME(t) being avoided and, in the
same time, its nonphysical values being avoided, too).

The evolution, in relation to time (t), of the mechanical work (LE) (expressed in µJ),
using the data from Table 4, is presented in Figure 16.
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Figure 16. The evolution of the Mechanical work (LE) during the orthodontic treatment, in relation to
time (t).

The mechanical work is computed using the equation LE = u0AV(t) · ∆y′′α(t), where
(u0AV(t)) represents the average value of the signal (u0(t)) on each time interval. As can
be remarked in Table 4, the considered time interval is ∆t = 0.1 weeks. In relation to
∆t = 0.1 weeks, we compute, also, the ∆y′′α(t) movement variation on each time interval.
From Figure 16, on the first two weeks, the value of (LE(t)) increases from 0 µJ to the
value 2.811 µJ due to the high values of the (u0(t)) applied force on this time interval.
After 0.2 weeks, the function (LE(t)) has a strictly decreasing evolution due to the fast
decrease of the (u0(t)) force and due to the fact that the ∆y′′α(t) movement has a decreasing
evolution after the moment corresponding to the inflection point of the (y′′α(t)) curve. The
relatively small values of the mechanical work are due to the very small values of the
tooth’s movement (y′′α(t)) during the orthodontic treatment.

The evolution, in relation to time (t), of the cumulated mechanical work (total me-
chanical work) (ΣLE(t)) (expressed in µJ), using the data from Table 4, is presented in
Figure 17.
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Figure 17. The evolution of the cumulated mechanical work (ΣLE) during the orthodontic treatment,
in relation to time (t).
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The total mechanical work (ΣLE(t)) is obtained by cumulating, at the end of each
time interval ∆t = 0.1 weeks, the value of the mechanical work associated to that in-
terval, to the sum of the mechanical works obtained on the previous time intervals
(∆t) (ΣLE(t) = ΣLE(t) + LE(t)). Obviously, as it results from Figure 17, the function (ΣLE(t))
has a strictly increasing evolution. After four weeks from the treatment’s start, the value
of the cumulated mechanical work is ΣLE(t) = 1.805 µJ. After four weeks, the function
(ΣLE(t)) does not have a significant evolution (after seven weeks from the treatment’s start,
the steady state value of the cumulated mechanical work is ΣLE(t) = 1.848 µJ). The fastest
increase of the (ΣLE(t)) function is obtained in the first half of the first week of the treatment,
due to the high values of the (u0(t)) force on this time interval.

As a first conclusion, for the same period of the orthodontic activation cycle (four weeks)
and for the same evolution of the applied force (u0(t)) as in the case of Tables 1–3, but for
other tooth dimensions s̃ = 5.5 mm; s̃′ = 4.5 mm; σ = 0.6, the simulation program leads to
different values (presented in Table 4) of the rotation center (sc(t)) and of the tooth’s apex
movement yβ(t), compared against the ones obtained in Table 3.

In Figure 18, the results obtained by running the computing program which simulates
the biomedical process are presented. In Figure 18, we can observe a family of deformations
y00(t, sλ) at different constant depths (sλ) disposed on the fictional axis. In order to obtain
the curves from Figure 18, we consider the depths sλ = (0; 9; 18; 27) mm for the same
characteristic (evolution) of (u0(t)) force as in the anterior examples, but with the mention
that the tooth’s apex movement, in steady state regime, is yβ = 0.55 mm.

From Figure 18, the main conclusions, as in the case of Figure 6, emerge. The main
differences in relation to Figure 6 are the steady state values of the curves: for the tooth’s
crown we have obtain y′α(t) = 1.26 mm and for the tooth’s apex we have obtained
yβ = 0.55 mm. These value deviations are due to the different tissue resistances and due
to different tooth dimensions. Having a translation regime during the treatment, the tooth
movement y′00(t, s) has increasing evolutions in relation to both independent variables (t)
and (s) (as it can be, also, observed in Figure 18).
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Figure 18. The evolution in relation to both time (t) and (s) of the y′00(t, s) output signal, for a tooth
with the length s′f = 27 mm and for the weighting coefficient σ = 0.6.

4. Conclusions, Discussion, and Future Research

This paper presents the developing process of a systematic and unitary method for
the study of a usual category of orthodontic dynamics. The above-presented paper has the
specific orientation of a medical engineering research. We used a fictional shaft associated
with a semiparabolic tooth with an elliptical section (Figure 1), having (P) and (Q) as radii.
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This approach avoids some complications in the computing process, due to the nonuniform
geometric shape of the tooth’s root.

At the end of the orthodontic activation cycle (Figure 2), the two ends of the shaft are
y′α = y′α(tf, s0) and yβ = ±yβ(tf, sf). The case when yβ < 0 corresponds to the priority
of the rotation process represented in Figure 8 and the case when yβ > 0 represents the
roto-translation process represented in Figure 7, with the observation that the second case
presents a major interest (it being associated with the desired (correct) orthodontic tooth
movement). The first case is also important to be studied in order to model the tooth’s
dynamics when an incorrect treatment procedure is applied.

The analog model of deformation y′00(t, s) was approximated by Equation (5), where
the spring elastic force u0(t) was highlighted in Equation (6) through four signal parameters,
namely: the maximum force (the applied force) Ku = u0(t0), the residual plastic force (ũ)
and the time constants (T1) and (T2). Figure 3 presents the fictional shaft which “slides” with
the ends (α) and (β), on the y′00(t, s0) and y′00(t, sf) curves. At the end of the orthodontic
activation cycle, the positive apex deformation (+yβ) remains behind the deformation (y′α),
which also has a positive value. It would be desirable for the variation d

dt [yβ(t, sf)]→ 0 (it
becoming negligible for values of (t) which asymptotically tend to (tf)) to obtain the results

enclosed between:
yβ(tf,sf)

y′α(tf,s0)
= (0.5, . . . , 0.9).

In order to obtain the simulation results presented in the paper, five computer pro-
grams were implemented in MATLAB, as well as in MATLAB/Simulink.

(1) The first computer program was implemented in MATLAB and represents the soft-
ware application used for the (Ky) scaling. This application implements the algorithm
of generating (Ky) by solving the equality presented in Equation (5). The algorithm’s
solution results by processing the y′00(t, s0) evolution (from the tip of the tooth—incisal
edge, part which is visible to the orthodontist, in the oral cavity).

(2) The second computer program was implemented in MATLAB/SIMULINK and rep-
resents the software application used for simulating the orthodontic process as a
distributed parameter one [29]. This application computes the orthodontic process’s
response y′00(t, s) for a certain variation form of the input signal u0(t) (used during
the orthodontic treatment) and for different values of the (s) independent variable.
Certainly, for the depth s0 < s ≤ sf, the deformation’s evolution y′00(t, s) becomes
progressively even more different from y′00(t, s0) as the (s) independent variable is
getting closer to the top of the tooth’s root (apex, whose position corresponds to
(sf)). The simulations presented in the paper (for the example in Table 2) are made
considering a predetermined value of (yβ). The (yβ) value (both in the case when it
has the “+” or the “−” sign) can be only estimated (with high accuracy) but cannot be
strictly known by the orthodontist.

(3) The third program was implemented in MATLAB and represents the software ap-
plication used for determining the tooth’s rotation center sc = sc(t,s) and the defor-
mation yβ = yβ(t) of the tooth’s root tip. Practically, this application implements
the algorithm presented in paragraph three, more exactly the algorithm of solving
the transcendental Equation (14) (this procedure represents an original and precise
method for determining the tooth’s rotation center and, as a direct application, a
method of determining the movement of the tooth’s apex). An important advantage
of the program is the fact that it can generate the computation of the rotation center
position in relation to time (t), but also for different values of the tissue resistance
(mathematically highlighted through the value of the (σ) coefficient). Based on the
simulations’ results obtained through the third program running, the evolutions of
the two mentioned signals in relation to the corresponding independent variables can
be determined (of (sc) in relation to both (t) and (s), respectively of (yβ) in relation
to (t)). In the paper, both the interpretations of the balance methods between the
modulus’s elasticity ME(t, s) from Equation (10) with the plastic moment MP(t, s)
from Equation (11), and of the transcendent equation, in relation to variables (t) and
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(s), from Equation (14), are highlighted. For the initial conditions used in this program,
with the presented results in Table 3, it can be observed that after ta = 1.35 weeks, the
evolution of (yβ) decreases at negative values, which signifies the rotation regime’s
occurrence (this regime has to be avoided in orthodontic treatments; based on this re-
mark, the third program elaborated in the research activity can assist the orthodontist
in choosing the correct treatment—for example, in choosing the correct initial value of
the applied force). Other interesting future studies can be made based on the plastic
resistance coefficient (σ) of the environment (tissue) presented in (15), in relation to
the structure of the overall analog model shown in (5) and, consequently, in relation

with the u0(t), FOT(f) = (1− T1
T1−T2

· ε−
t

T1 − T2
T2−T1

· ε−
t

T2 ), and FOS(s) functions.
(4) Finally, the fourth synthesis program implemented in MATLAB considers another

dimension of the tooth. This program implements, as a novelty, the algorithms of
determining the instantaneous values of the following physical quantities: the elastic
moment (ME) expressed both in [grf·mm] and in [µNm]; the mechanical work in
elastic regime (LE) expressed both in [grf·mm] and in [µJ]; the cumulated mechanical
work in elastic regime (ΣLE(t)) expressed in [µJ]. Based on the obtained values (after
the simulation), the fourth program generates, also, the evolution of these signals in
relation to time (t). The interpretations of the obtained evolutions present a valuable
practical relevance. Also, the obtained values of these quantities show the “physical
measure” of the applied treatment.

(5) Finally, the fifth synthesis program is implemented in MATLAB/SIMULINK. This
program runs the orthodontic process’s mathematical model for the new dimension of
the tooth and for the value (σ = 0.6) of the tissue plastic resistance coefficient. The sim-
ulations’ results obtained after running this program are presented in Figure 18 (in the
simulations, the predetermined value yβ = 0.5 is used). In Figure 18, the y′00(t, sλ)
deformations are highlighted for four constant (sλ) depths: sλ = (0; 9; 18; 27) mm.
Using this approach, it becomes, therefore, convenient to follow these deformations,
either in relation to time (t) or in relation to depth (sλ)

Using the five programs for obtaining the simulations results presented in the four
tables and in the 18 figures shown in the above sections, several case studies can be
elaborated, associated with a wide variety of orthodontic treatments. Certainly, some
aspects can be changed, such as, for example: the initial conditions, the starting point of the
computations, the geometric preliminaries or the analog methods that may include other

analytic functions u0(t), FOT(f) = (1− T1
T1−T2

· ε−
t

T1 − T2
T2−T1

· ε−
t

T2 ), and FOS(s), or even
other fictional shafts with curved shapes.

Future research directions, which will be approached by the authors, are: the study
of the possibility to apply other modeling methods for the orthodontic process; the study
of the time constants’ variation, in relation to time (t); the study of a methodology to
determine automatically [30,31] the value of the tissue’s plastic resistance coefficient (σ);
the simulations of the important signals for the orthodontic process, during the entire
orthodontic treatment (which in the majority of cases lasts more than two years); the study
of the possibility to generate, using a new software application, the treatment parameters
which can be used by the orthodontist in order to obtain a more rapid and a more correct
orthodontic and presurgical orthodontic treatment (obviously, in this case, the necessity
of in vivo experiments, using a large group of patients, in order to validate the treatment
parameters obtaining methodology, occurs); and developing the actual research, using the
proposed method for a two-rooted tooth in the first stage and after that for three-rooted teeth.
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23. Kardach, H.; Biedziak, B.; Olszewska, A.; Golusińska-Kardach, E.; Sokalski, J. The mechanical strength of orthodontic elastomeric
memory chains and plastic chains: An in vitro study. Adv. Clin. Exp. Med. 2017, 26, 373–378. [CrossRef] [PubMed]

24. Omidkhoda, M.; Rashed, R.; Khodarahmi, N. Evaluation of the effects of three different mouthwashes on the force decay of
orthodontic chains. Dent. Res. J. 2015, 12, 348–352. [CrossRef] [PubMed]

25. Aldrees, A.M.; Al-Foraidi, S.A.; Murayshed, M.S.; Almoammar, K.A. Color stability and force decay of clear orthodontic
elastomeric chains: An in vitro study. Int. Orthod. 2015, 13, 287–301. [CrossRef] [PubMed]

26. Kumar, K.; Shetty, S.; Krithika, M.J.; Cyriac, B. Effect of commonly used beverage, soft drink, and mouthwash on force delivered
by elastomeric chain: A comparative in vitro study. J. Int. Oral Health 2014, 6, 7–10. [PubMed]

https://doi.org/10.1002/cnm.3189
https://www.ncbi.nlm.nih.gov/pubmed/30790479
https://doi.org/10.1016/0002-9416(63)90082-4
https://doi.org/10.1067/mod.2001.112999
https://www.ncbi.nlm.nih.gov/pubmed/11343021
https://doi.org/10.1016/S0889-5406(00)70254-X
https://www.ncbi.nlm.nih.gov/pubmed/10629526
https://doi.org/10.1177/154405910608501204
https://www.ncbi.nlm.nih.gov/pubmed/17122159
https://doi.org/10.4103/0972-124X.65445
https://www.ncbi.nlm.nih.gov/pubmed/20922083
https://doi.org/10.3390/ijerph20054133
https://www.ncbi.nlm.nih.gov/pubmed/36901151
https://doi.org/10.2174/1874210601610010035
https://www.ncbi.nlm.nih.gov/pubmed/27006722
https://doi.org/10.1016/j.ajodo.2012.05.014
https://www.ncbi.nlm.nih.gov/pubmed/22999674
https://doi.org/10.1016/j.ajodo.2018.08.025
https://www.ncbi.nlm.nih.gov/pubmed/31375231
https://doi.org/10.1016/j.jtherbio.2019.01.005
https://www.ncbi.nlm.nih.gov/pubmed/30784487
https://doi.org/10.1109/emes.2017.7980413
https://doi.org/10.4028/www.scientific.net/AMM.811.365
https://doi.org/10.17219/acem/61957
https://www.ncbi.nlm.nih.gov/pubmed/28791809
https://doi.org/10.4103/1735-3327.161453
https://www.ncbi.nlm.nih.gov/pubmed/26288625
https://doi.org/10.1016/j.ortho.2015.06.003
https://www.ncbi.nlm.nih.gov/pubmed/26277455
https://www.ncbi.nlm.nih.gov/pubmed/25083025


Appl. Sci. 2023, 13, 5932 29 of 29

27. Sang, T.; Wu, J. Factors on force degradation of elastomeric chains in vitro. Shanghai Kou Qiang Yi Xue 2008, 17, 638–642. [PubMed]
28. Mirhashemi, A.; Saffarshahroudi, A.; Sodagar, A.; Atai, M. Force-Degradation Pattern of Six Different Orthodontic Elastomeric

Chains. J. Dent. Tehran Univ. Med. Sci. 2012, 9, 204–215.
29. Golnaraghi, F.; Kuo, B.C. Automatic Control Systems, 9th ed.; Wiley Publishing House: Hoboken, NJ, USA, 2009.
30. Love, J. Process Automation Handbook, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007.
31. Oskui, I.Z.; Hashemi, A.; Jafarzadeh, H.; Kato, A. Finite element investigation of human maxillary incisor under traumatic

loading: Static vs dynamic analysis. Comput. Methods Programs Biomed. 2018, 155, 121–125. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.ncbi.nlm.nih.gov/pubmed/19148455
https://doi.org/10.1016/j.cmpb.2017.12.007
https://www.ncbi.nlm.nih.gov/pubmed/29512492

	Introduction 
	Materials and Methods 
	Results 
	Digital Approximation of the Rotation Center (sc) and of the Tooth Apex (Tooth Depth) Movement (y) 
	Simulation of the Evolutions of the Elastic Moment (ME ) and of the Mechanical Work in Elastic Regime (LE ), during Orthodontic Treatment 

	Conclusions, Discussion, and Future Research 
	References

