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Abstract: Wafer bin maps (WBMs) are essential test data in semiconductor manufacturing. WBM
defect classification can provide critical information for the improvement of manufacturing processes
and yield. Although deep-learning-based automatic defect classification models have demonstrated
promising results in recent years, they require a substantial amount of labeled data for training, and
manual labeling is time-consuming. Such limitations impede the practical application of existing algo-
rithms. This study introduces a low-data defect classification algorithm based on contrastive learning.
By employing momentum contrastive learning, the network extracts effective representations from
large-scale unlabeled WBMs. Subsequently, a prototypical network is utilized for fine-tuning with
only a minimal amount of labeled data to achieve low-data classification. Experimental results reveal
that the momentum contrastive learning method improves the defect classification performance
by learning feature representation from large-scale unlabeled data. The proposed method attains
satisfactory classification accuracy using a limited amount of labeled data and surpasses other com-
parative methods in performance. This approach allows for the exploitation of information derived
from large-scale unlabeled data, significantly reducing the reliance on labeled data.

Keywords: contrastive learning; low data; self-supervised learning; wafer bin map; defect classification;
semiconductor manufacturing

1. Introduction

With the advancement of the integrated circuit industry, semiconductor manufactur-
ing processes have become increasingly complex. Chip production involves hundreds of
types of processing equipment and numerous processing steps. Variations in the manufac-
turing process and environment can lead to defects, resulting in significant uncertainties
in production yield, directly impacting a company’s costs and profits. Consequently, it is
imperative to reduce process defects, decrease losses in semiconductor manufacturing, and
enhance production efficiency and economic benefits.

A wafer is a fundamental unit in integrated circuit manufacturing. After the manufac-
turing process, testing equipment evaluates the functionality of each die (chip) on the wafer.
Hundreds of dies on a wafer are tested using chip probing. Furthermore, the die with a
passing testing result will be packaged as a final chip. Figure 1 presents the relationship
between wafer, die, and chip.

Wafer bin maps (WBMs) represent the test results of the wafer based on the pass or
fail (bin) values of each die. Multiple defective dies form spatial patterns as defect patterns.
We refer to such instances where multiple defective dies are spatially aggregated, forming
spatial patterns as wafer defects. Each defect pattern is associated with a failure or anomaly
in a specific segment of the production line. Thus, WBM defect classification can provide
critical information for the improvement of manufacturing processes and yield [1]. Figure 2
presents examples of several wafer bin maps with specific defect patterns. Black dots
represent failed dies and white dots represent passing dies.
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Figure 1. Relationship between wafer, die, and chip.

Figure 2. Examples of several WBMs with specific defect patterns.

In most semiconductor manufacturing enterprises, WBM defect classification primarily
relies on human expertise. Manual labeling is time-consuming and can be subject to varia-
tions due to the subjective judgments of different engineers [2]. Therefore, investigating
methods for automatic defect classification is of paramount importance. In this regard, re-
searchers have proposed numerous automatic defect classification approaches over the past
two decades, including statistic learning-based methods [3–5] and machine-learning-based
methods [6–12].

In recent years, defect classification algorithms based on deep learning have been grad-
ually proposed and developed because they improved image classification performance.
T. Nakazawa [13] employed convolutional neural networks (CNNs) for WBM defect classi-
fication. S. Cheon [14] developed an automatic defect classification (ADC) method based
on deep learning, capable of automatically classifying different wafer surface damage types.
The proposed method could accurately identify the GFA classes that were not encountered
during model training by comparing the CNN features of the unseen classes. M. Saqlain [15]
proposed an ensemble convolutional neural network (ECNN) framework for WBM defect
classification, adopting a weighted majority function to assign higher weights to the base
classifiers with superior predictive performance. Furthermore, K. Kyeong [16] suggested
using CNNs to classify mixed-type GFA in WBMs in an individual classification model
framework for each GFA.

However, training deep learning classification methods requires a large amount of
labeled data, which meets the conflict that manual labeling is time-consuming and incon-
sistent. Moreover, in practice, there exists a vast amount of unlabeled WBMs that have not
been utilized. Therefore, making good use of the large number of unlabeled WBMs and
reducing the reliance on labeled data is one of the pressing issues that need to be addressed.
Several methods have been proposed for utilizing unlabeled WBMs, such as semisupervised
learning. Kong and Ni [17] proposed to adopt a ladder network and the semisupervised
variational autoencoder to classify WBMs. Active learning and pseudo-labeling are also
utilized to accelerate learning.

Recently, self-supervised learning has been proposed as an effective unsupervised
learning branch. Self-supervised learning is a type of machine learning where a model
learns to represent data in a way that is useful for downstream tasks without requiring
direct supervision or labeled data [18]. Instead, the model is trained on an auxiliary task
designed to capture meaningful patterns in the data. This approach is advantageous when
labeled data are scarce or expensive, as it allows the model to learn from large amounts of
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unlabeled data. Based on the pretext task for visual features in images, self-supervised learn-
ing approaches can be classified into three categories: generation-based [19–23], context-
based [24–29], and contrastive-based [30–36].

In WBM yield, H. Kahng and S.B. Kim [2] proposed a self-supervised learning-based
framework that uses unlabeled data to learn rich visual representations beforehand to
realize a data-efficient WBM GFA classification. D. Kim and P. Kang [37] proposed a
dynamic WBM clustering method using pseudo-labels. H. Geng [38] proposed an end-to-
end wafer defect classifier that unites the few-shot learning and self-supervised learning
algorithms in the training period, which opens up a new line.

The existing research on WBM self-supervised learning effectively leverages unlabeled
data and enhances classification performance. However, it still requires a substantial
amount of labeled data for fine-tuning. Improving the feature representation ability of
the model is the critical way to reduce the demand for labeled data. A more effective
self-supervised learning method is needed to utilize the information in unlabeled data
fully, enhance the model’s feature representation ability, and improve its classification
performance with limited labeled data. To this end, this study introduced momentum
contrastive learning [32] for self-supervised pretraining on unlabeled WBMs. Contrastive
learning is a branch of self-supervised learning that learns representations by maximizing
the agreement between different views of the same data point and has been shown to
achieve state-of-the-art performance in many computer vision tasks, especially in low-data
regimes. Momentum contrastive learning is a variant of contrastive learning in which a
momentum encoder is introduced to improve the quality of learned representations. The
momentum encoder is updated using an exponential moving average of the parameters
from the primary encoder, which encourages the momentum encoder to capture the global
structure of the data while the primary encoder focuses on capturing local features. By
leveraging the momentum encoder, momentum contrastive learning performs better than
standard contrastive learning in various computer vision tasks.

After momentum contrastive learning, we proposed a low-data fine-tuning method
for WBM defect classification. Thanks to H. Geng [38], we reference it to use a prototypical
few-shot learning approach. Moreover, different to [38], the prototypical network is only
performed in the fine-tuning period in the proposed framework. By comparing with other
existing methods, the proposed method outperforms the comparative methods regarding
classification performance with real-world WBM data. The results indicate that introducing
momentum contrastive learning improves the performance of supervised learning and
makes it possible to achieve classification with only a small amount of labeled data.

The contributions of the article are as follows:

1. Momentum contrastive learning is introduced for the unlabeled WBMs pretraining,
enhancing the feature representation ability and improving WBM defect classifica-
tion accuracy.

2. We propose a two-step method where the prototype network is fine-tuned after
contrastive learning pretraining, improving low-data fine-tuning performance.

3. We utilize a real-world dataset and compare our proposed method with other existing
WBM self-supervised learning algorithms, demonstrating superior defect classifica-
tion performance.

2. Methods

In this study, we design a self-supervised pretraining framework based on momentum
contrastive learning for large-scale unlabeled WBMs. After pretraining, wafer defect classi-
fication is achieved by fine-tuning with labeled data. In order to improve the efficiency of
labeled data fine-tuning, a few-shot learning method is adopted during fine-tuning. The
overall flowchart is shown in Figure 3. In the following text, we introduce each block and
the overall framework in detail.
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Figure 3. The proposed two-stage flowchart.

2.1. Data Preprocessing

In this study, the data preprocessing period mainly comprises resizing and denoising.
The real-world wafer bin map dataset contains WBMs of slightly different sizes. To ensure
consistent input dimensions for subsequent modeling, the original WBMs are resized using
nearest-neighbor interpolation. In this study, all wafer maps are resized to 64 × 64.

The WBM defect pattern can be seen as a superposition of two independent components:
random noises (particle correlation) and system clustering (process correlation). Random
noises are generally problems with the clean room environment and tend to rise and fall
with the overall cleanliness of the clean room. Reducing random noises requires long-
term, incremental improvements or expensive equipment overhauls, but systematic defects
can be easily eliminated through corrective efforts. Conversely, system defects caused by
assignable causes are often attributed to processing equipment and human error. Therefore,
it is necessary to remove random noise dies before conducting defect pattern analysis.

To reduce random dies, we applied the median filtering algorithm adapted to WBM
denoising. The median filtering algorithm effectively removes various types of noise,
including salt-and-pepper and Gaussian noise. It is also able to preserve image edges and
details better than other types of smoothing filters. The algorithm works by smoothing the
image using the median value of the pixels in a sliding window. Specifically, a window of
size N × N is centered around each pixel in the image. The pixel values in the window are
sorted in ascending order, and the median value is then assigned to the central pixel. In
this study, we set N equal to three.

2.2. Momentum Contrastive Learning

For large-scale unlabeled WBMs, the momentum contrastive learning method is in-
troduced in this study for self-supervised learning. Momentum contrastive learning is
designed to improve the training efficiency of contrastive learning algorithms by intro-
ducing a momentum-based update to the model weights, and it is effective in various
applications, such as image classification, object detection, and natural language processing.
It is advantageous when labeled data are limited or unavailable, as it generates high-quality
feature representations without manual annotation.

The proposed momentum contrastive learning framework is presented in Figure 4.
Contrastive learning [32] can be regarded as training an encoder for a dictionary look-up
task. It generates two augmented views for each WBM in a batch randomly sampled from
a WBM dataset. These two views are then projected into an embedding space, where a
self-supervised loss is applied to train the encoder and generate effective representations.
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Figure 4. The proposed momentum contrastive learning framework.

Momentum contrastive learning consists of three parts. The first part is the data
augmentation module, which generates two correlated views of each WBM. To facilitate
WBM defect classification, we apply simple augmentations such as rotation and flipping.
These augmentations are designed to preserve the underlying failure patterns and do not
alter the latent categories of the data.

The second part is the embedding generation part. The input of this part is the
query (one augmented WBM) and the key (another augmented WBM) of each WBM. Two
encoders transform the WBMs from two augmented views to embedding. As ResNet has
been shown to achieve state-of-the-art results on various computer vision tasks, we applied
ResNet-18 [39] as the backbone of the two encoders.

Moreover, the queue is a significant development of momentum contrastive learning,
shown in the second part. Contrastive learning involves constructing a discrete dictionary
from high-dimensional inputs representing a sampled subset of all data. In momentum
contrastive learning, the dictionary is maintained as a queue of data embedding. Using a
queue, it decouples the dictionary size K from the batch size, which can be much larger
than the batch size. Additionally, the queue is renewed after each epoch. At the end of each
training episode, the current batch is enqueued to the dictionary, and the oldest batch in
the queue is removed to maintain a fixed queue size.

The third part is contrastive loss calculation and parameter update. The queries and
their corresponding keys are encoded for the current batch, forming positive sample pairs.
The negative samples are all the samples in the queue. A contrastive loss is a function whose
value is low when the query is similar to its corresponding positive key and dissimilar to
all other keys in the queue. The contrastive loss function is InfoNCE [32]:

Lq = − log
exp(q · k+/τ)

∑K
i=0 exp(q · ki/τ)

, (1)

where q is the query and k+ is the positive key of q. ki represents the keys in the queue.
The second development of momentum contrastive learning is the momentum update.

In the backpropagation period, the gradient only propagates to the queries, and only the
parameters of the query encoder are updated by backpropagation. Then, the parameters of
the key encoder are updated by:

θk ← mθk + (1−m)θq (2)

Here, m is a momentum coefficient. θk and θq represent the parameters of the momen-
tum encoder and query encoder, respectively. We default to m = 0.999 because a relatively
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large momentum works much better than a smaller value. It is suggested that a slowly
evolving key encoder is core to using a queue [32].

2.3. Few-Shot Fine-Tuning

After self-supervised pretraining, in order to perform the classification task, it is
necessary to fine-tune the query encoder on a large number of labeled WBMs. However,
manually labeling WBMs is highly costly and time-consuming. This study proposes a
few-shot fine-tuning method that uses a prototypical network in the fine-tuning period,
which can significantly improve the efficiency of labeled data and reduce the demand for
labeled samples.

The prototypical network is an effective few-shot classification method with high
accuracy with limited labeled samples. In the prototypical network, a small-scale la-
beled WBM dataset L is given as L = {(x1, y1), · · · , (xN , yN)}, where each xi ∈ RL is the
D—dimensional embedding of a WBM and yi ∈ {1, · · · , K} is the label. Lk denotes the
WBMs set labeled with class k.

Then, a prototype is an M—dimensional representation ck ∈ RM of each class through
the query encoder function fφ : RD → RM with learnable parameters φ. Each prototype is
the mean of the embedded support set belonging to its class [40]:

ck =
1
Lk

∑
(xi ,yi)∈Lk

fφ(xi) (3)

Prototypical networks generate a probability distribution over classes for a given query
point x by applying the softmax function on the distances between the query point and the
class prototypes in the embedding space. The loss function is the negative log-probability:

J(φ) = − log
exp(−d( fφ(x), ck))

∑k′ exp(−d( fφ(x), ck′))
(4)

The squared Euclidean distance is adopted as the distance metric:

−d( fφ(x), ck) =‖ fφ(x)− ck ‖2
2 . (5)

Fine-tuning the query encoder is achieved by minimizing the loss function of the true
class k via stochastic gradient descent (SGD) [40]. In the training process, a subset of classes
from the training dataset is randomly selected in each episode. For each selected class, a
subset of WBMs is chosen to form the support set, while a subset of the remaining WBMs
is selected as query points. The prototypical network procedure is shown in Figure 5.
We set the sample number of a support set as five and the class number as three. After
fine-tuning, the classification was performed by computing the distance between the input
and the prototypes.

Figure 5. The prototypical-network-based few-shot procedure.
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2.4. Overall Framework

As illustrated in Figure 3, the framework can be divided into two stages. The first
stage is the self-supervised pretraining stage, which inputs unlabeled WBMs. First, data
preprocessing is performed in this stage, including WBM denoising and resizing. Then,
momentum contrast learning is used to train the two encoders using queries and keys
generated from two augmented views of the input WBMs. The query and key encoder
extract feature representations of queries and keys and output encoded embedding. A
WBM dictionary called “queue” is introduced in momentum contrastive learning to reuse
the encoded keys from the previous batches. Finally, the query and the corresponding
key embedding are positive pairs. The query embedding and the queue are negative
pairs for calculating the contrastive loss. Only the parameters of the query encoder are
updated by backpropagation. The parameters of the key encoder are updated by the
momentum mechanism.

The second stage is the fine-tuning stage, which employs labeled WBMs to fine-tune
the pretrained encoder for classification. Similar to the pretraining stage, data preprocessing
is carried out initially. During the fine-tuning process, a prototypical network is utilized for
classification. Ultimately, a well-trained defect classification model is obtained.

3. Experiments and Discussion

This section introduces the experiments of evaluating the performance of the pro-
posed framework, including the experiment data, performance evaluation of the overall
framework, and ablation study of momentum contrastive learning.

3.1. Data and Setup

In this study, we employed a real-world WBM dataset, WM-811K, for experiments,
which is publicly available. WM-811K included 811,457 wafer maps from 46,293 lots,
covering nine categories of patterns, and only 172,950 were annotated by experts. The
other 638,507 wafer maps are unlabeled WBMs. In our self-supervised pretraining period,
500,000 unlabeled WBMs were used for momentum contrastive learning. The labeled
dataset consisted of nine WBM defect types, including eight systematic patterns and one
with no systematic pattern (none). The examples of nine existing defect types in WM-811K
are shown in Figure 6.

The WM-811K consists of binary WBMs with only pass (0) or fails dies (1). Each
wafer map was treated as a grayscale two-dimensional image. For evaluating the defect
classification performance of the proposed method, we compared the proposed method
with two existing WBM classification methods. To ensure a fair comparison, the labeled
dataset must remain the same in the comparison methods and was split into 0.6:0.4 for
training and test set. Table 1 presents the statistics of the labeled dataset.

Table 1. WM-811K data description.

Defect Type All Numbers Train (0.6) Test (0.4) Percent (%)

Center 4294 2576 1718 2.48
Donut 555 333 222 0.32

Edge-loc 5189 3113 2076 2.99
Edge-ring 9680 5808 3872 5.60
Location 3593 2156 1437 2.08
Near-full 149 89 60 0.09
Random 866 520 346 0.50
Scratch 1193 716 477 0.69
None 147,431 88,459 58,972 85.25
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Figure 6. The examples of 9 defect types in the WM-811K dataset.

For momentum contrastive learning, we adopted ResNet-18 as the query and key
encoder’s backbone. In this work, the hyperparameters were chosen by manual tuning. We
compared the performance of several common learning rate values: 0.1, 0.01, and 0.001.
Moreover, we compared typical batch sizes from a smaller value to the maximum value
supported in the memory capacity: 64, 128, and 256. We also compared the performances
of several different epochs. When the training loss no longer converged, the epoch was
used as the minimum value, and it was increased by 100 sequentially, which was 300,
400, and 500, respectively. Finally, we chose the hyperparameters performing better than
other candidates. The learning rate, batch size, and epoch were 0.01, 256, and 500. The
encoder’s output was a 1000-dimensional embedding. The momentum coefficient m was
set to 0.999, as described in Section 2.2. The length of the queue was 4096, the maximum
value supported in the memory capacity. We used SGD as our optimizer. The SGD weight
decay was 0.0001. We trained our model on four Nvidia V100 GPUs with 16 GB memory.
The data augmentation was rotatedfor random angles.

For the prototypical-network-based fine-tuning, the hyperparameters were deter-
mined by the same approach as contrastive learning. The learning rate, batch size, and
epoch were 0.01, 64, and 200. We used SGD as the optimizer. The original WM-811K dataset
had 147,431 training data, which was too large for practical purposes. Furthermore, over
85% of these WBMs had no defect pattern (“none” type), with only 15% containing specific
defect patterns, totaling 15,308 WBMs. We propose to remove the “none” type to evaluate
the performance of WBMs with specific defect patterns. We focused only on the eight defect
categories for classification, significantly reducing the number of training samples. We
chose the labeled data from the eight defect categories to create training and testing sets.
Moreover, to ensure a fair comparison with existing methods, we also applied nine types
of train and test sets to keep the train and test set the same as the comparative methods.
The number of support set samples was five, and the number of prototypes were nine and
eight, respectively.

3.2. Overall Framework Performance Evaluation

To evaluate the performance of the proposed framework, we used 500,000 unlabeled
data in WM-811K for momentum contrastive learning. The labeled training set was used
to fine-tune the query encoder for classification based on the prototypical network. After
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fine-tuning, the labeled test set was used to test the classification performance, reflecting
the overall framework’s performance.

We compared the proposed framework with an existing WBM classification method
based on self-supervised learning and few-shot learning [38] (refers to “ICCAD’21”). The
proposed framework consists of a shared backbone and two branches for the few-shot and
self-supervised learners. This method is an end-to-end framework with two jointly per-
formed tasks sharing the same wafer pattern feature extractor. The loss function combined
the few-shot and self-supervised learner loss, constituting a total loss function. Unlike IC-
CAD’21, our proposed framework is a two-stage method using a self-supervised learner for
model pretraining and a few-shot learner for fine-tuning. Another existing deep-learning-
based wafer defect classification method proposed in [41] was also compared with our
proposed framework (refers to “DAC’20”). In [41], deep selective learning was exploited
with distinct coverage on the testing dataset for the defect pattern classification. For a
fair comparison, the train and test sets of the three comparative methods were the same.
We calculated precision, recall, and f1-score to evaluate classification performance. The
calculation function of the three indexes is as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

f 1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

where TP is the number of wafer defects of one defect type being correctly classified, FP is
the number of wafer defects of other defect types being classified to one defect type, TN is
the number of wafer defects of other defect types being classified to other defect types, and
FN is the number of wafer defects of one defect type being classified to other defect types.

Table 2 shows the classification results of our proposed method and two comparative
methods with precision, recall, and f1-score and their corresponding macroaveraged values
(i.e., arithmetic means). The highest value for each category under each evaluation indicator
is bolded. The results of our proposed method for eight defect types (without “none”) and
nine defect types (with “none”) are both presented in Table 2. For nine defect types, our
method macroaveragely outperformed ICCAD’21 with 12.3% and 5.4% improvement on
precision and recall rate and a 9.2% rise on f1-score. Moreover, it outperformed DAC’20 with
a macroaveraged precision, recall, and f1-score of 21.1%, 20.0%, and 22.4%, respectively.
There are two differences between our method and ICCAD’21. ICCAD’21 proposed a
shared backbone of self-supervised and few-shot learning and united the two learners in
one period [38]. We proposed to perform self-supervised learning and few-shot learning in
two periods; contrastive learning was applied in the pretraining period, and then few-shot
learning was embedded into the fine-tuning period. The second difference is the contrastive
learning method. We used the momentum contrastive learning for self-supervised learning.
The results indicate that performing self-supervised and few-shot learning in two steps
benefits the classification. Furthermore, momentum contrastive learning is a more effective
self-supervised learning method for WBMs.

Moreover, our proposed method for fine-tuning with eight defect types outperformed
fine-tuning with nine defect types in the area of eight defects macroaverage recall and
f1-score. These results illustrate that removing the “none” type in the fine-tuning period
benefits the classification of specific defects.

To visualize the classification performance of each defect type, we present the confu-
sion matrix of nine and eight defect types of our proposed method in Figures 7 and 8. As
can be seen in the confusion matrices, the diagonal cells of our algorithm have darker colors.
Furthermore, fewer classes are seriously confused in our proposed method. We can observe
that the “location” classification performance in our proposed method is relatively lower.
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This is because the “location” has a similar geometric feature to “center” and “donut”.
Moreover, “scratch” and “location” are often confused because the two defect types of-
ten appear on one WBM, causing a mixed-type problem. By observing the real-world
dataset, we found that mixed-type defects often occur on a single WBM, with only one label
assigned to a WBM, leading to model confusion and a classification performance decrease.

Table 2. Classification performance comparison with two comparative methods.

Defect
Types

DAC’20 ICCAD’21 Ours Ours Eight Defects

Precision Recall F1-
Score Precision Recall F1-

Score Precision Recall F1-
Score Precision Recall F1-

Score

Center 0.949 0.942 0.945 0.736 0.950 0.830 0.838 0.879 0.858 0.830 0.899 0.863
Donut 0.798 0.748 0.772 0.806 0.842 0.824 0.958 0.708 0.814 0.942 0.795 0.862

Edge-Loc 0.739 0.690 0.714 0.647 0.802 0.716 0.872 0.893 0.882 0.870 0.883 0.876
Edge-Ring 0.992 0.950 0.970 0.992 0.921 0.955 0.978 0.980 0.979 0.964 0.986 0.975
Location 0.191 0.627 0.293 0.605 0.720 0.658 0.631 0.746 0.684 0.664 0.743 0.701
Near-Full 0.697 0.383 0.495 0.810 0.867 0.840 0.975 0.984 0.979 0.981 0.968 0.975
Random 0.608 0.553 0.579 0.816 0.652 0.724 0.938 0.910 0.924 0.913 0.940 0.926
Scratch 0.127 0.287 0.176 0.474 0.701 0.565 0.940 0.853 0.894 0.941 0.848 0.892
None 0.985 0.927 0.955 0.986 0.967 0.977 0.855 0.959 0.904 - - -

Macro-avg 0.676 0.679 0.656 0.764 0.825 0.788 0.887 0.879 0.880 - - -
Eight defects Macro-avg 0.638 0.645 0.618 0.736 0.807 0.764 0.891 0.869 0.880 0.888 0.883 0.896

Figure 7. Confusion matrix of nine defect types in our proposed framework.

Figure 8. Confusion matrix of eight defect types in our proposed framework.
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3.3. Ablation Study for Momentum Contrastive Learning

To independently evaluate the performance of momentum contrastive learning pre-
training, we compared the classification performance of the query encoder with and
without momentum contrastive learning pretraining. After pretraining, we attached two
linear layers as a classification head to the end of the query encoder, and the classification
results were obtained by softmax activation. Unlike the overall framework, we did not
use the prototypical network as the classification mechanism during fine-tuning. For the
case of using momentum contrastive learning pretraining, we pretrained the model using
500,000 unlabeled data with momentum contrastive learning. Then, we fine-tuned the
classification model using the training set of the nine defect types labeled data, followed
by testing the classification accuracy on the test set. For the case of not using momentum
contrastive learning pretraining, we directly trained the classification model using the
training set of the labeled dataset. Then, we tested the classification performance on the
test set.

Table 3 shows the classification results with and without momentum contrastive learn-
ing pretraining. To verify the performance of momentum contrastive learning pretraining
in the case of a small number of labeled WBMs, we also compared the classification perfor-
mance when the number of labeled WBMs was reduced to 20%, 15%, and 10%, respectively.
From Table 3, it can be seen that when using all labeled training sets, the recall of the
classification model after momentum contrastive learning pretraining and fine-tuning was
85%. In contrast, the accuracy of the model trained directly without momentum contrastive
learning pretraining was 80.7%, indicating that momentum contrastive learning pretraining
improved the classification recall by 5%. When the number of labeled training samples was
reduced to 20%, 15%, and 10%, the momentum contrastive learning increased the classifica-
tion recall by 3%, 9%, and 3%, respectively, indicating that it significantly improved the
performance in the case of a small number of labeled data.

Table 3. Classification recall comparison for with and without momentum contrastive pretraining.

Percentage of Labeled Data With Pretraining Without Pretraining

10% 0.68 0.650

15% 0.73 0.650

20% 0.782 0.751

All (100%) 0.850 0.807

To visualize the improvement of using momentum contrastive learning, we plotted the
results from Table 3 as a line chart, presented in Figure 9. This result also shows a significant
improvement in classification performance when using momentum contrastive learning,
which is observed even in the case of a reduced number of labeled WBMs. Moreover, it
can be seen in Figure 9 that the classification performance of fine-tuning 10% data after
momentum contrastive learning is about the same as training with 20% data without
momentum contrastive learning. This indicates that using momentum contrastive learning
significantly reduces the requirement of manual labeling and offers immense practical
value for practice applications.

In order to accomplish higher accuracy, it is better to perform automatic tuning
algorithms such as grid search and Bayesian optimization for hyperparameters. However,
because momentum contrastive learning is computationally intensive and our computing
power is limited, the speeds of grid search and Bayesian optimization are prolonged. If the
computing power allows, it is recommended to use grid search or Bayesian optimization
algorithms to select better hyperparameters to improve the accuracy.
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Figure 9. Visualization of the classification recall comparison with and without momentum con-
trastive learning.

4. Conclusions and Future Work

Wafer bin maps play an important role in yield improvement of semiconductor man-
ufacturing. Automatic defect classification on WBMs can help engineers quickly locate
problems on the production line and make timely adjustments. At present, most WBM
automatic classification models require training with a large amount of labeled WBM
data, and manual labeling is time-consuming. In practice, there are large-scale unlabeled
WBMs that are not exploited. Therefore, determining how to use large-scale unlabeled
data information to reduce the demand for labeled data is a key problem to be solved in
semiconductor manufacturing.

We proposed a two-step WBM automatic classification framework consisting of self-
supervised pretraining and fine-tuning stages. Firstly, we introduced a self-supervised
pretraining method based on momentum contrastive learning. Positive sample pairs were
generated through data augmentation, while negative sample pairs were created using a
queue of samples. By optimizing the contrastive loss, the model learned to extract features
that characterize WBMs. Through ablation experiments, we demonstrated that momentum
contrastive learning can effectively learn feature representations from a large amount of
unlabeled wafer maps, improving the model’s classification performance and reducing the
need for labeled data.

Additionally, to further enhance the training efficiency of labeled data, we proposed a
fine-tuning method based on prototypical networks. The prototypical network is a mecha-
nism for few-shot learning, where samples are classified based on their distances to the centers
of each class. We compared our framework with two existing WBM defect classification
works, and the results show that our method outperforms the others in terms of classification
performance. Furthermore, we suggest removing labeled data with “none” defect type and
only using eight specific defect patterns from the WM-811K dataset for fine-tuning. This
approach improved the classification performance of WBMs with specific defects.

Future work will focus on researching self-supervised learning and classification
methods for WBMs with multiple defects, as in most practical cases, a wafer usually has
multiple defects. A single-defect classification model cannot accurately classify wafer maps
with multiple defects. Therefore, a practical issue is designing a multidefect classification
model and combining it with self-supervised learning to enhance the model’s representation
ability. In future research, we will explore a framework for self-supervised learning and
multidefect classification of WBMs.
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