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Abstract: This research implements the whale optimization algorithm (WOA) and spotted hyena 
optimizer (SHO) in inverse scattering to regenerate the conductor shape concealed in the half-space. 
TM waves are irradiated from the other half-space to a perfect conductor with an unknown shape 
buried in one half-space. The scattered field measured outside the conductor surface with the 
boundary condition is used to reconstruct the object using the WOA and SHO algorithms. Several 
scenarios of reconstruction accuracy were compared for the WOA and SHO. The numerical simula-
tions prove that the WOA has a better reconstruction capability. 

Keywords: inverse scattering; frequency domain; whale optimization algorithm (WOA); spotted hy-
ena optimizer (SHO) 
 

1. Introduction 
In recent years, electromagnetic imaging has been extensively applied in the medical 

imaging fields, such as CT and MR. In medical imaging, for instance, the technology is 
superior to that of X-ray, with a better performance in scattered field information collec-
tion. This has motivated scholars to research deeper into related studies, with significant 
progress having been achieved. In general, the methods for solving electromagnetic scat-
tering problems can be categorized into two main domains: the first is the approximate 
solution method and the second is the rigorous numerical method. The main approximate 
imaging theory for conductors is described by Bojarski’s equation [1–4], which was pro-
posed by Bojarski in 1967 based on the assumption of physical optics. This equation shows 
that there is a Fourier transformation between the backscattered field and the shape of the 
object, so that the image can be reconstructed using the scattered field. Since this method 
is only applicable to far-field imaging, some scholars have extended it to near-field imag-
ing [5]. However, these methods are based on the assumptions of physical optics, and 
only one scattering condition is considered. The image object must be “convex” with a 
smooth surface and the size must be much larger than the wavelength. All these problems 
have limited its widespread application. This research can be applied to biomedical im-
aging (e.g., shapes and sizes of breast cancer and tumors), remote sensing and non-de-
structive testing. It is worth mentioning that biomedical imaging on breast cancer has been 
widely discussed in recent years. 

As far as the rigorous methods in the inverse scattering theory are concerned, most 
of them are based on an integral equation with the moment method [6–14]. Depending on 
the properties of the object, inverse scattering theory can be divided into two cases: 
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conductors and dielectric objects. In the case of conductors, the inverse scattering problem 
is usually transformed into an optimization problem. The first form of the objective func-
tion is defined by the root-mean-square error between the measured and calculated scat-
tered fields [7–10]. By searching for the minimum value of the objective function, an opti-
mal solution satisfying the boundary conditions can be found. The second form of the 
objective function is composed of two summations: one is the objective function of the first 
type and the other is the root-mean-square error of the set of integral equations satisfying 
the boundary condition [11–14]. In addition, a regularization term can be added after the 
above objective functions to remove the ill-posedness. Then, the two forms of objective 
functions are completed by numerical iterations, such as the Newton–Kantorovitch 
method [7–9], the Levenberg–Marquardt algorithm [11–13], the successive overrelaxation 
method [14] and discrete dipole approximation [15]. However, almost all of these rigorous 
methods search for the solution by the gradient of the objective function. Therefore, when 
the preliminary estimation is further away from the real value, the solution is often a local 
extreme rather than a global extreme. 

A vast amount of literature on the heuristic algorithm has been published recently 
[16–29]. The first was published in 1975, when Holland proposed the concept and theoret-
ical basis of genetic evolution based on Darwin’s concept of “natural selection”, using the 
genetic mechanism of “survival of the fittest” to simulate the biological evolutionary pro-
cess of genetic selection and natural elimination to find the best solution by a random 
search [16]. In 2018, Chiu et al. applied the self-adaptive dynamic differential evolution 
(SADDE) method to reconstruct two-dimensional dielectric objects and highlighted its ro-
bustness and searching speed [17]. The whale algorithm, which simulates the hunting be-
havior of humpback whales for optimal search, is a new bionic algorithm proposed by 
Mirjalili and Lewis in 2016 [19]. Before the publication of their paper, there was no re-
search on the whale algorithm. The search formulation of the proposed whale algorithm 
was able to explore random solutions in space. Subsequently, Ling et al. proposed a levy 
flight-based whale algorithm. Although this algorithm could efficiently solve low-dimen-
sional single-peak optimization problems, it was not effective at handling high-dimen-
sional and multimodal optimization problems [20]. In 2018, Yan et al. proposed an im-
proved whale optimization algorithm for multi-target water resource allocation. Since the 
accuracy and rate of the aspiration of the whale algorithm were low when solving multi-
target problems, a logistic map was laid out to set the initial value of the group location 
[21]. In 2020, the WOA was further exercised on imperfect conductors with corners [22]. 
An enhanced WOA with a mutualism phase was proposed by Chakraborty. Adding a 
modified mutualism phase to the WOA enlarged the searching zone and simplified the 
exploitation process [23]. In 2022, a niche hybrid heuristic–whale optimization technique 
was introduced to accelerate the convergence speed [24]. 

By contemplating the hunting behavior of spotted hyenas, Dhiman and Kaur pro-
posed an optimized algorithm in 2017. This algorithm relies on the hyenas’ trusted friend-
ship network to identify the prey to be hunted and the authors showed that this hunting 
method could obtain a better solution more rapidly, outperforming other algorithms for 
constraint engineering problems in the real world [25,26]. Furthermore, Sukpancharoen 
proposed the application of the speckled hyena optimization algorithm to single- and 
multi-objective cogeneration plants [27]. In 2022, the spotted hyena optimizer was utilized 
to optimize the commutation strategy of the three-phase load unbalance [28]. The numer-
ical results verified that this method could effectively reduce the unbalance rate. In order 
to overcome the multidimensional knapsack issue as well as the 24-benchmark con-
straints, Vega notably proposed the crow search algorithm with the spotted hyena opti-
mizer [29]. 

To our knowledge, the WOA and SHO algorithms have not yet been compared for 
the imaging reconstruction of perfect conductors. In this paper, the imaging problem of a 
perfect conductor by electromagnetic wave irradiation is presented by employing both 
WOA and SHO. The objective function defined as the root-mean-square error between the 



Appl. Sci. 2023, 13, 5857 3 of 13 
 

computed and measured scattered field data is minimized by WOA and SHO. The theo-
retical formulation for the electromagnetic field and inverse problem is presented in Sec-
tion 2. In Section 3, the optimization algorithms for WOA and SHO are described. Three 
simulated examples are shown in Section 4. Section 5 is the conclusion. 

2. Theoretical Formulation 
A perfect conductor buried in one half-space is depicted in Figure 1. The permittivity 

and conductivity in regions 1 and 2 were (𝜀𝜀1,𝜎𝜎1) and (𝜀𝜀2,𝜎𝜎2), respectively. In each region, 
the permeability of the free space was set to 𝜇𝜇0, that is, only non-magnetic substances 
were considered. Let the scatterer be a cylindrical conductor extending infinitely in the z-
axis. Its cross-sectional area in the 𝑥𝑥𝑥𝑥-plane can be expressed by the equation 𝜌𝜌 = 𝐹𝐹(𝜃𝜃). 
The time-varying relation of the incident wave was set to 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 and its incident angle was 
∅1, as depicted in Figure 1. 

 
Figure 1. Schematic diagram of a two-dimensional perfect conductor in half-space. 

For simplicity, the TM wave was assumed to be parallel-polarized along the z-axis. 
𝐸𝐸𝑖𝑖 can be used to represent the electric field distribution when the conductor is not pre-
sent, and is expressed as [6]: 

𝐸𝐸�⃗ 𝑖𝑖(𝑟𝑟) = 𝐸𝐸𝑖𝑖(𝑥𝑥, 𝑥𝑥)�̂�𝑧 (1) 

where 

𝐸𝐸𝑖𝑖(𝑥𝑥,𝑥𝑥) = �𝐸𝐸1(𝑥𝑥,𝑥𝑥) = 𝑒𝑒−𝑗𝑗𝑘𝑘1[𝑥𝑥 𝑠𝑠𝑖𝑖𝑠𝑠∅1 +(𝑦𝑦+𝑎𝑎) 𝑐𝑐𝑐𝑐𝑠𝑠∅1] + 𝑅𝑅1𝑒𝑒−𝑗𝑗𝑘𝑘1[𝑥𝑥 𝑠𝑠𝑖𝑖𝑠𝑠∅1 −(𝑦𝑦+𝑎𝑎) 𝑐𝑐𝑐𝑐𝑠𝑠∅1],𝑥𝑥 ≤ −𝑎𝑎
𝐸𝐸2(𝑥𝑥,𝑥𝑥) = 𝑇𝑇𝑒𝑒−𝑗𝑗𝑘𝑘2[𝑥𝑥 𝑠𝑠𝑖𝑖𝑠𝑠∅2 +(𝑦𝑦+𝑎𝑎) 𝑐𝑐𝑐𝑐𝑠𝑠∅2]                                                   ,𝑥𝑥 > −𝑎𝑎

 (2) 

𝑅𝑅1 =
1 − 𝑛𝑛
1 + 𝑛𝑛

  , 𝑇𝑇 =
2

1 + 𝑛𝑛
  ,   𝑛𝑛 =

cos𝜙𝜙2
cos𝜙𝜙1

�
𝜀𝜀2 − 𝑗𝑗𝜎𝜎2 𝜔𝜔⁄
𝜀𝜀1 − 𝑗𝑗𝜎𝜎1 𝜔𝜔⁄

 (3) 

𝑘𝑘1𝑠𝑠𝑠𝑠𝑛𝑛∅1 = 𝑘𝑘2𝑠𝑠𝑠𝑠𝑛𝑛∅2 (4) 

𝑘𝑘𝑖𝑖2 = 𝜔𝜔2𝜀𝜀𝑖𝑖𝜇𝜇0 − 𝑗𝑗𝜔𝜔𝜇𝜇0𝜎𝜎𝑖𝑖，𝐼𝐼𝐼𝐼(𝑘𝑘𝑖𝑖) ≤ 0  , 𝑠𝑠 = 1,2 (5) 

𝐸𝐸𝑖𝑖𝑠𝑠𝑐𝑐 is the incident field of the first term of 𝐸𝐸1(𝑥𝑥, 𝑥𝑥). ∅1 and ∅2 are the incident and 
refracted angles in the lossless media regions 1 and 2, respectively. On the contrary, if 
regions 1 and 2 are the lossy media, ∅1 and ∅2 become more complex. The wave form 
will be very complicated. Its propagation direction is different according to the decay di-
rection. We expressed the overall electric field in the free space as: 
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𝐸𝐸(𝑥𝑥, 𝑥𝑥) = �𝐸𝐸1
(𝑥𝑥, 𝑥𝑥) + 𝐸𝐸𝑠𝑠(𝑥𝑥, 𝑥𝑥)   ,𝑥𝑥 ≤ −𝑎𝑎

𝐸𝐸2(𝑥𝑥, 𝑥𝑥) + 𝐸𝐸𝑠𝑠(𝑥𝑥, 𝑥𝑥)   ,𝑥𝑥 > −𝑎𝑎 (6) 

where 𝐸𝐸𝑠𝑠(𝑥𝑥, 𝑥𝑥) is the scatterrd field. Since the size of the interested object in the resonance 
region is about one wavelength, the scattered field will have a severe diffraction effect. In 
order to search for the scattered field, Green’s function 𝐺𝐺(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥 ′,𝑥𝑥′) must be calculated 
carefully by first generating a line current source at (𝑥𝑥′,𝑥𝑥′) and the corresponding scat-
tered field at (𝑥𝑥,𝑥𝑥) . By the Fourier transformation technique, 𝐺𝐺(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥 ′,𝑥𝑥′)  can be ex-
pressed as: 

𝐺𝐺(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥′ , 𝑥𝑥′) = �
𝐺𝐺1(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′)                                                                           ,𝑥𝑥 ≤ −𝑎𝑎
𝐺𝐺2(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′) = 𝐺𝐺𝑓𝑓(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′) + 𝐺𝐺𝑠𝑠(𝑥𝑥,𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′)       ,𝑥𝑥 > −𝑎𝑎 (7) 

𝐺𝐺1(𝑥𝑥, 𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′) =
1

2𝜋𝜋
�

𝑗𝑗
𝛾𝛾1 + 𝛾𝛾2

𝑒𝑒𝑗𝑗𝛾𝛾1(𝑦𝑦+𝑎𝑎)𝑒𝑒−𝑗𝑗𝛾𝛾2(𝑦𝑦′+𝑎𝑎)𝑒𝑒−𝑗𝑗𝑗𝑗�𝑥𝑥−𝑥𝑥′�𝑑𝑑𝑑𝑑
∞

−∞
 (8) 

𝐺𝐺𝑓𝑓(𝑥𝑥, 𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′) =
𝑗𝑗
4
𝐻𝐻0

(2) �𝑘𝑘2�(𝑥𝑥 − 𝑥𝑥′)2 + (𝑥𝑥 − 𝑥𝑥′)2� (9) 

𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑥𝑥 ; 𝑥𝑥′ ,𝑥𝑥′) =
1

2𝜋𝜋
�

𝑗𝑗
2𝛾𝛾2

�
𝛾𝛾2 − 𝛾𝛾1
𝛾𝛾2 + 𝛾𝛾1

� 𝑒𝑒−𝑗𝑗𝛾𝛾2�𝑦𝑦+2𝑎𝑎+𝑦𝑦′�𝑒𝑒−𝑗𝑗𝑗𝑗�𝑥𝑥−𝑥𝑥′�𝑑𝑑𝑑𝑑
∞

−∞
 (10) 

where 𝛾𝛾𝑖𝑖2 = 𝑘𝑘𝑖𝑖2 − 𝑑𝑑2, 𝐼𝐼𝐼𝐼( 𝛾𝛾𝑖𝑖) ≤ 0, 𝑠𝑠 = 1,2. 
Conceptually the scattered field 𝐸𝐸𝑆𝑆(x, y) can be regarded as the surface-induced cur-

rent 𝐽𝐽𝑠𝑠  on the conductor radiating in half-space. By means of the two-dimensional 
Green’s function, the scattered field outside the conductor can be expressed as: 

𝐸𝐸𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧−� 𝐺𝐺1(𝑟𝑟;𝐹𝐹(𝜃𝜃′), 𝜃𝜃)𝐽𝐽(𝜃𝜃′)𝑑𝑑𝜃𝜃′    , 𝑥𝑥 ≤ −𝑎𝑎

2𝜋𝜋

0

−� 𝐺𝐺2(𝑟𝑟;𝐹𝐹(𝜃𝜃′), 𝜃𝜃)𝐽𝐽(𝜃𝜃′)𝑑𝑑𝜃𝜃′    , 𝑥𝑥 > −𝑎𝑎
2𝜋𝜋

0

 (11) 

where 

𝑟𝑟 = (𝑥𝑥,𝑥𝑥), 𝐽𝐽(𝜃𝜃) = −𝑗𝑗𝜔𝜔𝜇𝜇0�𝐹𝐹2(𝜃𝜃) + 𝐹𝐹′2(𝜃𝜃)𝐽𝐽𝑠𝑠(𝜃𝜃) (12) 

The boundary condition for a perfect conductor is that the total electric field in the 
tangential direction on the surface of the conductor is zero. According to this boundary 
condition, we can obtain the integral equation of 𝐽𝐽(𝜃𝜃). 

𝐸𝐸2(𝐹𝐹(𝜃𝜃),𝜃𝜃) = � 𝐺𝐺2(𝐹𝐹(𝜃𝜃),𝜃𝜃;𝐹𝐹(𝜃𝜃′),𝜃𝜃′)𝐽𝐽(𝜃𝜃′)𝑑𝑑𝜃𝜃′
2𝜋𝜋

0
 (13) 

The scattered field in region 1 is: 

𝐸𝐸𝑠𝑠(𝑥𝑥, 𝑥𝑥) = −� 𝐺𝐺1(𝑥𝑥, 𝑥𝑥;𝐹𝐹(𝜃𝜃′),𝜃𝜃′)𝐽𝐽(𝜃𝜃′)𝑑𝑑𝜃𝜃′  ,𝑥𝑥 ≤ −𝑎𝑎
2𝜋𝜋

0
 (14) 

For the direct scattering problem, 𝐸𝐸𝑠𝑠 was calculated from 𝐽𝐽(𝜃𝜃) using the given 𝐹𝐹(𝜃𝜃) 
shape function in region 1. For inverse problem, any point within the scatterer was pre-
sumed. Under this circumstance, 𝐹𝐹(𝜃𝜃) can be expressed as: 

𝐹𝐹(𝜃𝜃) = �𝐵𝐵𝑠𝑠

𝑁𝑁/2

𝑠𝑠=0

𝑐𝑐𝑐𝑐𝑠𝑠(𝑛𝑛𝜃𝜃) + �𝐶𝐶𝑠𝑠

𝑁𝑁/2

𝑠𝑠=1

𝑠𝑠𝑠𝑠𝑛𝑛( 𝑛𝑛𝜃𝜃) (15) 

where 𝐵𝐵𝑠𝑠 and 𝐶𝐶𝑠𝑠 denote the parameters to be computed, and N + 1 is an unknown num-
ber of the parameters. In the inverse problem, the following objective function, which was 
minimized using the WOA and SHO, was defined as: 
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𝑂𝑂𝐹𝐹 = �
1
𝑀𝑀𝑗𝑗

��𝐸𝐸𝑠𝑠
𝑒𝑒𝑥𝑥𝑒𝑒(�̄�𝑟𝑚𝑚) − 𝐸𝐸𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐(�̄�𝑟𝑚𝑚)�2/�𝐸𝐸𝑠𝑠

𝑒𝑒𝑥𝑥𝑒𝑒(�̄�𝑟𝑚𝑚)�2
𝑀𝑀𝑡𝑡

𝑚𝑚=1

�

1
2

 (16) 

where 𝑀𝑀𝑗𝑗  is the measured number. 𝐸𝐸𝑠𝑠
𝑒𝑒𝑥𝑥𝑒𝑒(𝑟𝑟𝑚𝑚)  and 𝐸𝐸𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐(𝑟𝑟𝑚𝑚)  are the experimental and 

computed scattered fields, respectively. 

3. Optimization Algorithms 
3.1. Whale Optimization Algorithm 

The whale optimization algorithm, which simulates the unique hunting behavior of 
humpback whales, was a conceptual optimization design implemented and proposed by 
Mirjalili and Lewis in 2016 [21]. According to the research findings, a whale’s brain pos-
sesses human-like shuttle cells that are responsible for social, judgment, emotional and 
other behaviors. This is why, in recent years, people have been curious about these intel-
ligent sea animals. Humpback whales are aggressive hunters. Rather than direct attacks 
or slapping the seawater with their fins to stun their prey, their mechanism of attack led 
to the formulation of the bubble-net attacking mechanism that was introduced in the lit-
erature [21]. When they hunt in groups, they first dive about 10–15 m in the water, and 
then form a circular or nine-shaped path underneath the prey and swim quickly around 
it. They then use their vents to generate spiral air bubbles to crowd the prey together. 
Eventually, they manage to feed on the prey by following the flow direction of the air 
bubbles. The basic principle of the WOA is described below. 

3.1.1. Encircling the Prey 
Instinctively, humpback whales can identify the location of their prey and gather 

them. While updating their own position, the prey is surrounded. During the search pro-
cess, a temporary best solution is designated for reference in the algorithm. The current 
best solution may be the prey location or the position that is the closest to the prey. In the 
search formula, after defining the initial search position, the position is overridden by the 
current best position. In other words, the best solution is found by family search. 

The position update formula is as follows: 

𝐷𝐷��⃑ 𝑤𝑤𝑒𝑒 = �𝐶𝐶 ∙ 𝑄𝑄∗����⃑ (𝑡𝑡) − 𝑄𝑄�⃑ (𝑡𝑡)� (17) 

𝑄𝑄�⃑ (𝑡𝑡 + 1) = 𝑄𝑄∗����⃑ (𝑡𝑡) − 𝐴𝐴 ∙ 𝐷𝐷��⃑ 𝑤𝑤𝑒𝑒  (18) 

where 𝑄𝑄∗����⃑ (𝑡𝑡) is the position vector that is the nearest to the prey at the 𝑡𝑡th iteration (i.e., 
the current best position vector), and 𝑄𝑄�⃑ (𝑡𝑡) is the position vector of the whale at the 𝑡𝑡th 
iteration. | |  is the absolute value, and ∙  signifies element-by-element multiplication. 
The pace coefficient vector 𝐴𝐴 and the weight coefficient vector 𝐶𝐶 are calculated, respec-
tively, by: 

𝐴𝐴 = 2𝑎𝑎𝑎𝑎����⃑ ∙ 𝑟𝑟𝑎𝑎𝑛𝑛�������⃑ − 𝑎𝑎𝑎𝑎����⃑  (19) 

and 

𝐶𝐶 = 2 ∙ 𝑟𝑟𝑎𝑎𝑛𝑛�������⃑  (20) 

where 𝑎𝑎𝑎𝑎����⃑  decreases linearly from 2 to 0 during the iterative process and 𝑟𝑟𝑎𝑎𝑛𝑛�������⃑  is a random 
number vector in [0, 1]. 
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3.1.2. Exploitation Phase 
In the development stage, the humpback whale was modeled mathematically accord-

ing to its bubble-net hunting method and is divided into two models: shrinking encircling 
mechanism and spiral updating position.  
a. Shrinking encircling mechanism 

The position update equation of the shrinking encircling mechanism is shown in 
Equation (17). By decreasing 𝑎𝑎𝑎𝑎����⃑  from 2 to 0 and substituting its value into Equation (18), 
And when the pace coefficient 𝐴𝐴 is in the range of [−1, 1], the search process of the whale 
algorithm enters the development stage. The current best position 𝑄𝑄∗����⃑ (𝑡𝑡) is the prey loca-
tion or the nearest position to the prey. The whale 𝑄𝑄�⃑ (𝑡𝑡) then approaches to the best posi-
tion in order to find the best solution. 
b. Spiral updating position 

When humpback whales hunt, they use their air vents to generate air bubbles. Since 
they swim rapidly in a nine-shaped or circular path underneath the water level, this spiral-
shape air-bubble net traps the prey. Therefore, this algorithm generates a spiral to update 
the calculated distance between the whale and the current optimal position as follows: 

𝑄𝑄�⃑ (𝑡𝑡 + 1) = 𝐷𝐷��⃑ 𝑤𝑤𝑠𝑠 ∙ 𝑒𝑒𝑏𝑏𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝜋𝜋) + 𝑄𝑄∗����⃑ (𝑡𝑡) (21) 

𝐷𝐷��⃑ 𝑤𝑤𝑠𝑠 = �𝑄𝑄∗����⃑ (𝑡𝑡) − 𝑄𝑄�⃑ (𝑡𝑡)� (22) 

𝐷𝐷��⃑ 𝑤𝑤𝑠𝑠 denotes the distance between the whale location and the current best position, 𝑏𝑏 
is a constant to designate the logarithmic spiral shape, and 𝜋𝜋 is a random number in the 
range of [−1, 1] 

When humpback whales hunt, they swim along the spiral path generated by their air 
vent bubbles. In order to simulate the behavior of both modes simultaneously, it is as-
sumed that there is a 50% chance that each choosing between the shrinking encircling and 
the spiral updating mechanisms. The spiral update position during the process is shown 
below: 

𝑄𝑄�⃑ (𝑡𝑡 + 1) = � 𝑄𝑄∗����⃑ (𝑡𝑡) − 𝐴𝐴 ∙ 𝐷𝐷��⃑ 𝑤𝑤𝑒𝑒   𝑠𝑠𝑖𝑖 𝑎𝑎 < 0.5
𝐷𝐷��⃑ 𝑤𝑤𝑠𝑠 ∙ 𝑒𝑒𝑏𝑏𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝜋𝜋) + 𝑄𝑄∗����⃑ (𝑡𝑡)  𝑠𝑠𝑖𝑖 𝑎𝑎 ≥ 0.5

 (23) 

where 𝑎𝑎 is a random number in the range of [0, 1]. 

3.1.3. Exploration Phase 
During the scouting stage, an individual whale group conducts a random search us-

ing the location of any partner as a reference. At this time, the whale algorithm conducts 
a search in the vicinity of any location to find a better value. If |A��⃗ |≥1, the whale algorithm 
conducts the exploration phase, forcing the whale to deviate from its original prey target 
to look for other, more suitable prey. This mechanism enhances the whale’s ability to 
search and hunt in an entire area. 

𝐷𝐷��⃑ 𝑤𝑤𝑒𝑒 = �𝐶𝐶 ∙ 𝑄𝑄�⃗ 𝑟𝑟𝑎𝑎𝑠𝑠𝑟𝑟(𝑡𝑡) − 𝑄𝑄�⃑ (𝑡𝑡)� (24) 

𝑄𝑄�⃑ (𝑡𝑡 + 1) = 𝑄𝑄�⃗ 𝑟𝑟𝑎𝑎𝑠𝑠𝑟𝑟(𝑡𝑡) − 𝐴𝐴 ∙ 𝐷𝐷��⃑ 𝑤𝑤𝑒𝑒 (25) 

where 𝑄𝑄�⃗ 𝑟𝑟𝑎𝑎𝑠𝑠𝑟𝑟 is an arbitrary position vector. 
Note that |A��⃗ |≥1 means that all elements of A��⃗  are greater or equal to 1. In summary, 

a random number 𝑎𝑎 and A��⃗  are generated using Equation (19). When 𝑎𝑎 ≥ 0.5, the loca-
tion is updated via Equation (21), whereas, if 𝑎𝑎 < 0.5, the location is updated by Equation 
(25) when |A��⃗ |≥1 and by Equation (18) when |A��⃗ |<1. The objective function value is com-
puted to obtain the best solution whenever there is one. The process is executed iteratively 
until the stopping criteria are met. 
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3.2. Spotted Hyena Optimizer 
The spotted hyena optimizer (SHO), which simulates the hunting behavior of spotted 

hyenas, is an optimal algorithm proposed by Dhiman and Kaur in 2017 [26]. Hyenas are 
a very intelligent species. They use multiple senses to identify relatives or other individu-
als as well as to rank them within the same species by trusting the higher priority group 
first. The predation mechanism for the spotted hyena is composed of three processes: en-
circling, hunting and attacking the prey. The basic principle of the spotted hyena algo-
rithm is described as follows: 

3.2.1. Encircling the Prey 
Spotted hyenas locate their prey and then surround it. The mathematical model for 

this behavior is expressed as: 

𝐷𝐷��⃑ ℎ𝑒𝑒 = �𝐵𝐵�⃑ ∙ 𝑃𝑃�⃑𝑒𝑒(𝑡𝑡) − 𝑃𝑃�⃑ (𝑡𝑡)� (26) 

𝐵𝐵�⃑ = 2 ∙ 𝑅𝑅𝑑𝑑1�������⃑  (27) 

where 𝐷𝐷��⃑ ℎ𝑒𝑒 is the distance between the prey and spotted hyena, 𝑡𝑡 is the current iterations, 
𝑃𝑃�⃑𝑒𝑒 is the prey position vector, 𝑃𝑃�⃑ (𝑡𝑡) is the spotted hyena position vector, and 𝐵𝐵 is the sway 
factor. 𝑅𝑅𝑑𝑑1�������⃑  is a random number vector in the range of [0, 1]. 

Next, the location of each spotted hyena is updated to: 

𝑃𝑃�⃑ (𝑡𝑡 + 1) = 𝑃𝑃�⃑𝑒𝑒(𝑡𝑡) − 𝐿𝐿�⃑ ∙ 𝐷𝐷��⃑ ℎ𝑒𝑒  (28) 

𝐿𝐿�⃑ = 2ℎ�⃑ ∙ 𝑅𝑅𝑑𝑑2�������⃑ − ℎ�⃑  (29) 

ℎ�⃑ = 5 − �𝐼𝐼𝑡𝑡𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑠𝑠𝑐𝑐𝑛𝑛 × (5/𝑀𝑀𝑎𝑎𝑥𝑥𝐼𝐼𝑗𝑗𝑒𝑒𝑟𝑟𝑎𝑎𝑗𝑗𝑖𝑖𝑐𝑐𝑠𝑠)� (30) 

where 𝐿𝐿�⃑  is the convergence factor. 𝑅𝑅𝑑𝑑2�������⃑  denotes a random number vector in the range of 
[0, 1]. ℎ�⃑  decreases linearly from 5 to 0. Max iteration is the maximum iteration number. 

3.2.2. Hunting 
As mentioned earlier, the community of spotted hyenas usually hunts its prey using 

a trusted species network and, then, identifies its location, as mathematically specified in 
Equation (31): 

𝐷𝐷��⃑ ℎℎ = �𝐵𝐵�⃑ ∙ 𝑃𝑃�⃑ℎ − 𝑃𝑃�⃑𝑘𝑘� (31) 

𝑃𝑃�⃑𝑘𝑘 = 𝑃𝑃�⃑ℎ − 𝐿𝐿�⃑ ∙ 𝐷𝐷��⃑ ℎℎ  (32) 

𝐶𝐶ℎ = 𝑃𝑃�⃑𝑘𝑘 + 𝑃𝑃�⃑𝑘𝑘+1 + ⋯+ 𝑃𝑃�⃑𝑘𝑘+𝑠𝑠 (33) 

where 𝑃𝑃�⃑ℎ is the position of the first best spotted hyena. 𝑃𝑃�⃑𝑘𝑘 is the position of other spotted 
hyenas. 𝐶𝐶ℎ is the cluster of the 𝑁𝑁 best solutions.𝑁𝑁 denotes the number of spotted hyenas. 

𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠 �𝑃𝑃�⃑ℎ,𝑃𝑃�⃑ℎ+1,⋯ , �𝑃𝑃�⃑ℎ + 𝑅𝑅𝑀𝑀������⃑ �� (34) 

where 𝑅𝑅𝑀𝑀������⃑  is a random vector in the range of [0.5, 1]. After adding 𝑅𝑅𝑀𝑀, the number of 
feasible solutions 𝑛𝑛𝑐𝑐𝑠𝑠 is defined and all candidate solutions are calculated. 

3.2.3. Attacking Prey (Exploitation) 
Spotted hyenas start to attack their prey in the last stage of the hunt, when the coeffi-

cient �𝐿𝐿�⃑ � < 1. Its location is revised by using the average of the current optimal solution 
set. The formula for attacking the prey is expressed as: 
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𝑃𝑃�⃑ (𝑡𝑡 + 1) =
𝐶𝐶ℎ
𝑁𝑁

 (35) 

where 𝑃𝑃�⃑ (𝑡𝑡 + 1) presents the best solution and updates the positions of other spotted hy-
ena according to the position of the best spotted hyena. 

In brief, Equations (33) and (34) are used to calculate the best solution group and 
Equation (35) is used to update the position of each search agent. Next, the objective func-
tion is calculated to update the position of the search agent if a better solution is found. 
Lastly, the spotted hyenas group is updated through the new objective function value of 
the search agent. Again, the iteration is terminated as soon as the stopping criteria are 
reached. 

4. Numerical Results 
We first considered a perfect conductor concealed in the half-space. Figure 1 shows 

that an amplitude 1 electromagnetic wave is incident on region 1 with a frequency of 3 
GHz and a wavelength of 10 cm. The buried depth at 𝑥𝑥 = −𝑎𝑎 = −10𝑐𝑐𝐼𝐼. The background 
substance in region 1 is air, i.e., ε1 = ε0 and 𝜎𝜎1 = 0. The background substance in region 
2 is the soil with ε2 = 2.56 ε0 and 𝜎𝜎2 = 0. In the numerical simulation, we used three dif-
ferent directions of incident waves (∅ = −60°, 0°and 60°) to show the buried object. There 
were 20 equally spaced measurement points from 𝑥𝑥 = −10 𝑐𝑐𝐼𝐼 to 𝑥𝑥 = 10 𝑐𝑐𝐼𝐼 to receive 
the scattered field along the media 𝑥𝑥 = −10 𝑐𝑐𝐼𝐼. We aimed to utilize the received scattered 
field collected from various incident angles for reshaping the object. To investigate the 
effects of noise, we added a quantity of (b + cj) to each complex scattered field, where b 
and c are independent random numbers with a uniform distribution over 0 to the noise 
level times the R.M.S value of the scattered field. The numerical results were obtained with 
a noise level of 1%. 

In this research, three inverse scattering examples were investigated using the WOA 
and SHO. The shape function 𝐹𝐹(𝜃𝜃) was chosen to be (3 + 0.4𝑠𝑠𝑠𝑠𝑛𝑛3𝜃𝜃) 𝑐𝑐𝐼𝐼 in the first exam-
ple. This scatterer was set to a smoother shape. The respective reconstructed shape func-
tions by the WOA and SHO were good, as shown in Figures 2 and 3. Comparing Figures 
2 and 3, it can be seen that, although the initial guess of the WOA was poor, it still con-
verged to a better result. It is clear that the backside of the object was not reconstructed 
well by the SHO. The shape function discrepancies DISR were defined as: 

𝐷𝐷𝐼𝐼𝐷𝐷𝑅𝑅 = �
1
𝑁𝑁′�[𝐹𝐹𝑐𝑐𝑎𝑎𝑐𝑐(𝜃𝜃𝑖𝑖) − 𝐹𝐹(𝜃𝜃𝑖𝑖)]2

𝑁𝑁′

𝑖𝑖=1

/𝐹𝐹2(𝜃𝜃𝑖𝑖)�

1
2

 (36) 

where 𝑁𝑁′ was set to 100. The DISR was about 1.5% and 4.7% using the WOA and SHO, 
respectively. From the numerical results, it can be seen that the reconstruction of the WOA 
is better than that of the SHO. 

The shape function was defined as 𝐹𝐹(𝜃𝜃) = (3 + 0.5𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 + 1𝑐𝑐𝑐𝑐𝑠𝑠3𝜃𝜃 + 1.5𝑠𝑠𝑠𝑠𝑛𝑛3𝜃𝜃) 𝑐𝑐𝐼𝐼 in 
the second example. The buried object was set to a three-petal shape for example 2. From 
Figures 4 and 5, it can be observed that the shape functions reconstructed by the WOA 
and SHO were not bad, although there was some discrepancy on the upper part. This is 
due to the fact that the backside of the object was more difficult to rebuild. Note that the 
upper part of the object in the figure corresponds to the back side of the buried object. The 
DISR was about 11.6% and 14.0% by the WOA and SHO, respectively. From Figures 4 and 
5, it can be seen that the initial guess values of the two algorithms were similar. However, 
the reconstruction results show that the WOA is better than the SHO. 

We defined the shape function to be 𝐹𝐹(𝜃𝜃) = (3 + 0.9𝑐𝑐𝑐𝑐𝑠𝑠3𝜃𝜃 + 0.9𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃)𝑐𝑐𝐼𝐼 in the last 
example. The buried object was set to be a peanut shape. Figures 6 and 7 show the shape 
functions reconstructed by the WOA and SHO for the best members, respectively. It can 
be seen that the initial shape of the WOA is better than that of the SHO for this example. 



Appl. Sci. 2023, 13, 5857 9 of 13 
 

It was found that the shape functions reconstructed by the WOA and SHO had some dis-
crepancies in the upper part, especially on the right-hand side. The DISR was about 12.3% 
and 14.6% by the WOA and SHO, respectively. From the numerical results, it can be seen 
that the WOA and SHO were less accurate in reconstructing the concave surface on the 
back of the peanut. Apparently, the reconstruction performance for the WOA overwhelms 
that of the SHO. 

Regarding the computational resources for the two algorithms shown in Table 1, the 
SHO took 843 s with CPU 3.8-GHz Intel Core i7 Processor and 32-GB RAM for example 1, 
while the WOA took 845 s. Although the WOA took a little more time, it was able to re-
construct better results, as shown in Table 2. The convergence of the algorithms for each 
iteration is shown in Figure 8. 

 
Figure 2. WOA reconstruction of the shape function for example 1. 

 
Figure 3. SHO reconstruction of the shape function for example 1. 
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Figure 4. WOA reconstruction of the shape function for example 2. 

 
Figure 5. SHO reconstruction of the shape function for example 2. 

 
Figure 6. WOA reconstruction of the shape function for example 3. 
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Figure 7. SHO reconstruction of the shape function for example 3. 

 
Figure 8. The root-mean-square error of the scattered field as a function of iteration by the SHO and 
WOA for example 1. 

Table 1. Computational resources for the two algorithms. 

Method 
Resources 

SHO WOA 

Memory 2G 2G 
Time 843 sec 845 sec 

Table 2. DISR for the SHO and WOA. 

Method 
Example 

SHO WOA 

Example 1 4.7% 1.5% 
Example 2 14.0% 11.6% 
Example 3 14.6% 12.3% 

5. Conclusions 
The two-dimensional inverse scattering processes for a perfect conductor buried in a 

half-space via the WOA and SHO algorithms were compared in this paper. By irradiating 
a TM-polarized wave with a 1% noise interference, the two algorithms were employed in 
the frequency domain for image reconstruction. TM waves were irradiated from the other 
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half-space to a perfect conductor with an unknown shape buried in one half-space. The 
scattered field measured outside the conductor surface with the boundary condition was 
used to reconstruct the object via the WOA and SHO algorithms. The inverse scattering 
problem was solved to obtain an optimized solution resulting from the implementation 
of the WOA and SHO. According to the numerical simulation, the reconstruction perfor-
mance was more favorable to the WOA than the SHO using the same parameters. This is 
due to the random generation of initial guesses for both optimization methods. However, 
the WOA had a better search ability than the SHO in a wide area. In our future work, we 
will consider combining the WOA and SHO with AI techniques for electromagnetic im-
aging. 
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