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Abstract: The establishment of a structural health monitoring (SHM) system for the damage and
defects of composite structures is of great theoretical and engineering value to ensure their production
and operational safety. Advanced machine learning technologies, such as deep learning, have become
one of the main driving forces for state monitoring and predictive analysis of these structures.
However, it is difficult to obtain sufficient data to train the deep learning model, which may fail to
build an accurate and efficient SHM model. To overcome this problem, a new method based on Lamb
waves and the diffusion model (DM) is proposed to realize the identification and classification of
different defects for carbon-fiber-reinforced polymer (CFRP) structures. In this study, DM is used
as the generation model of data enhancement, and the optimized and improved DDPM model is
constructed in this experiment. The deep residual neural network (DenseNet) is used to identify and
classify the defect features from the Lamb wave signals. Experimental and test results show that
the deep learning framework designed in this study based on DenseNet classification and DDPM
data enhancement can accurately detect and classify damage signals of common defects in CFRP
composite plates.

Keywords: structural health monitoring; diffusion model; DenseNet; Lamb wave

1. Introduction

Carbon-fiber-reinforced polymer (CFRP) has high strength-to-weight ratio, high
stiffness-to-weight ratio, light-weight, corrosion resistance, fatigue resistance, designability
and other properties, and is widely used in aerospace, energy buildings, sports equipment,
land transportation, marine fields, etc. In the context of the depletion of mineral energy,
the global natural gas trade is active, and the market is increasing. Accordingly, composite
wound gas cylinders commonly used for hydrogen storage or energy storage are also being
used more widely and have a better prospect [1,2].

The appearance of commonly used composite gas cylinders is shown in Figure 1.
However, improper storage, prepreg production and preparation of CFRP during material
processing may lead to fiber fracture, matrix debonding, fiber migration and other damages.
During component manufacturing, fiber delamination, kinking, blistering, pollution, holes
and other damages are caused due to improper laying, curing, machining or assembly.
In service engineering, fiber delamination, fracture, erosion, matrix cracking and other
damages may be caused by collision, chemical corrosion, local overload, fatigue and harsh
environments. Due to the accumulation of impact, load, service time, environment and
other factors, fatigue damage is the most dangerous and the main form of mechanical
structure failure in the service process, accounting for 50–90% of the total mechanical
structure failure [3]. At the initial stage, there will be slight fatigue damage in the structure,
which is difficult to detect. The internal fatigue damage gradually expands, and when it
expands to a certain extent, it will break, and when it is serious, it will cause huge economic
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losses and endanger personal safety [4]. Because of this, composite gas cylinders also have
high safety risks, and now many accidents caused by the health problems of gas cylinders
have aroused everyone’s attention. Therefore, it is of great significance to monitor and
evaluate the health status of CFRP in real time, and efficient detection and monitoring
technology has become the focus of current research. Currently, many people are studying
experiments on composite plates and cylinders. Generally, basic research can be carried
out on plates before being extended to gas cylinders.
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At present, major research institutions have developed many structural health moni-
toring (SHM) methods. Common SHM methods include the acoustic emission method, elec-
tromechanical impedance method, vibration method, strain method, Lamb wave method,
etc. Among them, the acoustic emission method depends on the acoustic emission signal
when the damage occurs and expands, which is suitable for online use; The electromechan-
ical impedance method is low in cost and simple in structure, but it is difficult to detect
minor damage with low accuracy and small monitoring range [5,6]. Although the vibration
method can monitor large-area damage, it requires more sensors, is insensitive to small
damage, and is easily affected by the external environment; The strain method is only
applicable to the monitoring of large-scale damage to structures. Compared with other
SHM methods, because Lamb wave propagates in the measured structure with small signal
attenuation, long propagation distance, sensitivity to minor damage, large area monitoring,
high accuracy, low cost and other advantages, the structural health monitoring method
based on Lamb wave is widely used in the industrial field and favored by researchers at
home and abroad [4].

Piezoelectric (PZT) is the main sensing element used in Lamb wave experiments at
present and is widely used in signal generation and the acquisition of Lamb waves. A
piezoelectric ceramic chip is a dual-mode transducer made of zirconium, titanium and lead
oxides after chemical reaction. The structure includes a piezoelectric ceramic sheet and
metal vibration sheet, which have obvious piezoelectric characteristics and can be used for
ultrasonic excitation and reception.

Our current research mainly focuses on the corresponding signal acquisition and
subsequent identification processing for several types of common CFRP damage, such as
holes, notches, fatigue cracks, etc. This study is based on the health monitoring principle
of Lamb wave. A Lamb wave in composite laminate is an elastic wave generated and
propagated between the upper and lower surface boundaries of the plate by particle
movement, as shown in Figure 2. When the wave packet encounters a defect, reflection
and scattering occur. Then, by analyzing the difference in waveform signals between
healthy samples and damaged samples, the defects in the medium can be easily detected.
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Compared with broadband excitation signal, narrowband excitation signal is more suitable
for structural health monitoring technology [7]. The active Lamb wave is excited by the
driving element to the monitored structure. Lamb wave has been widely used in the
detection of materials and plates due to its flexible excitation and detection methods, its
interaction with plate defects and carrying a large amount of information required for
detection. Additionally, it has become an important and effective means and method for
evaluating the performance of plate-like structures. In 2011, Mirahmadi et al. [8] effectively
improved the time resolution and signal-to-noise ratio of Lamb wave S0 mode detection by
using signal processing methods such as Wiener filtering. In 2021, Xiang Yanxun from East
China University of Science and Technology proposed a crack localization method based
on group velocity matching, which can well locate breathing cracks on the guided wave
propagation path [9].
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Recently, intelligent manufacturing has been thriving, and various types of produc-
tion data can be collected faster and more extensively than ever before. This provides
new opportunities for data-driven fault diagnosis methods to fully utilize massive data
of various types [10], which has attracted increasing attention from researchers and engi-
neers. In the rapidly developing world of technology, artificial neural networks are one
of the most mature data-driven fault diagnosis methods. With the rapid development
of machine learning, deep learning (DL) has become an effective method for structural
health monitoring. DL can automatically learn abstract representations of raw data [11],
which can better extract features and improve analysis effectiveness. In certain scenarios,
data types for fault diagnosis can be presented in two-dimensional formats (such as time-
frequency spectra), and then combined with image processing methods for classification.
Through the processing of these images, analysis of various time-series signals can be
facilitated, providing better ideas and directions for structural health monitoring today [12].
Ince et al. [13] applied one-dimensional CNN to real-time motor fault diagnosis in their re-
search. Abdeljaber et al. [14] conducted experiments on real-time damage detection using
one-dimensional CNN. Chong [15] proposed a method for extracting induction motor fault
features, in which he converted one-dimensional vibration signals into two-dimensional
grayscale images. Liu et al. [16] applied a CNN model to wave-based crack damage detec-
tion, training a deep CNN model based on Lamb waves data to avoid the calculation and
extraction of damage features. Wu et al. [17] used continuous wavelet transform to convert
Lamb wave time series signals into two-dimensional images, and then used a CNN model
to classify the images, achieving accurate localization of layered damage in composite
structures. Through these methods, researchers can simplify the process of waveguide
signal processing, and to a certain extent, simplify the analysis of waveguide’s multimode
and dispersion problems, while also improving the ability to extract signal features. At
the same time, these methods can be combined with image processing methods for signal
classification, improving the classification effect of temporal signals. However, in practice,
damaged and defective data is relatively rare and costly. There are also many challenges
in the engineering application of this technology, including the lack of training data, the
imbalance between damaged and undamaged data, and the impact on the construction
and subsequent processing of the overall dataset. Therefore, in this study, we hope to find
a method to expand the acquired damaged signal samples without affecting accuracy, and
improve this situation through data augmentation, combined with innovative classifiers
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to optimize signal classification. In the signal dimension transformation method, com-
monly used methods have many limitations and complex parameters, and the effect of
feature extraction for Lamb waves is generally not ideal. Therefore, this study attempts
a new signal-to-image conversion method, which can extract Lamb wave features more
specifically, simplify the processing process, and improve the effect of signal dimension
transformation. In addition, this study uses attention mechanisms to capture the time
and feature dependencies of time series, improving the quality of data generation and
subsequent signal classification. This overall framework for deep learning and signal
processing is the focus of this study

The rest of this article is organized as follows. Section 2 is about the design of the
experimental scheme and the introduction of relevant experimental equipment and materi-
als. Section 3 includes the selection and design of data enhancement algorithm and signal
classification algorithm. Section 4 presents the experimental test results of the proposed
method and the comparison of common methods. Finally, Section 5 concludes this article.

2. Description of the Experiment
2.1. Experimental Object and Characteristics

Considering that it is difficult to carry out experiments on the surface of a cylinder,
this study firstly simplifies the experimental object to a plate for simulation and testing.
Through the preliminary design and improvement of the distributed network array on the
plate, the subsequent signal acquisition and analysis experiments are carried out. After the
experimental results of the plate are obtained, the experiment will be extended to curved
surfaces and cylinders. The plate and corresponding sensors used in the experiment are
shown in Figure 3.
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In this experiment, carbon fiber/epoxy resin matrix composites are used. The test
structure is given by carbon-fiber-reinforced polymer (CFRP) plates with clearly defined
geometry and piezoelectric transducers. Composite laminates are generally composed of
many basic sub layers laid in different directions and superimposed. The adjacent sub
layers of laminates are usually bonded by a thin adhesive layer. The composite winding
layer can bear most of the pressure load, in which the fiber is the main carrier. The resin
plays a bonding role on the fiber, and it also plays a role in distributing and transferring
the load between the fibers. Therefore, we need to select high-strength and high-elasticity
reinforcing fiber and resin with excellent performance to improve the bearing capacity of
the structure. The details of the raw materials of the composite plate used in this experiment
are as follows. The reinforcing material is T700SC12K carbon fiber from Toray Corporation
of Japan. The matrix material is epoxy resin and imidazole curing agent, whereas the
main component of epoxy resin is bisphenol A epoxy resin. Three CFRP plates were
manufactured for this study with the dimensions of 300 mm × 300 mm and a thickness of
4.8 mm, and the paving method is [+45◦/0◦/−45◦/90◦]6s. According to the above stacking
method, different perspectives are used for stacking, and the thickness of a single layer
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board is about 0.2 mm. A total of 24 layers are laid in the whole. The first specimen, called
“Intact plate”, was used for acoustic field measurement and related parameter measurement
under the condition of structural integrity. The second sample, called “Hole plate”, was
used to obtain the Lamb wave data in the case of hole defects in the plate. The third sample,
called “Crack plate”, was used to obtain the Lamb wave data in the case of crack defects in
the plate. The elastic modulus and shear modulus of composite materials are anisotropic,
so 9 elastic constants are needed to describe their mechanical behavior. These 9 elastic
constants can be divided into 3 principal directions of elastic modulus (E), 3 principal
directions of Poisson’s ratio (ν), and 3 principal directions of shear modulus (G). These
9 quantities constitute the main mechanical performance parameters of composite material
plates in experiments. The mechanical property parameters of carbon fiber/epoxy resin
matrix composite single-layer plate are shown in Table 1.

Table 1. Materials’ parameters of carbon fiber/epoxy composites.

E11/MPa E22/MPa E33/MPa ν12 ν13 ν23 G12/MPa G12/MPa G13/MPa

172,000 7000 7000 0.35 0.35 0.35 3900 3900 3900

2.2. Experimental Equipment and Principle

The active Lamb wave is excited by the driving element to the monitored structure.
The active Lamb wave is received by the receiving sensor after propagating a certain
distance in the structure. Then the Lamb wave signal containing damage information is
processed by using a specific signal processing method, and the characteristic parameters
related to the monitored structure damage are extracted, and the structural damage is
identified by combining the corresponding damage identification methods. The ultrasonic
excitation system of this experiment is the RETIC RAM SNAP 5000 high-energy ultrasonic
measurement system. The RETIC RAM SNAP 5000 high-energy ultrasonic measurement
system is used for the excitation and measurement of ultrasonic Lamb waves. This mea-
surement system was specially developed by the RITEC Corporation of the United States
for the measurement of nonlinear ultrasound. It is a commercial nonlinear ultrasonic
measurement system with advanced technology at present. It mainly includes a broadband
RF pulse amplifier, signal tracking receiver, phase shift sensitive detector, gate integrator
and multiple frequency synthesizers. The ultrasonic measurement system generates pulse
signals according to the indication information, which are transmitted to the ultrasonic
piezoelectric transducer through the attenuator and low-pass filter through the connecting
line. The transducer converts ultrasound signals into vibration signals through the reverse
piezoelectric effect, and injects them into the plate through the piezoelectric element, so
that they propagate into the plate. The excited Lamb wave propagates in the sheet and
interacts strongly with the sheet defect. The signal with a large amount of information
required for detection enters the receiving transducer, and is displayed and stored by the
oscilloscope after passing through the high-pass filter and amplifier. The received signal is
processed to obtain the desired information. The specific experimental equipment diagram
and recommended schematic diagram are shown in Figure 4.

The RETIC RAM SNAP 5000 high-energy ultrasonic measurement system generates
5-cycle Hanning window modulated sine pulse signals, drives ultrasonic piezoelectric
transducers to generate ultrasonic vibration signals after passing through attenuators, and
applies these vibration signals to sample objects for experiments. A signal with 5 cycles
ensures that the waveform in the time domain is easy to distinguish while maintaining a
narrow bandwidth. The Hanning window modulation used in our experiment can increase
the main lobe, reduce the side lobes, and reduce spectral energy leakage. The Lamb wave is
generated in the flat sample and propagated to the receiving piezoelectric transducer. Then
the signal is amplified by the power high voltage amplifier, and then the signal is converted
from an electrical signal to a mechanical signal through the PZT driver and propagated
in the plate structure. Then it is received by the PZT sensor and converted into electrical
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signal again. Finally, the received signal is input into the RETIC RAM SNAP 5000 system,
oscilloscope and computer for storage, display, and subsequent processing and analysis.
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For this experimental design, Lamb wave is selected as the detection method. The
wave velocity of the same guided wave mode will change with the change in frequency.
At the same time, the increase in frequency will also lead to more complex guided wave
modes. Not only do the modes increase, but also different modes with wave velocity close
to will mix and interfere, increasing the difficulty of signal processing and affecting the
detection accuracy. Here, the phase velocity of the fundamental symmetric (S0) Lamb wave
mode was used to establish the model for evaluating the extent of the damage. In this
research, the center frequency of 210 kHz is selected as the excitation frequency after the
verification of experiment and simulation. At this frequency, the guided wave mode is
the least, and the wave velocity does not change significantly with the frequency, which is
conducive to modal separation. At the same time, selecting a lower frequency can reduce
the attenuation of signal transmission, which is suitable for the monitoring of relatively
large composite structures.

2.3. Experiment Design and Preparation

Defect pre-setting is shown in Figure 5. The defects are set in the middle of the laminate,
mainly including hole defects and crack defects. In this experiment, both hole defects and
crack defects are preset in the center of the plate. The diameter of the hole is set to be 5 mm,
with a depth of 3 mm. The size of the crack is approximately 1.5 mm × 30 mm, with a depth
of 1 mm. According to the previous statement, this experiment selects a center frequency of
210 kHz as the excitation frequency. Correspondingly, the sampling frequency for the time
sequence signal in this experiment is chosen as 9× 106 Hz, and the amplitude of the excitation
signal is set to 1 mV. In this experiment, the excitation frequency of the guided wave signal
is 210 kHz, and the longest time for the propagation of the guided wave direct wave signal
in the structure is calculated to be 0.000058 s, based on the wave speed of the corresponding
guided wave slowest mode at this frequency. Therefore, to ensure the complete acquisition of
the guided wave signal, a storage time length of 0.0001 s, which is greater than this value, is
selected for the signal automatic acquisition system. As the selected sampling point count is
set to 5 × 106 per second, 500 data points can be collected for each sensor path. This is then
used as the window length for extracting a set of signal data. Each signal was taken as a whole
set of data for subsequent training without being cut or segmented. The PZT sensor array is
arranged symmetrically in the center, forming a square shape. The piezoelectric disk measures
8 mm in diameter. PZT sensors are arranged at four ends as excitation and reception sources.



Appl. Sci. 2023, 13, 5843 7 of 19

All PZTs can be used as actuators and sensors in the experimental testing process. The PZTs
are bonded to the surface of the composite plate using cyanoacrylate adhesive. Compared
with other adhesives, this adhesive is more suitable for quickly bonding PZT sensors in
short-term experiments. When pasting the sensors, keep the bonding surface clean and flat.
As shown in the schematic diagram in the article, we sequentially numbered the PZT sensors
as PZT1, PZT2, PZT3, and PZT4, and stimulated the excitation signal from PZT1 to PZT4 in
turn. When each sensor is stimulated, the other three sensors receive the signal. Therefore, we
can obtain 12 sets (4× 3) of Lamb wave signals in one monitoring experiment. First, ultrasonic
nondestructive testing is conducted on the specimens to verify their intact state and obtain
the signal data in the intact state. Multiple groups of one-dimensional time series signals
under different defects are obtained by repeated experimental tests. By repeating the test in
this way, multiple sets of signal data can be obtained, and the current data set constructed is
360 sets of signal data. These data constitute a large enough data set, which can reflect the
main characteristics of this defect. This data set can be used for subsequent experiments and
algorithm analysis to extract the features and signal information of corresponding defects.
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3. Methodology

In order to realize the identification and classification of different damages and defects,
neural networks are considered for processing. Processing direction mainly faces the
application of data-driven modeling within the concepts of sensor data fusion, feature
extraction and pattern recognition for Lamb wave signals. Data-driven methods require a
large volume of historic data to establish the fault modes of the systems without a priori
known models or signal patterns. The ultrasonic Lamb wave signal is obtained during the
experiment, and the neural network model is constructed and trained using the signal data
obtained from the original sample. The neural network model automatically learns the
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mode and damage-sensitive characteristics of ultrasonic signals during training. It should
be added that in practice, data in damaged cases are rare and very costly. There are also
many challenges in the engineering application of this technology, including the lack of
training data, the imbalance between damaged and undamaged data, and the impact on
the construction and subsequent processing of the overall dataset. Therefore, it is necessary
to find a method to expand the obtained damage signal samples without affecting the
accuracy. The underlying neural networks are trained on a small subset of data and are then
used to process any incoming new sample. Considering these premises and foundations,
the target model is selected and parameterized. On the basis of parametric research, the
structure and parameters of the model are optimized. The test signal is introduced into
the optimized model to verify the damage detection capability and classify the defects and
damages. The idea in this study is to design a composite framework for identifying and
classifying complex damage signals based on data augmentation and signal classification.
At the same time, a dimension transformation method is introduced to process time series
signals, which converts one-dimensional time series signals into two-dimensional images,
making it easier to combine data with the latest and most mature neural network systems.
In the specific operation process, we continuously optimize and improve the model by
adding attention mechanisms and designing other relevant parameters. The theoretical
basis, method selection and design of this study are depicted in Figure 6:
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3.1. A Method of Signal Dimension Conversion

In the acquisition experiment of Lamb waves, the collected signals are timing signals,
which need to be processed and analyzed later. In traditional fault diagnosis methods,
the data pre-processing method is vital since most data-driven methods cannot handle
the raw signals directly. One of the main functions of the data pre-processing method is
to extract the features of the raw signals from a large volume of historic data. However,
extracting the proper features is exhaustive work, and these features have great effects
on the final results. In addition, current deep learning methods mainly deal with two-
dimensional structural data. The depth learning methods used for image processing are
relatively mature, and there are many effective methods. Therefore, if we can convert the
experimental one-dimensional time series data into two-dimensional (image) data through
specific methods, we can better adapt to the current popular and cutting-edge models and
improve the training and classification effect. Now, the following methods are adopted to
convert the time-domain raw signals to images.
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As shown in Figure 7, in this conversion method, the time-domain raw signals fulfill
the pixels of the image by sequence. First, we need to obtain an M×M-sized image. To
fill the square image, we need to randomly intercept a segment signal with the length M2

from the raw signal. First, let L(i), i = 1 . . . M2 denote the value of the segment signal.
While P(j, k), j = 1 . . . M, i = 1 . . . M denotes the pixel strength of the image, as shown
in equation P(j, k) = round

{
L((j−1)×M+k)−Min(L)

Max(L)−Min(L) × 255} [18]. Later, we will analyze this
formula. The value of the segmented signal at each position is defined by L , and the value
corresponding to a specific position is determined by j and k. The image intensity at the
corresponding position is obtained by performing the operation in the equation.
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The function round is the rounding function, and the whole pixel value has been
normalized from 0 to 255. The number size refers to the pixel intensity of the grayscale
image. The 2 × 2 filters are commonly used in this study, and the size of image features on
each layer would be reduced by half. Therefore, the recommended value of M in this case
is 2n. In this study, the selection of 64 × 64 and 16 × 16 depends on the amount of signal
data. In combination with the sparsity of guided wave signal features and the large amount
of data collected each time, in order to ensure the features of the data, 64 × 64 images
are chosen as the research object. The advantage of this data processing method is that it
can convert one-dimensional signals into two-dimensional signals through this method,
and it provides a way to explore the 2D features of the raw signal [15]. Moreover, this
data pre-processing method can be calculated without any predefined parameters and can
reduce the experiences as more as possible. These can simplify the training process and
optimize the calculation process. In this study, the size of the image varies with the volume
of the signal data, and the guided wave signal data targeted in this experiment has a large
volume. Moreover, a larger image size can facilitate classification results. Therefore, in this
study, the size of the image is 64 × 64. In the subsequent processing, we also apply the
zero-padding method to the model to prevent dimension loss. The process of quantifying
temporal signals into two-dimensional images may introduce noise, which can cause the
loss of image clarity and details, thereby affecting image performance to some extent.
Therefore, this experiment used filters for the generated images, and in this experiment,
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we chose the common Gaussian filter to smooth the image and remove noise. Through
subsequent testing, this experiment minimized the impact of noise on image quality and
subsequent processing as much as possible.

3.2. Data Enhancement Based on Diffusion Model

This study mainly aims to build a data-driven SHM system, which, most importantly,
needs data support. Considering the limitations of the experimental conditions and the spe-
cific conditions of the experimental object, some experimental signals have poor detection
effects, and some experiments have insufficient signal detection to build a sufficient number
of data sets for training. It may have certain impact on the training of the experimental
model, and will also have a certain interference with the analysis of the experiment. At
the same time, the experimental data has uneven samples, so we consider expanding and
enhancing some data to increase the number of samples. Data enhancement is also called
data amplification, which means that limited data can generate the value equivalent to
more data without substantially increasing data. These can expand the dataset, improve
the robustness of the model, improve the generalization ability of the model and avoid
sample imbalance. Now, we mainly consider testing several generation models in this
study, including Generic Adversary Network (GAN), Variable Automatic Encoder (VAE)
and diffusion models (DM).

3.2.1. GAN

GAN consists of a generator and discriminator. The generator is responsible for gener-
ating realistic data to “cheat” the discriminator, and the discriminator is responsible for
judging whether a sample is real or “made”. The training of GAN involves the two models
learning from each other and obtaining new data through confrontation. The generating
network should constantly optimize the data generated by itself so that the discriminant
network cannot judge, and the discriminant network should also optimize itself to make its
judgment more accurate. The relationship between the two forms confrontation, so it is
called a confrontation network [19]. When selecting GAN, after comparison and analysis,
the more advanced and practical DCGAN network was selected. DCGAN is a variant of
GAN. DCGAN combines CNN with the original GAN, and both the generating network
and the recognition network are applied to the deep convolution neural network. DCGAN
improves the stability of basic GAN and the quality of generated results, and improves the
ability and effect of feature extraction as a whole.

3.2.2. VAE

VAE wants to train a generation model. First, it assumes the distribution of a hidden
variable z, and constructs a model x = g (z) from z to target data x, which can map the
sampling probability distribution to the training set probability distribution. The hidden
variable z is generated, which contains data information and noise, so that the learned
target data is close to the probability distribution of the real data. VAE generally matches a
Gaussian distribution for each sample, and the hidden variable Z is obtained by sampling
from the Gaussian distribution. In addition to restoring input sample data, it can also be
used to generate new data. VAE is also a mature model for data generation and expansion.

3.2.3. Diffusion Model

A diffusion model is a kind of generation model, different from Variable Automatic
Encoder (VAE), Generic Adversary Network (GAN) and other generation networks. A
diffusion model gradually applies noise to the image in the forward phase until the image is
damaged and becomes a complete Gaussian noise, and then learns the process of restoring
from Gaussian noise to the original image in the reverse phase. The purpose of a diffusion
model is to decompose specific data distribution p(x) and reconstruct data step by step
from random noise. Because the intermediate process is stochastic and unstable, the whole
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process is generated. In addition, reversible random steps ensure extensive fidelity of the
model and sample quality.

Specifically, in the forward phase, the noise is gradually increased on the original
image, and the new image obtained in each step is only related to the results in the previous
step until the image becomes pure Gaussian noise. The diffusion process is a Markov
process. The reverse phase is a process of continuous noise removal. This is to give
Gaussian noise to the original image, and then gradually remove the noise until the original
image is finally restored [20]. The schematic diagram of the forward and reverse processes
of the diffusion model is shown in Figure 8. More detailed processes will be described later:
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These are the following points about the forward process. We have a sequence of T
variables, where x0~ p(x) is our observed data and x1:T are latent variables. we can think
of diffusion models as a specific realization of a hierarchical VAE. What sets them apart is
a unique inference model, which contains no learnable parameters and is constructed so
that the final latent distribution q(xT) converges to a standard gaussian [21]. This “forward
process” model is defined as follows:

q(xt|xt−1) = N
(

xT ; xt−1
√

1− βt, βt I
)

(1)

The variables β1 . . . βT define a fixed variance schedule, chosen such that q(xT |x0) ≈
N(0, I). The forward process transforms sample distribution into gaussian noise. The image
is transformed according to Gaussian distribution after adding noise. A nice property of
the forward process is that we can directly sample from any timestep. Next, parameter
transformation and iteration are carried out to obtain a new expression of the formula:

αt = 1− βt (2)

αt =
t

∏
s=1

αs (3)

q(xT |x0)= N
(√

αt x0, (1− αt)I
)

(4)

One consequence of this is that we can draw random samples t~{1 . . . T} as part of the
training procedure. Another consequence is that we can make additional manipulations to
the lower bound to reduce the variance. This proceeds by observing the following result
(from Bayes rule):

q(xt|xt−1) =
q(xt−1|xt)q(xt)

q(xt−1)
(5)

Due to the Markov property of the forward process, we have: q(xt|xt−1) = q(xt|xt−1, x0).
Therefore, by conditioning all terms on x0 we arrive at the following expression.

q(xt|xt−1) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)
(6)

This is the main framework of the forward process. Now, let us look at the reverse process.



Appl. Sci. 2023, 13, 5843 12 of 19

The real noise generated by each forward propagation part is recorded as a label. In
addition to inference, the forward diffusion process also includes the “data set construction
process” similar to that used in this mathematical model. When the model is in reverse
diffusion, the Gaussian noise generated in the forward diffusion can be predicted and
inferred step by step to restore the initial sample data. The corresponding reverse process
distributions are defined as:

pθ(xt−1|xt) = N
(

xt−1; µθ(xt, t), σ2
t I
)

(7)

The variance σ2
t is a time-dependent constant (βt). The µθ(xt, t) is a neural network

with an input xt. In order to share parameters between timesteps, the conditioning variable t
is introduced in the form of positional embeddings [22]. The forward process samples xt can
be written as a function of x0 and some noise ε ∼ N(0, I).

We assume p(xt−1|xt) is a Gaussian distribution, and we can use a neural network to
fit it. Combine the generated noise tags as training reference. The inverse process is also a
Markov chain process.

pθ(x0:T) = p(xT)∏T
t=1 pθ(xt−1|xt) (8)

The corresponding process and results can be obtained as q(xt−1|xt, x0)=
q(xt |xt−1,x0)q(xt−1|x0)

q(xt |x0)
.

Set variance to constant βt, and continue to substitute the Gaussian probability density function for
subsequent processing.

Finally, it can be summarized as such:

q(xt−1|xt, x0)= N
(

xt−1;
(1− αt−1)

√
αtxt

1− αt
+

βt
√

αt−1x0

1− αt
,

1− αt−1

1− αt
βt

)
(9)

Then, calculate the likelihood function of the target data distribution, so that the
network can be trained. The mean fitted is µθ(xt, t) = 1√

α
(xt − βt

1−αt
εθ(xt, t)), and this can

be used for sampling.
The subsequent sampling process samples xT from the standard normal distribution and

calculates xt−1 iteratively. Known mean µθ(xt, t) and constant variance βt, xt−1 to x0 can be
calculated by parameter renormalization. This training objective also be viewed as a weighted
combination of denoising score matching used for training score-based generative models [23].

In fact, the idea of the Denoising Diffusion Probabilistic Model (DDPM) is very simple.
In reverse diffusion, Xt is used to predict Xt−1 images. Instead of optimizing the Xt to Xt−1
conversion, it is to optimize how noise is added when Xt−1 to Xt. At the same time, DDPM
also adds time embedding [24]. In this model, we will use U-Net. U-Net is a U-shaped
network structure, which is widely used in the segmentation field. The structure of this
network is symmetrical, filled with convolutional layers but without fully connected layers.
This method combines high-resolution feature maps with low-resolution feature maps after
upsampling, which makes the segmentation results more accurate. At the same time, in the
upsampling stage, the model still has a large number of channels, and more detailed object
information will be transmitted back through upsampling. From the shape, the upsampling
stage and the downsampling stage are symmetrical. The function of time embedding
is to tell U-Net (used to generate random noise and other work) the position of reverse
diffusion. Another reason for adding time embedding is that U-Net shares parameters.
Adding time embedding can generate different outputs based on different inputs. Through
these methods, U-Net can form some rough contours in the process of reverse diffusion.
As it progresses close to the original image, we hope to obtain object edge information and
some high-frequency information, so as to make the output image more realistic [25]. We
utilize an attention mechanism to capture the temporal and feature dependencies of time
series. To capture temporal and feature dependencies of multivariate time series, we utilize
a two-dimensional attention mechanism in each residual layer instead of a convolution
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architecture [26]. The attention mechanism allows the model to handle various lengths. For
batch training, we apply zero padding to each sequence so that the lengths of the sequences
are the same. This is also the key model used in this study.

3.3. Signal Recognition and Classification Based on DenseNet

In this section, we demonstrate the recognition and classification ability of the above
comprehensive methods for Lamb wave signals of different defects in composite materials.
Now we consider using neural networks for signal classification. When the network selected
for signal classification is very deep, the effect of the model becomes worse (the higher the error
rate), indicating that the deeper the network is, the better. When the network level increases
to a certain number, the training accuracy and test accuracy are rapidly reduced, which shows
that when the network becomes very deep, the deep network becomes more difficult to train.
In the process of back propagation, the neural network needs to continuously propagate the
gradient. When the number of network layers deepens, the gradient will gradually disappear
in the process of propagation, which makes it impossible to effectively adjust the weight of
the previous network layer. Therefore, deep residual network (ResNet) [27] is considered.
The residual network is easier to be optimized by adding shortcut connections to “skip
connections”. Several layers of networks containing a shortcut connection are called a residual
block, as shown in the following Figure 9:
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As shown in the figure above, x represents the input, F (x) represents the output of
the residual block before the activation function of the second layer, and σ Represents the
ReLU activation function. The output of the final residual block is (F (x) + x).

Directly transfer the input x to the output as the initial result, and the output result
is H (x) = F (x) + x. When F(x) = 0, then H(x) = x, that is, the identity mapping
mentioned above. Thus, ResNet is equivalent to changing the learning goal. It is no longer
a complete output of learning, but the difference between the target value H (x) and x,
that is, the so-called residual F(x) = H (x)− x. Stochastic depth shortens [28] ResNet by
randomly dropping layers during training to allow better information and gradient flow.

The basic idea of the densely connected constructive network (DenseNet) model
is the same as ResNet, but it establishes a dense connection between all the preceding
layers and the following layers, and its name comes from this. One advantage of ResNet
is that gradients can flow directly from the following layer to the front layer through
the identity function. However, the output of the identity function and H is cumulative,
which may hinder the information flow in the network. To improve the problem of
information flow between different layers, DenseNet directly connects all inputs to the
output layer. Specifically, each layer will accept all the layers in front of it as its additional
input. The connection method is through element-level addition. To preserve the feed-
forward nature, each layer obtains additional inputs from all preceding layers and passes
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on its own feature-maps to all subsequent layers. In DenseNet, each layer is connected to
the channel dimensions of all previous layers and is used as the input of the next layer.
Another major feature of DenseNet is feature reuse through feature connections on the
channel. These features enable DenseNet to achieve better performance than ResNet with
fewer parameters and computing costs [29]. Besides better parameter efficiency, one big
advantage of DenseNets is their improved flow of information and gradients throughout
the network, which makes them easy to train. Each layer has direct access to the gradients
from the loss function and the original input signal, leading to an implicit deep supervision.

The performance differences between the main transmission forms of these two types of
networks are shown below. The nonlinear transformation equation of ResNet is as follows:

xl = Hl(xl−1) + xl−1

The nonlinear transformation equation of DenseNet is as follows:

xl = Hl([x0, x1, . . . xl−1])

The dense connection mode of this model has many advantages. It increases the
transmission of gradient, reuses features, and even reduces overfitting on small sample
data. At the same time, DenseNet has fewer parameters than ResNet, less computation and
higher accuracy. The Dense block is a basic module of DenseNet, and DenseNet is divided
into several Dense blocks. In each node of the Dense block, the input is concatenated feature
maps, and the size of the feature maps within each Dense block is the same. A Transition
module is used to perform down-sampling transition connections between each Dense
block. The nonlinear combination function in the Dense block refers to the combination of
BN + ReLU + Conv. The simple model structure of the Dense block is shown in Figure 10.
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Figure 11 shows a complete DenseNet structure, which includes 3 Dense Blocks
and 2 Transition layers. The Transition layers connect each Dense Block and consist of
convolution and pooling to downsample and compress the model. After completing these
steps, the data will enter the prediction or classification module for processing. Each layer
of DenseNet is designed to be very narrow to reduce redundancy. Instead of drawing
representational power from extremely deep or wide architectures, DenseNet exploits the
potential of the network through feature reuse, yielding condensed models that are easy
to train and highly parameter-efficient. Concatenating feature-maps learned by different
layers increases variation in the input of subsequent layers and improves efficiency. The
network improves the flow of information and gradient, making it easy to train, and the
intensive connection has regularization benefits, reducing the overfitting problem of a small
training set. Additionally, after verification, the model has a good perception effect on the
defect signal in this experiment and a strong feature extraction ability.
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4. Experimental Validation

In this section, we demonstrate the recognition and classification ability of the above
comprehensive methods for Lamb wave signals of different defects in composite mate-
rials. We classify different experimental test situations, and group the existing data into
corresponding training sets to train the best model.

Through the introduction and discussion in the previous chapter, it can be seen
that DenseNet increases the transmission of gradients, reduces overfitting, and has low
computational complexity and high accuracy. Therefore, DenseNet is used as the main
model in the classification stage of the entire deep learning framework in this study.
Moreover, this classifier has good perception effect on defect signals in this experiment and
has strong feature extraction ability after verification. After research and optimization, the
DenseNet model structure used in this experiment is shown in Table 2.

Table 2. DenseNet network structure.

Layers Output Size DenseNet

convolution 64 × 64 7 × 7 conv, stride2

pooling 32 × 32 3 × 3 max pool, stride2

Dense block1 32 × 32

(
1× 1
3× 3

)
× 6

Transition layer1
32 × 32 1 × 1 conv

16 × 16 2 × 2 average pool, stride2

Dense block2 16 × 16

(
1× 1
3× 3

)
× 12

Transition layer2
16 × 16 1 × 1 conv

8 × 8 2 × 2 average pool, stride2

Dense block3 8 × 8

(
1× 1
3× 3

)
× 48

Transition layer3
8 × 8 1 × 1 conv

4 × 4 2 × 2 average pool, stride2

Dense block4 4 × 4

(
1× 1
3× 3

)
× 32

Classification layer
1 × 1 7 × 7 global average pool

Fully-connected softmax

In this study, a large number of simulation data about the defect are used to test
the neural network model, and the recognition ability and feature extraction ability of
different neural network models for this type of defect signal are compared and ana-
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lyzed, which is convenient for model selection. After converting one-dimensional data
into two-dimensional images and putting them into corresponding neural networks for
training, the network designed in this experiment is compared with common classification
network models. This study combines the algorithms used for data expansion and clas-
sification recognition. In the data set and experimental setup, we used five combinations
to test. The first is this proposed framework, which combines data augmentation and
classification algorithms (including the improved DDPM). To validate the effectiveness
of this method, we compared four different algorithm combinations: “VAE + DenseNet”,
“DCGAN + DenseNet”, “DDPM + ResNet”, and “DDPM + DenseNet” (including the
original DDPM).

In order to test the quality and effect of data generated by different models, several
common comparison indicators are selected in combination with common methods. First,
the accuracy rate, that is, the ratio of the number of correctly predicted results to the total
number of samples. The higher the accuracy, the better the quality of the generated data.
Then there is the recall rate, which is aimed at the original sample. It means to correctly
predict the probability of positive samples in all positive samples, that is, to correctly
predict the ratio of the number of positive samples to all positive samples. The higher the
recall rate, the more accurate results will be retrieved. Finally, Fréchet Inception Distance
(FID) index is selected. FID represents the diversity and quality of generated objects. The
smaller the FID, the better the diversity and quality. In the later tests, in order to highlight
the overall trend and distribution characteristics, we use bold to mark the best results in
different test schemes.

Next, different data grouping forms are tested to see which grouping situation has
the best effect on data feature learning and recognition, and the data quality is the highest.
We will adjust the number of groups and proportion relationship of three types of data,
namely include intact data, hole defect data and crack defect data. The best proportion of
data sets with the best learning ability for these three situations will be found by testing in
different situations. The design and allocation of the experiment are shown in Table 3, the
best values in each test result are marked in bold:

Table 3. Different data grouping forms and test results.

Intact Data
Volume

Hole Data
Volume

Crack Data
Volume FID Recall Accuracy

20 80 80 26.23 0.51 78.16
40 80 80 38.04 0.62 84.00
80 80 80 18.15 0.78 87.15

160 80 80 12.37 0.72 88.37
320 80 80 16.35 0.31 87.42

Through the table, we can observe that the fourth group should be selected for experi-
ment and training. In this grouping case, the lowest FID value and the highest accuracy
rate can be obtained, and the higher recall value can also be maintained, indicating that the
learning and training effect of input data is the best in this case.

After determining the classification method of data groups, use the classification
method with the best learning effect mentioned above, and use the data collected from
the experiment to make a training set. First, the generation model is used to expand the
unbalanced data of some samples, and then the expanded data is mixed with the original
data to make a new dataset. Then put, the new data set obtained after learning and
training into the previously selected classification network for testing, and verify the overall
experimental design through the accuracy and effect of classification. Relevant details of the
training process are supplemented as follows. For the dataset, we randomly divided the
dataset into five parts and used one of them as test data for each run. We also randomly
split the remaining data into train and validation data with a ratio of 6:1. For the training of
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all tasks, we normalize each feature to have zero mean and unit variance. We set the batch
size as 16 and the number of epochs as 200. We used Adam optimizer with a learning rate
of 0.001. The core values in the diffusion model are also given here. We set the number of
the diffusion step T = 100, the minimum noise level β1 = 0.0001, and the maximum noise
level βT = 0.5. For the several types of data enhancement and data classification methods
used in this study, grouping and collocation tests are conducted, respectively. This is to test
which data enhancement and data classification methods work best.

After determining the testing plan and training details, extensive training and testing
were conducted for the five methods proposed earlier in this experiment. The framework
combining data augmentation and classification algorithms (including the improved DDPM)
proposed in this paper, as well as four different algorithm combinations: “VAE + DenseNet”,
“DCGAN + DenseNet”, “DDPM + ResNet”, and “DDPM + DenseNet” (including the original
DDPM), were tested as a whole. In addition to the accuracy index, the FID index was also
retained as a reference in the final test results. After multiple rounds of training, the results
are shown in Table 4 and the best values in each test result are marked in bold:

Table 4. Test results of different combinations of data enhancement and data classification methods.

Models Used FID Accuracy

VAE + DenseNet 41.65 71.25
DCGAN + DenseNet 33.56 86.17

DDPM + ResNet
DDPM + DenseNet

Proposed framework

28.33
25.10
13.74

85.42
86.37
88.10

It can be seen that the improved DDPM model is the best for learning and generating
such defect signals. The accuracy obtained by putting the generated data back into the
classification model is also the highest, and the performance is relatively stable. Hence,
suggesting that this type of architecture is well suited to detect features and patterns in
the raw time-domain signals that can unequivocally determine the presence of defect
reflections. For the signal data of this experiment, DDPM can extract features well, and
generate new signals that are close to the original signal properties, which plays a great role
in defect signal processing and recognition. At the same time, we evaluated the effect of
DenseNet in the classification task and compared it with ResNet architecture. The feature
extraction ability and classification effect of Densenet in this study are also stronger than
Resnet, and these two methods can be better complementary and improved. To sum up,
the signal recognition neural network framework proposed in this experiment combined
with improved DDPM and DenseNet shows good comprehensive effect in the above tests.

The experiment and test results show that the method designed in this study based on
DenseNet classification and DDPM data enhancement can accurately detect and classify
the damage signals of common defects in CFRP composite plates, and can achieve high
accuracy. It is practical for the nondestructive testing of composite materials.

5. Conclusions

In this study, a method for identifying and classifying composite damage signals
based on DenseNet classification and DDPM data enhancement is proposed. At the same
time, a dimension transformation method is introduced to process defect signals. This
method converts one-dimensional timing signals into two-dimensional images, which is
convenient for combining the data with the latest and most mature neural network system.
This method, by adding attention mechanism and other related parameter designs, has
been successfully improved. After determining the test plan and training details, the five
application methods proposed at the end of this experiment were fully trained and tested,
and the advantages and disadvantages of the proposed method and the other combination
methods were compared. The experiment and test results show that the method designed
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in this study based on DenseNet classification and DDPM data enhancement can accurately
detect and classify the damage signals of common defects in CFRP composite plates, and
can achieve high accuracy. In the final comprehensive test, the test results of the method
proposed in this study for Lamb wave signal-datasets of different defects reached 88.10%.
Compared with other common data expansion and signal classification methods, this
scheme also has advantages, and is practical for the nondestructive testing of composite
materials. The method proposed in this experiment mainly focuses on the study of micro-
damage in composite structures, and it may not be able to detect defects smaller than 1 mm.
The application object of this method is mainly carbon fiber composites, but it can also be
applied to other composite materials, such as glass fiber, and has been tested, whereas other
materials have not been tested yet. In the future, we may try to extend it to other materials
and other types of damage, and further improve the accuracy. We believe that this scheme
will continue to improve accuracy in the future and will be extended to more types and
components of composite products; it may play a role in composite nondestructive testing
and structural health monitoring.
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