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Abstract: The study first proposes the difficult nonlinear convergent radius and convergent rate
formulas and the complete derivations of a mathematical model for the nonlinear five-link human
biped robot (FLHBR) system which has been a challenge for engineers in recent decades. The
proposed theorem simultaneously has very distinctive superior advantages including the stringent
almost disturbance decoupling feature that addresses the major deficiencies of the traditional singular
perturbation approach without annoying “complete” conditions for the discriminant function and
the global exponential stability feature without solving the impractical Hamilton–Jacobi equation
for the traditional H-infinity technique. This article applies the feedback linearization technique to
globally stabilize the FLHBR system that greatly improved those shortcomings of nonlinear function
approximator and make the effective working range be global for whole state space, whereas the
traditional Jacobian linearization technique is valid only for areas near the equilibrium point. In order
to make some comparisons with traditional approaches, first example of the representative ones, that
cannot be addressed well for the pioneer paper, is shown to demonstrate the fact that the effectiveness
of the proposed main theorem is better than the traditional singular perturbation technique. Finally,
we execute a second simulation example to compare the proposed approach with the traditional
PID approach. The simulation results show that the transient behaviors of the proposed approach
including the peak time, the rise time, the settling time and the maximum overshoot specifications
are better than the traditional PID approach.

Keywords: five-link human biped robot; feedback linearization technique; almost disturbance
decoupling performance; human-machine interface; nonlinear convergence radius

1. Introduction

Nowadays, for many industrial and medical applications, the five-link human biped
robot (FLHBR) has become an interesting and significant topic for many researchers [1–5].
The important research of FLHBR systems is to design and manufacture more efficient
artificial limbs with good driving abilities for handicapped patients and implement devices
to perform difficult tasks in hazardous environments or onerous reiterative works [6,7].
Investigations of dynamic modeling and robust control for FLHBR system have recently
attracted increased attention due to their higher mobility than traditional wheeled robots.
Although wheeled vehicles are very popular, they suffer from many limitations which
destroy their efficiency. For instance, they can only reliably move in some special limited
types of terrain. In contrast, FLHBR systems give great flexibility in selecting the type
of the proceeded terrain [6,7]. The FLHBR system has many theoretical and practical
limitations including nonlinear dynamics, inherent instability and robust control in a given
time. Controlling the global stability of FLHBR systems during walking is a difficult issue.
Several widely used effective control methods have been proposed in the literature to
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address the global stability, dynamic model and robust control of FLHBR systems such
as the proportional-integral-derivative (PID) control [8], the model predictive control [3],
the adaptive control [5,9] and the sliding mode control [6,10]. The PID control method
requires to transform the original, highly nonlinear model of the FLHBR system into
an empirically “linearized” model which inevitably limits the locomotion mobility. By
assuming small body angular velocity, which is effective for certain FLHBR systems, the
centroidal dynamics can be “linearized” and utilized in a model predictive control fashion
that works only in areas near the equilibrium point [3,11]. Recently, researches on adaptive
control have focused on FLHBR control tasks to solve real-life applications [4]. However, the
adaptive control is largely limited due to the complex updating rule. A sliding mode control
with appealing robust performance is proposed to track pre-specified gait trajectories for the
FLHBR system while climbing stairs [6]. However, the inevitable chattering phenomenon
limits the locomotion stability of the FLHBR system.

For the locomotion tracking control of the FLHBR system, both the disturbance rejec-
tion ability and the global stability performance need to be simultaneously achieved [12],
and then some effective methods have been widely applied such as the model predictive
control [3], the deep reinforcement learning [4], and backstepping control [13]. Neverthe-
less, the aforementioned controls applied the Jacobian linearization technique to obtain
the linearized model of the nonlinear FLHBR system which is only effective in areas near
the equilibrium point. To well address the severe limitation of FLHBR systems, many
researches apply function approximators to solve it, such as the neural network tech-
nique [4,14] and the fuzzy logic technique [15,16]. The neural network technique for robust
controlling FLHBR systems has outstanding advantages and features [4]. However, it has
the following inevitably impractical limitations: (1) the interconnected neural network
rules are complex; (2) the neural network technique is a supervised learning technique
and requires many sampling points; (3) the necessary input variable of the FLHBR system
is built only by current states of neural network. The fuzzy logic technique is mainly
limited by the fact that the fuzzy rules are constructed by the experience of many experts
accumulated in the past [16]. Motivated by the above analysis and investigation, the robust
locomotion control of the FLHBR system is still a challenging issue for the disturbance
rejection ability and global stability performance. In this paper, we first apply a feedback lin-
earization technique to well address above limitations with multi-performances including
the almost disturbance rejection performance, the global stability, adjustable convergence
rate and convergence radius. Recently, the feedback linearization technique has attracted
many researches such as the autonomous arm [17], the swash mass helicopter [18], the
wheeled inverted pendulum mobile robot [19], the bending soft pneumatic actuators [20],
the cascaded power electronic transformer [21] and the grid-tied synchronverter [22].

Practical industrial systems are always corrupted by different types of unknown dis-
turbances, and one important issue in robust controller design is to attenuate their influence
on the output terminal as much as possible, since it is difficult to realize exact disturbance
decoupling. When “exact” disturbance decoupling performance fails, it is natural to inves-
tigate the almost disturbance decoupling performance, which is to design a robust control
that attenuates the influence of the unknown disturbance on the output terminal up to an
arbitrary degree. Stricter definition of almost disturbance decoupling performance with
simultaneous absolute-value sense, integration-value sense and input-to-state stable sense
had been exploited in [23–25]. However, refs. [23,24] have shown the fact that some specific
control systems cannot achieve the almost disturbance decoupling performance subject to
one sufficient condition that the discriminant functions should possess a “complete” condi-
tion such as the following control system:

.
xse_1(t) = tan− 1(xse_2) + Ωn(t),

.
xse_2(t) = uip,

yop_1 = xse_1 ≡ uop_1, where Ωn, uip and uop_1 denote the unknown disturbance, input and
output, respectively. In contrast, this article applies the feedback linearization approach to
address the almost disturbance decoupling performance for FLHBR systems. Finally, we
perform a simulation by the traditional PID control in the simulation section to exploit the
fact that the transient dynamics of the proposed feedback linearization approach such as
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the peak time, the rise time, the settling time and the maximum overshoot specifications is
better than the traditional PID approach.

The main contributions of the proposed approach in this study are summarized as follows:
(1) The study first proposes the complete derivations of a mathematical model for

highly nonlinear FLHBR systems.
(2) This article first gives the formulas of exponential convergent rate and convergent

radius for the FLHBR system.
(3) The FLHBR system is addressed well by using the feedback linearization technique

to take the place of traditional singular perturbation technique without the limitation that
the discriminant function requires a complete condition [23,24].

(4) The exponential stability of FLHBR systems is guaranteed in this study without
solving the troublesome Hamilton–Jacobi equation which is critical work for the traditional
H-infinity approach [26].

(5) The article proposes a one-controller design of FLHBR systems to improve the se-
vere shortcomings of traditional function approximators such as the fuzzy control approach
and neural network control approach without relying on the experience of many experts
accumulated in the past and complex interconnected neural network rules, respectively.

(6) The proposed stability theorem of FLHBR systems in this article is global for whole
state space and takes the place of the traditional Jacobian linearization technique that is
only local for areas near the equilibrium point [27].

(7) This article designs a powerful human–machine interface of robust controller
design for FLHBR systems using Python and dynamically shows the convergent trajectory
of the system states.

2. Complete Mathematical Model of the FLHBR System

Based on the FLHBR system considered in this study, the FLHBR kinematic model is
completely derived via the Lagrange equation that mainly investigates the energy analysis.
The schematic diagram of the FLHBR is shown in Figure 1 and the Lagrange equation is
written by

La = Ekinetic − Epotential (1)

and

τi =
d
dt

(
∂La

∂
.
θi

)
−
(

∂La

∂θi

)
, i = 1, 2, 3, 4, 5 (2)

where Ekinetic denotes the kinetic energy of the FLHBR system; Epotential is the potential
energy of the FLHBR system; La denotes the Lagrange function of the FLHBR system;
τi, i = 1, 2, 3, 4, 5 is the i-joint torque; θi, i = 1, 2, 3, 4, 5 denotes the angle of link1~link5;
.
θi, i = 1, 2, 3, 4, 5 is the velocity of link1~link5, M1 = M5 = 4.55 kg, M2 = M4 = 7.63 kg,
M3 = 49.00 kg are the masses of link1~link5, M2, M4 denote the masses of exoskeleton
thighs, M1, M5 denote the masses of legs, M3 denotes the mass of torso, L1 = L5 = 0.502 m,
L2 = L4 = 0.431 m are the lengths of link1, 2, 4, 5, D1 = D5 = 0.247 m, D2 = D4 = 0.247 m,
D3 = 0.280 m are the distances between the mass centers of link1, 2, 3, 4, 5 and those lower
joint, I1 = I5 = 0.105 kg·m2, I2 = I4 = 0.089 kg·m2, I3 = 2.350 kg·m2 are the moments of
rotational inertias for link1, 2, 3, 4, 5 and G = 9.8 m/s2 is the acceleration of gravity.
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Figure 1. The schematic diagram of a five-link human biped robot. Figure 1. The schematic diagram of a five-link human biped robot.

Define the input, output, state, noise and matched uncertainty variables of the FLHBR
to be

⇀
u ip ≡

[
τ1 · · · τ5

]T
=

[
uip_1 · · · uip_5

]T ,
⇀
u op ≡

[
θ1 · · · θ5

]T ,
⇀
x se ≡

[
xse_1 · · · xse_10

]T , xse_1 = θ1, xse_2 =
.
θ1, xse_3 = θ2, xse_4 =

.
θ2, xse_5 = θ3,

xse_6 =
.
θ3, xse_7 = θ4, xse_8 =

.
θ4, xse_9 = θ5, xse_10 =

.
θ5,

p
∑

j=1

⇀
q
∗
noise_jΩn_j,

p
∑

j=1

⇀
q
∗
noise_jΩun_j.

The complete derivations of mathematical dynamical model and the related definitions of
variables Dij, Hi, hijj, Gi, 1 ≤ i, j ≤ 5 are sown in Appendix A. Then the dynamic equation
of the FLHBR system can be derived as[ .

xse_1 · · · .
xse_10

]T
=
[

f1 · · · f10
]T

+
⇀
g uip_1uip_1 +

⇀
g uip_2uip_2 +

⇀
g uip_3uip_3 +

⇀
g uip_4uip_4

+
⇀
g uip_5uip_5 +

p
∑

j=1

⇀
q
∗
noise_jΩn_j +

p
∑

j=1

⇀
q
∗
noise_jΩun_j

(3)

uop_1 = xse_1 = θ1 (4)

uop_2 = xse_3 = θ2 (5)

uop_3 = xse_5 = θ3 (6)

uop_4 = xse_7 = θ4 (7)

uop_5 = xse_9 = θ5 (8)

where
f1 ≡ xse_2 (9)

f2 ≡ (DI 11)(−H 1 −G1) + (DI 12)(−H 2 −G2) + (DI 13)(−H 3 −G3) + (DI 14)(−H 4 −G4) + (DI 15)(−H 5 −G5) (10)

f3 ≡ xse_4 (11)

f4 = (DI 21)(−H 1 −G1) + (DI 22)(−H 2 −G2) + (DI 23)(−H 3 −G3) + (DI 24)(−H 4 −G4) + (DI 25)(−H 5 −G5) (12)

f5 ≡ xse_6 (13)



Appl. Sci. 2023, 13, 76 5 of 34

f6 = (DI 31)(−H 1 −G1) + (DI 32)(−H 2 −G2) + (DI 33)(−H 3 −G3) + (DI 34)(−H 4 −G4) + (DI 35)(−H 5 −G5) (14)

f7 ≡ xse_8 (15)

f8 = (DI 41)(−H 1 −G1) + (DI 42)(−H 2 −G2) + (DI 43)(−H 3 −G3) + (DI 44)(−H 4 −G4) + (DI 45)(−H 5 −G5) (16)

f9 ≡ xse_10 (17)

f10 = (DI 51)(−H 1 −G1) + (DI 52)(−H 2 −G2) + (DI 53)(−H 3 −G3) + (DI 54)(−H 4 −G4) + (DI 55)(−H 5 −G5) (18)

DETD = (D 33D2
12D2

45 −D33D44D55D2
12 − 2D12D13D23D2

45 + 2D44D55D12D13D23
+2D33D55D12D14D24 − 2D33D12D14D25D45 − 2D33D12D15D24
D45 + 2D33D44D12D15D25 + D55D2

13D2
24 − 2D2

13D24D25D45 + D44D2
13D2

25
+D22D2

13D2
45 −D22D44D55D2

13 − 2D55D13D14D23D24 + 2D13D14D23D25
D45 + 2D13D15D23D24D45 − 2D44D13D15D23D25 + D55D2

14D2
23

+D33D2
14D2

25 −D22D33D55D2
14 − 2D14D15D2

23D45 − 2D33D14D15D24D25
+2D22D33D14D15D45 + D44D2

15D2
23 + D33D2

15D2
24 −D22D33D44D2

15+
D11D2

23D2
45 −D11D44D55D2

23 −D11D33D55D2
24 + 2D11D33D24D25D45

−D11D33D44D2
25 −D11D22D33D2

45 + D11D22D33D44D55

)
(19)

DI11 = −(−D 2
23D2

45 + D44D55D2
23 + D33D55D2

24 − 2D33D24D25D45 + D33D44D2
25 + D22D33D2

45
− D22D33D44D55)/(DETD)

(20)

DI12 = −(D 13D23D2
45 −D12D33D2

45 + D14D25D33D45 + D15D24D33D45 −D15D25D33D44
− D14D24D33D55 −D13D23D44D55 + D12D33D44D55)/(DETD)

(21)

DI13 = (D 13D22D2
45 −D12D23D2

45 + D13D2
25D44 + D13D2

24D55 − 2D13D24D25D45 + D14D23D25D45
+ D15D23D24D45 −D15D23D25D44 −D14D23D24D55 + D12D23D44D55 −D13D22D44 D55)/(DETD)

(22)

DI14 = (D 14D2
25D33 −D15D2

23D45 + D14D2
23D55 −D15D24D25D33 + D13D23D25D45 −D12D25D33D45

− D13D23D24D55 + D15D22D33D45 + D12D24D33D55 −D14D22D33D55)/(DETD)
(23)

DI15 = (D 15D2
24D33 −D14D2

23D45 + D15D2
23D44 −D14D24D25D33 + D13D23D24D45 −D13D23D25D44

− D12D24D33D45 + D12D25D33D44 + D14D22D33D45 −D15D22D33D44)/(DETD)
(24)

DI21 = −(D 13D23D2
45 −D12D33D2

45 + D14D25D33D45 + D15D24D33D45 −D15D25D33D44
− D14D24D33D55 −D13D23D44D55 + D12D33D44D55)/(DETD)

(25)

DI22 = −(−D 2
13D2

45 + D44D55D2
13 + D33D55D2

14 − 2D33D14D15D45 + D33D44D2
15 + D11D33D2

45
− D11D33D44D55)/(DETD)

(26)

DI23 = (D 11D23D2
45 −D12D13D2

45 + D2
15D23D44 + D2

14D23D55 + D13D14D25D45 + D13D15D24D45
− D13D15D25D44 − 2D14D15D23D45 −D13D14D24D55 + D12D13D44D55 −D11D23D44D55)/(DETD)

(27)

DI24 = (D 2
15D24D33 −D2

13D25D45 + D2
13D24D55 −D14D15D25D33 + D13D15D23D45 −D12D15D33D45

− D13D14D23D55 + D11D25D33D45 + D12D14D33D55 −D11D24D33D55)/(DETD)
(28)

DI25 = (D 2
14D25D33 −D2

13D24D45 + D2
13D25D44 −D14D15D24D33 + D13D14D23D45 −D13D15D23D44

− D12D14D33D45 + D12D15D33D44 + D11D24D33D45 −D11D25D33D44)/(DETD)
(29)

DI31 = (D 13D22D2
45 −D12D23D2

45 + D13D2
25D44 + D13D2

24D55 − 2D13D24D25D45 + D14D23D25D45
+ D15D23D24D45 −D15D23D25D44 −D14D23D24D55 + D12D23D44D55 −D13D22D44D55)/(DETD)

(30)

DI32 = (D 11D23D2
45 −D12D13D2

45 + D2
15D23D44 + D2

14D23D55 + D13D14D25D45 + D13D15D24D45
− D13D15D25D44 − 2D14D15D23D45 −D13D14D24D55 + D12D13D44D55 −D11D23D44D55)/(DETD)

(31)
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DI33 = −(−D 2
12D2

45 + D44D55D2
12 − 2D55D12D14D24 + 2D12D14D25D45 + 2D12D15D24D45

− 2D44D12D15D25 −D2
14D2

25 + D22D55D2
2 + 2D14D15D24D25 − 2D22D14D15D45 −D2

15D2
24+

D22D44D2
15 + D11D55D2

24 − 2D11D24D25D45 + D11D44D2
25 + D11D22D2

45 −D11D22D44D55

)
/(DETD)

(32)

DI34 = −(D 13D14D2
25 + D2

15D23D24 −D13D15D24D25 −D14D15D23D25 −D12D13D25D45
− D12D15D23D45 + D13D15D22D45 + D11D23D25D45 + D12D13D24D55 + D12D14D23D55
− D13D14D22D55 −D11D23D24D55)/(DETD)

(33)

DI35 = −(D 13D15D2
24 + D2

14D23D25 −D13D14D24D25 −D14D15D23D24 −D12D13D24D45
+ D1D13D25D44 −D12D14D23D45 + D12D15D23D44 + D13D14D22D45 −D13D15D22D44
+ D11D23D24D45 −D11D23D25D44)/(DETD)

(34)

DI41 = (D 14D2
25D33 −D15D2

23D45 + D14D2
23D55 −D15D24D25D33 + D13D23D25D45

− D12D25D33D45 −D13D23D24D55 + D15D22D33D45 + D12D24D33D55
− D14D22D33D55)/(DETD)

(35)

DI42 = (D 2
15D24D33 −D2

13D25D45 + D2
13D24D55 −D14D15D25D33 + D13D15D23D45

− D12D15D33D45 −D13D14D23D55 + D11D25D33D45 + D12D14D33D55
− D11D24D33D55)/(DETD)

(36)

DI43 = −(D 13D14D2
25 + D2

15D23D24 −D13D15D24D25 −D14D15D23D25 −D12D13D25D45
− D12D15D23D45 + D13D15D22D45 + D11D23D25D45 + D12D13D24D55 + D12D14D23D55
− D13D14D22D55 −D11D23D24D55)/(DETD)

(37)

DI44 = −(D 33D55D2
12 − 2D55D12D13D23 − 2D33D12D15D25 −D2

13D2
25 + D22D55D2

13
+ 2D13D15D23D25 −D2

15D2
23 + D22D33D2

15 + D11D55D2
23 + D11D33D2

25
− D11D22D33D55)/(DETD)

(38)

DI45 = (D 11D2
23D45 −D2

13D24D25 −D14D15D2
23 + D2

13D22D45 + D2
12D33D45 + D13D14D23D25

+ D13D15D23D24 −D12D14D25D33 −D12D15D24D33 + D14D15D22D33 + D11D24D25D33
− 2D12D13D23D45 −D11D22D33D45)/(DETD)

(39)

DI51 = (D 15D2
24D33 −D14D2

23D45 + D15D2
23D44 −D14D24D25D33 + D13D23D24D45 −D13D23D25D44

− D12D24D33D45 + D12D25D33D44 + D14D22D33D45 −D15D22D33D44)/(DETD)
(40)

DI52 = (D 2
14D25D33 −D2

13D24D45 + D2
13D25D44 −D14D15D24D33 + D13D14D23D45 −D13D15D23D44

− D12D14D33D45 + D12D15D33D44 + D11D24D33D45 −D11D25D33D44)/(DETD)
(41)

DI53 = −(D 13D15D2
24 + D2

14D23D25 −D13D14D24D25 −D14D15D23D24 −D12D13D24D45
+ D12D13D25D44 −D12D14D23D45 + D12D15D23D44 + D13D14D22D45 −D13D15D22D44
+ D11D23D24D45 −D11D23D25D44)/(DETD)

(42)

DI54 = (D 11∗D2
23D45 −D2

13D24D25 −D14D15∗D2
23 + D2

13D22D45 + D2
12D33D45 + D13D14D23D25

+ D13D15D23D24 −D12D14D25D33 −D12D15D24D33 + D14D15D22D33 + D11D24D25D33
− 2D12D13D23D45 −D11D22D33D45)/(DETD)

(43)

DI55 = −(D 33D44D2
12 − 2D44D12D13D23 − 2D33D12D14D24 −D2

13D2
24 + D22D44D2

13 + 2D13D14D23D24
− D2

14D2
23 + D22D33D2

14 + D11D44D2
23 + D11D33D2

24 −D11D22D33D44)/(DETD)
(44)

⇀
g uip_1 =

[
0 DI11 0 DI21 0 DI31 0 DI41 0 DI51

]T (45)

⇀
g uip_2 =

[
0 DI12 0 DI22 0 DI32 0 DI42 0 DI52

]T (46)

⇀
g uip_3 =

[
0 DI13 0 DI23 0 DI33 0 DI43 0 DI53

]T (47)

⇀
g uip_4 =

[
0 DI14 0 DI24 0 DI34 0 DI44 0 DI54

]T (48)

⇀
g uip_5 =

[
0 DI15 0 DI25 0 DI35 0 DI45 0 DI55

]T (49)
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⇀
q
∗
noise_1 =

[
0 0.1 0 · · · 0

]T (50)

Ωn_1 = sin t (51)

First, define the nominal system of the FLHBR system to be

.
⇀
x se(t) =

⇀
f (

⇀
x se) + g

˜ uip
(
⇀
x se)

⇀
u ip (52)

⇀
y op(t) =

⇀
u op(

⇀
x se) (53)

with the well-defined relative degree [28] {drd_1, drd_2, · · · , drd_5} =
{

2 2 2 2 2
}

that meets
<i> the following Lie differential equation holds:

L⇀
g uip_j

Lk
⇀
f
uop_i(

⇀
x se) = 0 (54)

for 1 ≤ i ≤ 5, 1 ≤ j ≤ 5, k < drd_i − 1, where the symbol L denotes the Lie differentiation
operation [28,29].

<ii> the following Lie differentiation matrix possesses the nonsingular performance:

Asystem ≡


Lguip_1 Ldrd_1−1

f uop_1(
⇀
x se) · · · Lguip_5 Ldrd_1−1

f uop_1(
⇀
x se)

...
...

Lguip_1 Ldrd_5−1
f uop_5(

⇀
x se) · · · Lguip_5 Ldrd_5−1

f uop_5(
⇀
x se)



=


DI11 DI12 DI13 DI14 DI15
DI21 DI22 DI23 DI24 DI25
DI31 DI32 DI33 DI34 DI35
DI41 DI42 DI43 DI44 DI45
DI51 DI52 DI53 DI54 DI55


(55)

and the following function

span
{
⇀
g uip_1,

⇀
g uip_2, · · · ,

⇀
g uip_5

}
(56)

is an involutive distribution [30].

3. Robust Control Design of the FLHBR System

Since the FLHBR system has the well-defined relative degree property and involutive
distribution performance, a differentiable, smooth and bijective function ϕ : <n → <n

defined by

⇀
T l_i ≡

[
Ti

l_1 · · · Ti
l_drd_i

]T
≡
[

ϕi
l_1 · · · ϕi

l_drd_i

]T

≡
[

L0
⇀
f
uop_i(

⇀
x se) · · · Ldrd_i−1

⇀
f

uop_i(
⇀
x se)

]T
, 1 ≤ i ≤ 5

(57)

⇀
T l ≡

[
Tl_1 Tl_2 · · · Tl_drd

]T (58)

drd ≡ drd_1 + drd_2 + · · ·+ drd_5 (59)

T1
l_1 = φ1

l_1 ≡ L0
⇀
f
uop_1 = xse_1, (60)

T2
l_drd_1

= T1
l_2 = φ1

l_2 ≡ L1
⇀
f
uop_1 ≡ L1

⇀
f

xse_! = f1 = xse_2 (61)

T2
l_1 = φ2

l_1 ≡ L0
⇀
f
uop_2 = xse_3, (62)
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T2
l_drd_2

= T2
l_2 = φ2

l_2 ≡ L1
⇀
f
uop_2 ≡ L1

⇀
f

xse_3 = f3 = xse_4 (63)

T3
l_1 = φ3

l_1 ≡ L0
⇀
f
uop_3 = xse_5, (64)

T2
l_drd_3

= T3
l_2 = φ3

l_2 ≡ L1
⇀
f
uop_3 ≡ L1

⇀
f

xse_5 = f5 = xse_6 (65)

T4
l_1 = φ4

l_1 ≡ L0
⇀
f
uop_4 = xse_7, (66)

T2
l_drd_4

= T4
l_2 = φ4

l_2 ≡ L1
⇀
f
uop_4 ≡ L1

⇀
f

xse_7 = f7 = xse_8 (67)

T5
l_1 = φ5

l_1 ≡ L0
⇀
f
uop_5 = xse_9, (68)

T2
l_drd_5

= T5
l_2 = φ5

l_2 ≡ L1
⇀
f
uop_5 ≡ L1

⇀
f

xse_9 = f9 = xse_10 (69)

is a smooth and bijective function that transforms the highly nonlinear FLHBR to be a linear
subsystem [30].

In (60)~(69), there are ten variables due to the relative degree vector of the nonlinear
FLHBR system described by (3)~(8), then the FLHBR system is fully feedback linearizable.
An important achievement was pioneered by [30], namely, that under the assumption of
the fully linearizable feedback, the function defined as ϕ transforms the original FLHBR
system into a linear subsystem as follows:

.
T

1
l_1 =

∂uop_1

∂
⇀
x se

[
⇀
f + g

˜ uip
·⇀u ip +

p
∑

j=1

⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)]
= T1

l_2 +
p
∑

j=1

(
∂uop_1

∂
⇀
x se

⇀
q
∗
noise_j

)(
Ωun_j + Ωn_j

) (70)

.
Tl

1
l_drd_1

=
.
Tl

1
l_2 =

∂L
drd_1−1
f uop_1

∂
⇀
x se

[
⇀
f + g

˜ uip
·⇀u ip +

p
∑

j=1

⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)]
= Ldrd_1

⇀
f

uop_1 + L⇀
g uip_1

Ldrd_1−1
⇀
f

uop_1 uip_1 + · · ·+ L⇀
g uip_5

Ldrd_1−1
⇀
f

uop_1 uip_5

+
p
∑

j=1

(
∂L

drd_1−1
f uop_1

∂
⇀
x se

⇀
q
∗
noise_j

)(
Ωun_j + Ωn_j

) (71)

.
T

5
l_1 =

∂uop_5

∂
⇀
x se

[
⇀
f + g

˜ uip
·⇀u ip +

p
∑

j=1

⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)]
= T5

l_2 +
p
∑

j=1

(
∂uop_5

∂
⇀
x se

⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)) (72)

.
Tl

5
l_drd_5

=
.
Tl

1
l_2 =

∂L
drd_5−1
f uop_5

∂
⇀
x se

[
⇀
f + g

˜ uip
·⇀u ip +

p
∑

j=1

⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)]
= Ldrd_5

⇀
f

uop_5 + L⇀
g uip_1

Ldrd_5−1
⇀
f

uop_5 uip_1 + · · ·+ L⇀
g uip_5

Ldrd_5−1
⇀
f

uop_5 uip_5

+
p
∑

j=1

(
∂L

drd_5−1
f uop_5

∂
⇀
x se

⇀
q
∗
noise_j

)(
Ωun_j + Ωn_j

) (73)

Since
uip_ci ≡ Ldrd_i

⇀
f

uop_i (74)

uip_dij ≡ L⇀
g uip_j

Ldrd_i−1
⇀
f

uop_i, 1 ≤ i, j ≤ 5 (75)
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then the transformed subsystem is written as

.
T

1
l_1(t) = T1

l_2(t) +
p

∑
j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_1

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
(76)

.
Tl

1
l_drd_1

=
.
T

1
l_2 = uip_c1 + uip_d11uip_1 + · · ·+ uip_d15uip_5

+
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_1−1
⇀
f

uop_1

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

) (77)

.
T

5
l_1 = T5

l_2 +
p

∑
j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_5

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
(78)

.
Tl

1
l_drd_5

=
.
T

5
l_2 = uip_c5 + uip_d51uip_1 + · · ·+ uip_d55uip_5

+
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_5−1
⇀
f

uop_5

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

) (79)

uop_i = Ti
l_1, 1 ≤ i ≤ 5 (80)

hence

.
T

1
l_drd_1

.
T

2
l_drd_2

...
.
T

5
l_drd_5

 =


.
T

1
l_2

.
T

2
l_2

...
.
T

5
l_2

 =


uip_c1
uip_c2
...
uip_c5

+


uip_d11 uip_d12 · · · uip_d15
uip_d21 uip_d22 · · · uip_d25

...
...

...
uip_d51 uip_d52 · · · uip_d55




uip_1
uip_2
...
uip_5



+



p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_1−1
⇀
f

uop_1

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_2−1
⇀
f

uop_2

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
...

p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_5−1
⇀
f

uop_5

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)



(81)

To construct the desired feedback linearization controller

⇀
u ip = A−1

system

{
−⇀

u ip_b +
⇀
u ip_v

}
(82)

we apply the vector

⇀
u ip_b ≡

[
uip_b1 uip_b2 · · · uip_b5

]T ≡
[

Ldrd_1
⇀
f

uop_1 Ldrd_2
⇀
f

uop_2 · · · Ldrd_5
⇀
f

uop_5

]T

=
[

uip_c1 uip_c2 · · · uip_c5
]T ≡ ⇀

u ip_c

(83)

and the virtual input [30]

⇀
u ip_v ≡

[
uip_v1 uip_v2 · · · uip_v5

]T (84)
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Then we can transform the original FLHBR system into the following model



.
T

1
l_drd_1

.
T

2
l_drd_2

...
.
T

5
l_drd_5

 =


.
T

1
l_2

.
T

2
l_2
...

.
T

5
l_2

 =


uip_v1
uip_v2

...
uip_v5

+



p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_1−1
⇀
f

uop_1

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_2−1
⇀
f

uop_2

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
...

p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_5−1
⇀
f

uop_5

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)


(85)

From (76), (78) and (85), we obtain

 .
T

i
l_1(t)

.
T

i
l_drd_i

 =

[
0 1
0 0

][
Ti

l_1(t)
Ti

l_drd_i

]
+

[
0
1

]
uip_vi +


p
∑

j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_i−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
,

drd_i = 2, i = 1, · · · , 5

(86)

We construct the feedback linearization controller by
⇀
u ip = A−1

system

{
−⇀

u ip_b +
⇀
u ip_v

}
with almost disturbing decoupling performance to be [30]

uip_vi ≡ ui
op_track

(drd_i) − ε−drd_i αi
1

[
L0

f uop_i − ui
op_track

]
− ε1−drd_i αi

2

[
L1

f uop_i − ui
op_track

(1)
]

−· · · − ε−1αi
drd_i

[
Ldrd_i−1

f uop_i − ui
op_track

(drd_i−1)
]
, 1 ≤ i ≤ 5

(87)

where ui
op_track is the desired tracking signal and αi

drd_i
are elements of the Hurwitz matrix

shown by

Ai
L ≡


0 1 0 · · · 0
0 0 1 · · · 0

...
...

0 0 0 · · · 1
−αi

1 −αi
2 −αi

3 · · · −αi
drd_i


drd_i×drd_i

=

[
0 1

−1000 −1000

]
i = 1, · · · , 5 (88)

Based on a feedback linearization approach, we propose the robust controller with
the pre-specified tracking signals u1

op_track = u2
op_track = u3

op_track = u4
op_track = u5

op_track = 0
as follows:

⇀
u ip = A−1

system

(
−⇀

u ip_b +
⇀
u ip_v

)
= A−1

system

(
−
[
uip_b1 · · · uip_b5

]T
+
[
uip_v1 · · · uip_v5

]T
)

(89)

A−1
system ≡


D11 D12 D13 D14 D15
D12 D22 D23 D24 D25
D13 D23 D33 0 0
D14 D24 0 D44 D45
D15 D25 0 D45 D55

 (90)

uip_b1 = f2 (91)

uip_b2 = f4 (92)

uip_b3 = f6 (93)

uip_b4 = f8 (94)

uip_b5 = f10 (95)

uip_v1 = 0− 1000(1/ ε
)2
(xse_1 − 0)− 1000(1/ ε)1(xse_2 − 0) (96)
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uip_v2 = 0− 1000(1/ ε
)2
(xse_3 − 0)− 1000(1/ ε)1(xse_4 − 0) (97)

uip_v3 = 0− 1000(1/ ε
)2
(xse_5 − 0)− 1000(1/ ε)1(xse_6 − 0) (98)

uip_v4 = 0− 1000(1/ ε
)2
(xse_7 − 0)− 1000(1/ ε)1(xse_8 − 0) (99)

uip_v5 = 0− 1000(1/ ε
)2
(xse_9 − 0)− 1000(1/ ε)1(xse_10 − 0) (100)

uip_1 = (D 11)(−uip_b1 + uip_v1) + (D 12)(−uip_b2 + uip_v2) + (D 13)(−uip_b3 + uip_v3

)
+(D 14)(−uip_b4 + uip_v4) + (D 15)(−uip_b5 + uip_v5

) (101)

uip_2 = (D 21)(−uip_b1 + uip_v1) + (D 22)(−uip_b2 + uip_v2) + (D 23)(−uip_b3 + uip_v3

)
+(D 24)(−uip_b4 + uip_v4) + (D 25)(−uip_b5 + uip_v5

) (102)

uip_3 = (D 31)(−uip_b1 + uip_v1) + (D 32)(−uip_b2 + uip_v2) + (D 33)(−uip_b3 + uip_v3

)
+(D 34)(−uip_b4 + uip_v4) + (D 35)(−uip_b5 + uip_v5

) (103)

uip_4 = (D 41)(−uip_b1 + uip_v1) + (D 42)(−uip_b2 + uip_v2) + (D 43)(−uip_b3 + uip_v3

)
+(D 44)(−uip_b4 + uip_v4) + (D 45)(−uip_b5 + uip_v5

) (104)

uip_5 = (D 51)(−uip_b1 + uip_v1) + (D 52)(−uip_b2 + uip_v2) + (D 53)(−uip_b3 + uip_v3

)
+(D 54)(−uip_b4 + uip_v4) + (D 55)(−uip_b5 + uip_v5

) (105)

For the convenience of the following discussions, let’s define some related parameters as

ei
tr_j ≡ Ti

l_j − ui(j−1)
op_track (106)

ei
tr_track ≡

[
ei

tr_1 ei
tr_2 · · · ei

tr_drd_i

]T
∈ <drd_i (107)

ei
tr_j ≡ εj−1ei

tr_j, i = 1, 2, · · · , 5, j = 1, 2, · · · , drd_i (108)

ei
tr_track ≡

[
ei

tr_1 ei
tr_2 · · · ei

tr_drd_i
(t)
]T
∈ <drd_i (109)

etr_track ≡
[
e1

tr_track
e2

tr_track
· · · e5

tr_track

]T
∈ <drd (110)

⇀
B

i
≡
[
0 0 · · · 0 1

]T
drd_i×1, 1 ≤ i ≤ 5 (111)

ei
tr_track

≡ αi
1 ei

tr_1 + αi
2 ei

tr_2 + · · ·+ αi
drd_i

ei
tr_drd_i

(112)

where the Lyapunov system matrix Ai
L is a Hurwitz matrix whose eigenvalues lie in the

left half coordinate plane and one can use Matlab to obtain the adjoining Lyapunov system
matrix Ei

L > 0 of the following Lyapunov equation [31]:

(Ai
L)

T
Ei

L + Ei
L Ai

L = −I (113)

λmax(Ei
L) ≡max. eigenvalue of the system matrix Ei

L (114)

λmin(Ei
L) ≡min. eigenvalue of the system matrix Ei

L (115)

λ∗max ≡ max
{

λmax(E1
L), λmax(E2

L), · · · , λmax(E5
L)
}
≡ max{0.005, 0.005, · · · , 0.005} = 0.005 (116)

λ∗min ≡ min
{

λmax(E1
L), λmax(E2

L), · · · , λmax(E5
L)
}
≡ min{1.0005, 1.0005, · · · , 1.0005} = 1.0005 (117)
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and

E1
L = E2

L = E3
L = E4

L = E5
L =

[
1.0005 0.0005
0.0005 0.0005

]
(118)

To demonstrate further the complete control design of nonlinear FLHBR systems, let
us make two definitions as

Definition 1. The nonlinear control system
.
⇀
x se =

⇀
f (t,

⇀
x se,

⇀
u ip) with the input

⇀
u ip, the state

⇀
x se

and the smooth function
⇀
f : [0, ∞)×<n ×<n → <n is called to have the input-to-state stable

performance if

‖⇀x se(t)‖ ≤ γ1

(
‖⇀x se(t0)‖, t− t0

)
+ γ2

(
sup

t0≤τ≤t
‖⇀u ip(τ)‖

)
(119)

where γ1, γ2 are K-class function, KL-class function, respectively [32].

Definition 2. A nonlinear control system with the external disturbance input
⇀
u ip is called to have

the almost disturbance decoupling property if

(a) The nonlinear control system possesses the input-to-state stable performance.
(b) The following two inequalities hold:∣∣∣uop_i(t)− ui

op_track(t)
∣∣∣ ≤ γ11

(
‖⇀x se(t0)‖, t− t0

)
+

1√
γ22

γ33

(
sup

t0≤τ≤t
‖⇀u ip(τ)‖

)
(120)

and

t∫
t0

[
uop_i(τ)− ui

op_track(τ)
]2

dτ ≤ 1
γ44

γ55

(
‖⇀x se(t 0

)
‖
)
+

t∫
t0

γ33

(
‖⇀u ip(τ)‖

2
)

dτ

 (121)

where
⇀
x se(t0) denotes the initial state of the control system, γ11 is KL-class function, γ33, γ55 are

K-class functions and γ22 > 0, γ44 > 0 [25,33].

It is worth mentioning that the aforementioned definition (hypothesis) of the almost
disturbance decoupling property is more stringent in many ways when compared with the
earlier definitions shown first for linear control engineering systems and then inherited for
nonlinear control systems which are needed for closed-loop feedback systems:

(Case 1) input-to-state stable performance when the initial state of control system
is zero;

(Case 2) globally asymptotical stability of the equilibrium point when the external
disturbance input is set to be zero;

Moreover, the above definition of the almost disturbance decoupling property pos-
sesses three features as follows [24]:

The first feature of the above definition is the demand of input-to-state stable per-
formance. In fact, while for linear control systems the input-to-state stable performance
is implied by (120), this is not met for nonlinear control systems. The second feature is
the appearance of function r33 for (120). While for earlier definitions the function is set
to be r33 (x) = x, in fact, this flexibility is required only for special cases including lin-
ear cases. The third feature lies in the input-to-state stable performance that needs the
asymptotical stability for the equilibrium point corresponding to the tracking signal and
the origin point. As we shall see, for linear control systems, once the stabilization problem
is addressed, the tracking problem is solved, this is not so for nonlinear ones. Based on
the more stringent definition of the almost disturbance decoupling property, the robust-
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ness of the proposed feedback linearization approach is stronger. Moreover, according to√
a2

1 + a2
2 + · · ·+ a2

m ≤ |a1|+ |a2|+ · · ·+ |am|, it is easy to obtain

t∫
t0

√
a2

1 + a2
2 + · · ·+ a2

mdτ ≤
t∫

t0

|a1|+ |a2|+ · · ·+ |am|dτ

and
t∫

t0

√[
uop_1(τ)− u1

op_track(τ)
]2

+ · · ·+
[
uop_m(τ)− um

op_track(τ)
]2

dτ

≤
t∫

t0

{∣∣∣uop_1(t)− u1
op_track(t)

∣∣∣+ · · ·+ ∣∣∣uop_m(t)− umi
op_track(t)

∣∣∣}dτ

Therefore, we can conclude the fact that the root mean square error can be implied by
the almost disturbance decoupling condition (121).

From (86), we obtain .
T

i
l_1 −

.
ui

op_track
.
T

i
l_drd_i

− .
ui(drd_i−1)

op_track

 =

[
0 1
0 0

][ Ti
l_1 − ui

op_track

Ti
l_drd_i

− ui(drd_i−1)
op_track

]
+

[
0
1

](
uip_vi − ui(drd_i)

op_track

)

+


p
∑

j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_i−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
, drd_i = 2, i = 1, · · · , 5

(122)

From (106), (108) and (122), we obtain ei
tr_1
′

ε1−drd_i ei
tr_drd_i

′

 =

[
ε−1ei

tr_drd_i

0

]
+

[
0
1

](
uip_vi − ui(drd_i)

op_track

)

+


p
∑

j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_i−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)


(123)

Substituting (87) and (88) into (123) obtains

ε


.

ei
tr_1.

ei
tr_drd_i

 =

[
0 1
−αi

1 −αi
drd_i

][
ei

tr_1

ei
tr_drd_i

]
+


ε

p
∑

j=1

(
∂

∂
⇀
x se

L1−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
εdrd_i

p
∑

j=1

(
∂

∂
⇀
x se

Ldrd_i−1
⇀
f

uop_i

)
⇀
q
∗
noise_j

(
Ωun_j + Ωn_j

)
 (124)

Then, we obtain

ε

.

ei
tr_track = Ai

Lei
tr_track + ϕi

Tl

(
⇀
Ωun +

⇀
Ωn

)
, i = 1, · · · , 5 (125)

uop_i = Ti
l_1, i = 1, · · · , 5 (126)

where

ϕi
⇀
T l

(ε) ≡


ε

(
∂

∂
⇀
x se

uop_i

)
⇀
q
∗
noise_1 · · · ε

(
∂

∂
⇀
x se

uop_i

)
⇀
q
∗
noise_p

...
...

εdrd_i

(
∂

∂
⇀
x se

Ldrd_i−1
f uop_i

)
⇀
q
∗
noise_1 · · · εdrd_i

(
∂

∂
⇀
x se

Ldrd_i−1
f uop_i

)
⇀
q
∗
noise_p


i = 1, · · · , 5

(127)
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⇀
Ωn ≡

[
Ωn_1(t) · · · Ωn_p(t)

]T (128)
⇀
Ωun ≡

[
Ωun_1 . . . Ωun_p

]T (129)

Then, we verify the fact that the feedback linearization control achieves the almost
disturbance decoupling performance, and the globally exponential stability of the FLHBR
system in Appendix B. Therefore, the proposed feedback linearization control (89) will
indeed drive the output state tracking errors of the FLHBR system (3)–(8), starting from
pre-specified initial conditions, to the global ultimate attractor.

It is worth noting that we can extend the above overall design process to achieve
two more general theorems for general nonlinear control systems with uncertainties and
disturbances as follows:

[ .
xse_1 · · · .

xse_n
]T

=
[

f1(
⇀
x se) · · · fn(

⇀
x se)

]T
+
[

⇀
g uip_1(

⇀
x se) · · ·

⇀
g uip__m(

⇀
x se)

]
[

uip_1(
⇀
x se) · · · uip_m(

⇀
x se)

]T
+
[

δ fun_1(
⇀
x se) · · · δ fun_n(

⇀
x se)

]T
+

p
∑

j=1

⇀
q
∗
noise_jΩn_j

(130)

[
yop_1(

⇀
x se) · · · yop_m(

⇀
x se)

]T
=
[
uop_1(

⇀
x se) · · · uop_m(

⇀
x se)

]T
(131)

i.e.,
.
⇀
x se(t) =

⇀
f (

⇀
x se) + g

˜ uip
(
⇀
x se)

⇀
u ip + δ

⇀
f un +

p

∑
j=1

⇀
q
∗
noise_jΩn_j (132)

⇀
y op(t) =

⇀
u op(

⇀
x se) (133)

where
⇀
x se(t) ≡

[
xse_1(t) · · · xse_n(t)

]T ,
⇀
u ip ≡

[
uip_1 · · · uip_m

]T ,
⇀
q
∗
noise_j,

⇀
y op ≡

[
yop_1 · · · yop_m

]T ,
⇀
Ωn ≡

[
Ωn_1(t) · · · Ωn_p(t)

]T are vectors of states, inputs,
disturbance-adjoining terms, outputs, and disturbances, respectively, for the nonlinear sys-

tem. We consider the relating vectors
⇀
f ≡

[
f1 . . . fn

]T , g
˜ uip
≡
[
⇀
g uip_1 . . .

⇀
g uip_m

]T

and
⇀
u op ≡

[
uop_1 . . . uop_m

]T to be smooth functions. The uncertain vector δ
⇀
f un is con-

sidered to be matched uncertainty as δ
⇀
f un ≡

p
∑

j=1

⇀
q
∗
noise_jΩun_j,

⇀
Ωun ≡

[
Ωun_1 . . . Ωun_p

]T .

Assumption 1. The following inequality holds:

‖
⇀
β n_t(t,

⇀
T n, etr_track)−

⇀
β n_t(t,

⇀
T n, 0)‖ ≤ Mn(‖etr_track‖) (134)

where Mn > 0,
⇀
β n_t(t,

⇀
T n, etr_track) ≡

⇀
β n(

⇀
T l ,

⇀
T n).

Define the nominal system of the nonlinear system to be

.
⇀
x se(t) =

⇀
f (

⇀
x se) + g

˜ uip
(
⇀
x se)

⇀
u ip (135)

⇀
y op(t) =

⇀
u op(

⇀
x se) (136)

with the well-defined relative degree {drd_1, drd_2, · · · , drd_m} that meets
<i> the following Lie differentiation equation holds:

L⇀
g uip_j

Lk
⇀
f
uop_i(

⇀
x se) = 0 (137)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m, k < drd_i − 1, where m is the input (or output) number and the
symbol L denotes the Lie differentiation operation.
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<ii> the following Lie differentiation matrix possesses the nonsingular performance:

Asystem ≡


Lguip_1 Ldrd_1−1

f uop_1(
⇀
x se) · · · Lguip_m Ldrd_1−1

f uop_1(
⇀
x se)

...
...

Lguip_1 Ldrd_m−1
f uop_m(

⇀
x se) · · · Lguip_m Ldrd_m−1

f uop_m(
⇀
x se)

 (138)

and the following function

span
{
⇀
g uip_1,

⇀
g uip_2, · · · ,

⇀
g uip_m

}
(139)

is an involutive distribution.
Based on the property that the nonlinear system has the well-defined relative degree

and involutive distribution, the following mapping defined as

φ : <n → <n (140)

⇀
T l_i ≡

[
Ti

l_1 · · · Ti
l_drd_i

]T
≡
[

ϕi
l_1 · · · ϕi

l_drd_i

]T

≡
[

L0
⇀
f
uop_i(

⇀
x se) · · · Ldrd_i−1

⇀
f

uop_i(
⇀
x se)

]T (141)

drd ≡ drd_1 + drd_2 + · · ·+ drd_m (142)

φn_k(
⇀
x se) ≡ Tn_k(t), k = drd + 1, drd + 2, · · · , n (143)

and
Lguip_j φn_k(

⇀
x se) = 0, k = drd + 1, drd + 2, · · · , n, 1 ≤ j ≤ m (144)

is a smooth and bijective function that transforms the highly nonlinear system to be a

nonlinear Tn_k subsystem and a linear subsystem
⇀
T l_i, respectively.

Properly design the Lyapunov functions L f _n and L f _l for the nonlinear subsystem
equation and linear subsystem equation, respectively, and then obtain the composite
Lyapunov function L f _l+n of the transformed system to be

L f _l+n ≡ L f _n + k(ε)L f _l (145)

L f _l = L1
f _l + · · ·+ Lm

f _l (146)

and
Li

f _l ≡
1
2

ei
tr_track

T
Ei

Lei
tr_track (147)

Theorem 1. There exists a differentiable, smooth and bijective function Ly_n : <n−r → <+ for

the transformed nonlinear subsystem Tn_k and the linear subsystem
⇀
T l_i such that the following

inequalities hold:

(a) ∆n_1‖
⇀
T n‖

2
≤ Ly_n ≤ ∆n_2‖

⇀
T n‖

2
(148)

(b) ∇tLy_n + (∇⇀
T n

Ly_n)
T⇀

β n(t,
⇀
T n, 0) ≤ −31αxLy_n (149)

(c) ‖∇⇀
T n

Ly_n‖ ≤ ∆n_3‖
⇀
T n‖, ∆n_3 > 0 (150)

and the proposed robust control is constructed by

⇀
u ip = A−1

system

{
−⇀

u ip_b +
⇀
u ip_v

}
(151)
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⇀
u ip_b ≡

[
uip_b1 uip_b2 · · · uip_bm

]T ≡
[

Ldrd_1
⇀
f

uop_1 Ldrd_2
⇀
f

uop_2 · · · Ldrd_m
⇀
f

uop_m

]T
(152)

⇀
u ip_v ≡

[
uip_v1 uip_v2 · · · uip_vm

]T (153)

uip_vi ≡ ui
op_track

(drd_i) − ε−drd_i αi
1

[
L0

f uop_i(
⇀
x se)− ui

op_track

]
− ε1−drd_i αi

2[
L1

f uop_i(
⇀
x se)− ui

op_track
(1)
]
− · · · − ε−1αi

drd_i

[
Ldrd_i−1

f uop_i(
⇀
x se)− ui

op_track
(drd_i−1)

] (154)

P =

[
P11 P12
P12 P22

]
(155)

P11 = 31αx −
529
46

∆2
n_3

∆n_1
‖ϕ⇀

T n
‖2 (156)

P12 = −

 ∆n_3Mn√
2k(ε)∆n_1λ∗min

 (157)

P22 =
1

ελ∗max
−
(

529
46

) k(ε)‖ϕ1
⇀
T l

‖2‖E1
L‖

2

1/2ε2λmin(E1
L)
− · · · −

(
529
46

) k(ε)‖ϕm
⇀
T l

‖2‖Em
L ‖

2

1/2ε2λmin(Em
L )

(158)

αs(ε) ≡
P11 + P22 −

[
(P11 − P22)

2 + 4P2
12

]1/2

4
(159)

S ≡ 2αs(ε) (160)

S1 ≡
m + 1

46

(
sup

t0≤τ≤t
‖
⇀
Ωun +

⇀
Ωn‖

)2

(161)

S2 ≡ min
{

∆n_1,
k(ε)

2
λ∗min

}
(162)

ϕi
⇀
T l
(ε) ≡


ε

(
∂

∂
⇀
x se

uop_i

)
⇀
q
∗
noise_1 · · · ε

(
∂

∂
⇀
x se

uop_i

)
⇀
q
∗
noise_p

...
...

εdrd_i

(
∂

∂
⇀
x se

Ldrd_i−1
f uop_i

)
⇀
q
∗
noise_1 · · · εdrd_i

(
∂

∂
⇀
x se

Ldrd_i−1
f uop_i

)
⇀
q
∗
noise_p

 (163)

ϕ⇀
T n
(ε) ≡



(
∂

∂
⇀
x se

ϕn_drd+1

)
⇀
q
∗
noise_1 · · ·

(
∂

∂
⇀
x se

ϕn_drd+1

)
⇀
q
∗
noise_p

...
...(

∂

∂
⇀
x se

ϕn_n

)
⇀
q
∗
noise_1 · · ·

(
∂

∂
⇀
x se

ϕn_n

)
⇀
q
∗
noise_p

 (164)

where the identifying matrix P is a positive definite matrix and the identifying parameter k(ε) passes
through the origin and meets the following condition

lim
ε→0

ε/k(ε)→ 0 (165)
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Then the nonlinear system based on the proposed robust control possesses the almost
disturbance decoupling property and the tracking errors are globally reduced by the
condition S · S2 > 1 with the exponential convergent rate

S · S2

Qmax
, Qmax ≡ max

{
∆n_2,

k
2

λ∗max

}
(166)

and the exponential convergent radius√
S1

S · S2
≡ r (167)

It is worth noting that if the nonlinear system is fully feedback linearizable [33], i.e.,
the dimension of the nonlinear system is equal to the relative degree parameter, then the
simplified version of Theorem 1 can be presented as Theorem 2.

Theorem 2. The almost decoupling disturbance and robust tracking problems of the nonlinear
system can be well addressed via the proposed controller by changing the inequality S · S2 > 1 with

P =
1

ελ∗max
−
(

529
46

) k(ε)‖ϕ1
Tl
‖2‖E1

L‖
2

1/2ε2λmin(E1
L)
− · · · −

(
529
46

) k(ε)‖ϕm
Tl
‖2‖Em

L ‖
2

1/2ε2λmin(Em
L )

> 0 (168)

αs(ε) ≡
P
2

(169)

S ≡ 2αs(ε) (170)

S1 ≡
m + 1

46

(
sup

t0≤τ≤t
‖
(
⇀
Ωun +

⇀
Ωn

)
‖
)2

(171)

S2 ≡
k(ε)

2
λ∗min (172)

ϕi
⇀
T l
(ε) ≡


ε

(
∂uop_i

∂
⇀
x se

)
⇀
q
∗
noise_1 · · · ε

(
∂uop_i

∂
⇀
x se

)
⇀
q
∗
noise_p

...
...

εdrd_i

(
∂L

drd_i−1
f uop_i

∂
⇀
x se

)
⇀
q
∗
noise_1 · · · εdrd_i

(
∂L

drd_i−1
f uop_i

∂
⇀
x se

)
⇀
q
∗
noise_p

 (173)

Moreover, the tracking errors of the nonlinear system is globally reduced with the
exponentially convergent rate

S · S2

Qmax
(174)

where
Qmax ≡

k
2

λ∗max (175)

and the exponentially convergent radius

r =

√
S1

S · S2
(176)

FLHBRs have good mobility and can easily move in different road environments,
including up and down slopes, regions containing obstacles or rough terrains. However,
since almost all of them are high order, highly nonlinear control systems, their global
stability and robust control approach are important issues. In this study, an effective
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algorithm and block diagram of robust tracking control design shown in Figure 2 are
summarized as follows, and its human–machine interface via the Python program is shown
to design the robust control in Section 4.
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Figure 2. Block diagram for the proposed algorithm of designing the feedback linearization control.

(Step 1) First calculate the relative degree drd_1, · · · , drd_m according to the known
outputs of the FLHBR system.

(Step 2) Use (57) to derive the differentiable, smooth and bijective transformation of
the FLHBR system.

(Step 3) With the aid of Matlab, design matrices Ai
L to be Hurwitz according to (88)

(113) and obtain the positive definite matrix Ei
L.
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(Step 4) Apply (A90)~(A91) to design the Lyapunov functionL f _l of the
transformed subsystem.

(Step 5) Apply (A93) and (A95)~(A98) to design parameters k, αs(ε), ε such that the
condition S · S2 > 1 is satisfied.

(Step 6) Once all the above conditions are tested, we can directly design the controller
via (89).

4. Simulation of the FLHBR System

Proper designing ε = 0.1, k = 200
√

ε, drd_1 = 2, drd_2 = 2, drd_3 = 2, drd_4 = 2,
drd_5 = 2, αs = 4.961, P = 9.922, S = 9.922, S1 = 0.1304, S2 = 0.158, S · S2 = 1.56 > 1
proves the fact that all the conditions of Theorem 2 are satisfied. The output state trajectories
of the FLHBR system for ε = 0.1 and ε = 0.2 are shown in Figures 3 and 4, respectively, with
the aid of Matlab, where the related simulation parameters are shown in Table 1. Noting that
the proposed feedback linearization control indeed makes the outputs of the FLHBR system
track the desired tracking signals u1

op_track = u2
op_track = u3

op_track = u4
op_track = u5

op_track = 0.
Based on the comparison of Figures 3 and 4, it is evident to see that the convergent rates of
output tracking errors for the FLHBR system with small ε are better than large ε.
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Table 1. The related simulation parameters.

Parameters Value or Type

Step size auto

Numerical method ode45 (Dormand–Prince)

Solver options Variable step

Relative tolerance 1× 10−3

Absolute tolerance 1× 10−6

Output function Refine output

To allow researchers to systematically design the proposed feedback linearization con-
trol, we apply “Python” to build a human–machine interface system. The necessary inputs
of the human–machine interface system include: (i) the dynamic equation of the nonlinear
FLHBR system; (ii) the numbers of states, outputs, inputs and the desired tracking signals
of the nonlinear FLHBR system; (iii) the external disturbances, the Lyapunov functions for
transformed subsystems. The human–machine interface system of the controller design
takes advantage of its symbol-operation feature for “Python” to produce two executable
Matlab files including cytquadff_new1.m and cytquadsimulation_new1.m for the FLHBR
system. Therefore, we can execute these two executable Matlab files to dynamically show
the output state trajectories before, on and after entering the convergent radius r ≈ 0.288 of
the global ultimate attractor symbolized by blue circles shown in Figures 5–7, respectively.
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5. Comparisons to Traditional Approaches

We make some comparisons between the new feedback linearization approach and
the traditional singular perturbation method that pioneered the almost disturbance decou-
pling issue [23,24] in this section. The impractical shortcoming of the traditional singular
perturbation method requires to meet the sufficient condition that the system dynamics
multiplied by the external disturbance should satisfy the annoying “structural triangle
condition” for the almost disturbance decoupling issue. The pioneering work carried
out by [23,24] points out the fact that the following nonlinear control system cannot well
address the almost disturbance decoupling issue:[ .

xse_1(t).
xse_2(t)

]
=

[
tan−1(xse_2)

0

]
+

[
0
1

]
uip +

[
1
0

]
Ωn (177)

uop_1 = xse_1, Ωn(t) = 0.8 sin 2t (178)

From (177) and (178), we can apply Lie differentiation to derive the following results:
L0

f uop_1 = uop_1 = xse_1, Lguip L0
f uop_1 = 0, L1

f uop_1 = tan−1(xse_2),

Lguip L1
f uop_1 = 1

1+x2
se_2

and

g̃uip ≡

 0
1

L⇀
g uip

L1
⇀
f

uop_1

 =

[
0

1 + x2
se_2

]
(179)

Since g̃uip is not a complete distribution, the critical condition of [23,24] is not well
addressed. In contrast, the following proposed feedback linearization control can well
solve the almost disturbance decoupling issue:

uip =
(

x2
se_2 + 1

)
[(cos t)− 256(xse_1 − (− cos t))− 16(tan−1 xse_2 − (sin t))] (180)

The output state trajectory of the above investigated control system with the proposed
feedback linearization control described by (180) is shown in Figure 8. Based on the
observation of Figure 8, the proposed robust control can indeed drive the output state
trajectory to track the desired signal − cos t.
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To show the superiority of the proposed feedback linearization control, we compare
the convergence rate performance with traditional PID control [34] shown by (181)

⇀
u PID = KP


yo1 − y1

od

yo2 − y2
od

yo3 − y3
od

yo4 − y4
od

+ KI


∫
(yo1 − y1

od)dt∫
(yo2 − y2

od)dt∫
(yo3 − y3

od)dt∫
(yo4 − y4

od)dt

+ KD


d
dt (yo1 − y1

od)
d
dt (yo2 − y2

od)
d
dt (yo3 − y3

od)
d
dt (yo4 − y4

od)

 (181)

Next, we compare the proposed feedback linearization approach with the traditional
PID control. In what follows, manual adjusting of the traditional PID control for the FLHBR
system is shown. The manual adjusting of the related KP, KI, KD gains is executed by
trial and error. We first set the related KP, KI, KD gains to be zero and then increase
the proportional gain KP until the output of the loop is motivated. This is followed by
the adjustment for the integral gain KI to optimize the output tracking error response.
Finally, the differential gain KD is adjusted, together with the optimized KP, KI gains until
a desired output tracking error response is achieved. Output tracking errors responses for
pre-specified outputs x1 to x5 are shown in Figure 9.
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Comparing Figure 9 with Figure 3 proves the fact that the convergence rate with our
proposed feedback linearization controller is better than the conventional PID control. From
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Figures 3 and 9, we can summarize a numerical evaluation shown in Table 2 which reports
the quantitative comparison in terms of transient dynamics for the proposed approach and
the PID approach. Observing the data shown in Table 2 yields the fact that the transient
dynamics of the proposed feedback linearization approach is better that the PID approach.

Table 2. Comparison of transient dynamics for proposed approach and PID approach.

Peak Time Settling Time Rise Time Maximum Overshoot

PID approach

x1 0.4 3.5 0.2 3.8

x2 0.05 4.5 0.02 2.1

x3 0.1 5.8 0.05 3.7

x4 0 3.4 0 0

x5 0.4 3.8 0.3 3.8

Proposed approach

x1 0 0.75 0 0

x2 0 0.75 0 0

x3 0 0.8 0 0

x4 0 0.8 0 0

x5 0 0.9 0 0

6. Conclusions

The FLHBR system possesses highly nonlinear dynamics and many degrees of free-
dom that are not easy to manipulate. The FLHBR system is also unavoidably subjected to
all kinds of external disturbances such as contact with the ground and different ground
situations. As a result, accurately modeling the dynamics and walking stability of FLHBR
systems are greatly difficult. The study first presents the complete derivations of a mathe-
matical model for highly nonlinear FLHBR systems, and proposes the robust control by
the feedback linearization technique to greatly improve the shortcoming of the traditional
singular perturbation approach that requires to meet the difficult complete condition for
the discriminant function, and the restriction of the traditional H-infinity technique that
needs to solve the Hamilton–Jacobi equation.

This study first proposes the very valuable formulas of nonlinear exponential conver-
gence rate and convergent radius for the highly nonlinear FLHBR system. Finally, through
the demonstration of the Matlab simulation, the responses are shown to have good tracking
performance as well as better robustness performance as compared with the traditional
singular perturbation method. In the final section, we compare some simulations of the
proposed feedback linearization approach with the traditional PID approach. The simula-
tion results show that the transient dynamics of the proposed approach including the peak
time, the rise time, the settling time and the maximum overshoot specifications is superior
to the traditional PID approach.

In future works, we hope that a real FLHBR system using the proposed main theorem
can be implemented via hardware devices. Based on the important contribution that this
article has first proposed on the convergence rate formula of the general nonlinear system,
we may use the particle swarm optimization and linear quadratic regulator algorithms to
achieve the more optimal performances for nonlinear FLHBR system under the guarantee
of globally exponential stability in the near future.
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Appendix A

In this appendix, we show the complete derivations of the mathematical model for
nonlinear FLHBR system. Based on the geometric coordinate of the FLHBR system shown
in Figure 1, the coordinate (xci, yci) and velocity

( .
xci,

.
yci
)
, i = 1, 2, 3, 4, 5 of each link is

written as
xc1 = D1 sin θ1 (A1)

yc1 = D1 cos θ1 (A2)

xc2 = L1 sin θ1 + D2 sin θ2 (A3)

yc2 = L1 cos θ1 + D2 cos θ2 (A4)

xc3 = L1 sin θ1 + L2 sin θ2 + D3 sin θ3 (A5)

yc3 = L1 cos θ1 + L2 cos θ2 + D3 cos θ3 (A6)

xc4 = L1 sin θ1 + L2 sin θ2 + (L4 − D4) sin θ4 (A7)

yc4 = L1 cos θ1 + L2 cos θ2 − (L4 − D4) cos θ4 (A8)

xc5 = L1 sin θ1 + L2 sin θ2 + L4 sin θ4 + (L5 − D5) sin θ5 (A9)

yc5 = L1 cos θ1 + L2 cos θ2 − L4 cos θ4 − (L5 − D5) cos θ5 (A10)

According to (A1)~(A10), the kinetic energy and the potential energy of the FLHBR
system, and related differentiations can be derived as

Epotential = M1D1G(cos θ1) + M2G(L1 cos θ1 + D2 cos θ2)
+M3G(L1 cos θ1 + L2 cos θ2 + D3 cos θ3)
+M4G(L1 cos θ1 + L2 cos θ2 − (L4 − D4) cos θ4)
+M5G(L1 cos θ1 + L2 cos θ2 − L4 cos θ4 − (L5 − D5) cos θ5)

(A11)

∂Epotential
∂θ1

≡ G1

= −G sin θ1[M1D1 + (M2 + M3 + M4 + M5)L1]
(A12)

∂Epotential
∂θ2

≡ G2

= −G sin θ2[M2D2 + (M3 + M4 + M5)L2]
(A13)

∂Epotential

∂θ3
≡ G3 = −G sin θ3[M3D3] (A14)

∂Epotential

∂θ4
≡ G4 = G sin θ4[M4(L4 − D4) + M5L4] (A15)

∂Epotential

∂θ5
≡ G3 = G sin θ5[M5(L5 − D5)] (A16)
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Kkinetic_1 ≡ 1
2 M1(vc1)

2 + 1
2 I1
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θ1
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+ 1
2 M1
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+ 1
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Kkinetic_2 ≡ 1
2 M2(vc2)

2 + 1
2 I2
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θ2
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( .
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+ 1
2 M2

( .
yc2
)2

+ 1
2 I2

( .
θ2

)2

= 1
2
(

M2D2
2 + I2

)( .
θ2

)2
+ 1

2
(

M2L2
1
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) (A18)

Kkinetic_3 ≡ 1
2 M3(vc3)
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Kkinetic_4 ≡ 1
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Kkinetic_5 ≡ 1
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(A21)

Ekinetic = Kkinetic_1 + Kkinetic_2 + Kkinetic_3 + Kkinetic_4 + Kkinetic_5 (A22)

d
dt

(
∂Ekinetic

∂
.
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..
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..
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..
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(A23)

D11 ≡
[

I1 + M1D2
1 + (M2 + M3 + M4 + M5)L2

1

]
(A24)

D12 ≡ [M2D2L1 + (M3 + M4 + M5)L1L2] cos(θ1 − θ2) (A25)

D13 ≡ [M3L1D3] cos(θ1 − θ3) (A26)

D14 ≡ [M4L1(L4 − D4) + M5L1L4] cos(θ1 + θ4) (A27)

D15 ≡ [M5L1(L5 − D5)] cos(θ1 + θ5) (A28)

H122 ≡ [M2D2L1 + (M3 + M4 + M5)L1L2] sin(θ1 − θ2) (A29)

H133 ≡ [M3L1D3] sin(θ1 − θ3) (A30)

H144 ≡ −[M4L1(L4 − D4) + M5L1L4] sin(θ1 + θ4) (A31)

H155 ≡ −[M5L1(L5 − D5)] sin(θ1 + θ5) (A32)

∂Ekinetic
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)( .
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) (A33)
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d
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)2
+ H244

( .
θ4

)2

+H255

( .
θ5

)2
+ [M2L1D2 + (M3 + M4 + M5)L1L2] sin(θ1 − θ2)

( .
θ1

)( .
θ2

)
−[M3L2D3] sin(θ2 − θ3)

( .
θ2

)( .
θ3

)
− [M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4)

( .
θ2

)( .
θ4

)
−[M5L2(L5 − D5)] sin(θ2 + θ5)

( .
θ2

)( .
θ5

)
(A34)

D21 ≡ [M2L1D2 + (M3 + M4 + M5)L1L2] cos(θ1 − θ2) = D12 (A35)

D22 ≡
[

I2 + M2D2
2 + (M3 + M4 + M5)L2

2

]
(A36)

D23 ≡ [M3L2D3] cos(θ2 − θ3) (A37)

D24 ≡ [M4L2(L4 − D4) + M5L2L4] cos(θ2 + θ4) (A38)

D25 ≡ [M5L2(L5 − D5)] cos(θ2 + θ5) (A39)

H211 ≡ −[M2L1D2 + (M3 + M4 + M5)L1L2] sin(θ1 − θ2) (A40)

H233 ≡ [M3L2D3] sin(θ2 − θ3) (A41)

H244 ≡ −[M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4) (A42)

H255 ≡ −[M5L2(L5 − D5)] sin(θ2 + θ5) (A43)

∂Ekinetic
∂θ2

= [M2L1D2 + (M3 + M4 + M5)L1L2] sin(θ1 − θ2)
( .

θ1

)( .
θ2

)
−[M3L2D3] sin(θ2 − θ3)

( .
θ2

)( .
θ3

)
− [M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4)

( .
θ2

)( .
θ4

)
−[M5L2(L5 − D5)] sin(θ2 + θ5)

( .
θ2

)( .
θ5

) (A44)

d
dt

(
∂Ekinetic

∂
.
θ3

)
= D31

..
θ1 + D32

..
θ2 + D33

..
θ3 + D34

..
θ4 + D35

..
θ5 + H311

( .
θ1

)2
+ H322

( .
θ2

)2

+H344

( .
θ4

)2
+ H355

( .
θ5

)2
+ [M3L1D3] sin(θ1 − θ3)

( .
θ1

)( .
θ3

)
+ [M3L2D3] sin(θ2 − θ3)

( .
θ2

)( .
θ3

) (A45)

D31 ≡ [M3L1D3] cos(θ1 − θ3) = D13 (A46)

D32 ≡ [M3L2D3] cos(θ2 − θ3) = D23 (A47)

D33 ≡
[

I3 + M3D2
3

]
(A48)

D34 ≡ 0 (A49)

D35 ≡ 0 (A50)

H311 ≡ −[M3L1D3] sin(θ1 − θ3) (A51)

H322 ≡ −[M3L2D3] sin(θ2 − θ3) (A52)

H344 ≡ 0 (A53)

H355 ≡ 0 (A54)

∂Ekinetic
∂θ3

= [M3L1D3] sin(θ1 − θ3)
( .

θ1

)( .
θ3

)
+ [M3L2D3] sin(θ2 − θ3)

( .
θ2

)( .
θ3

)
(A55)

d
dt

(
∂Ekinetic

∂
.
θ4

)
= D41

..
θ1 + D42

..
θ2 + D43

..
θ3 + D44

..
θ4 + D45

..
θ5 + H411

( .
θ1

)2
+ H422

( .
θ2

)2

+H433

( .
θ3

)2
+ H455

( .
θ5

)2
− [M4L1(L4 − D4) + M5L1L4] sin(θ1 + θ4)

( .
θ1

)( .
θ4

)
−[M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4)

( .
θ2

)( .
θ4

)
−[M5L4(L5 − D5)] sin(θ4 − θ5)

( .
θ4

)( .
θ5

)
(A56)

D41 ≡ [M4L1(L4 − D4) + M5L1L4] cos(θ1 + θ4) = D14 (A57)
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D42 ≡ [M4L2(L4 − D4) + M5L2L4] cos(θ2 + θ4) = D24 (A58)

D43 ≡ 0 = D34 (A59)

D44 ≡
[

I4 + M4(L4 − D4)
2 + M5L2

4

]
(A60)

D45 ≡ [M5L4(L5 − D5)] cos(θ4 − θ5) = D54 (A61)

H411 ≡ −[M4L1(L4 − D4) + M5L1L4] sin(θ1 + θ4) (A62)

H422 ≡ −[M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4) (A63)

H433 ≡ 0 (A64)

H455 ≡ [M5L4(L5 − D5)] sin(θ4 − θ5) (A65)

∂Ekinetic
∂θ4

= −[M4L1(L4 − D4) + M5L1L4] sin(θ1 + θ4)
( .

θ1

)( .
θ4

)
−[M4L2(L4 − D4) + M5L2L4] sin(θ2 + θ4)

( .
θ2

)( .
θ4

)
−[M5L4(L5 − D5)] sin(θ4 − θ5)

( .
θ4

)( .
θ5

) (A66)

d
dt

(
∂Ekinetic

∂
.
θ5

)
= D51

..
θ1 + D52

..
θ2 + D53

..
θ3 + D54

..
θ4 + D55

..
θ5 + H511

( .
θ1

)2
+ H522

( .
θ2

)2

+H533

( .
θ3

)2
+ H544

( .
θ4

)2
− [M5L1(L5 − D5)] sin(θ1 + θ5)

( .
θ1

)( .
θ5

)
−[M5L2(L5 − D5)] sin(θ2 + θ5)

( .
θ2

)( .
θ5

)
− [M5L4(L5 − D5)] sin(θ4 − θ5)

( .
θ4

)( .
θ5

) (A67)

D51 ≡ [M5L1(L5 − D5)] cos(θ1 + θ5) = D15 (A68)

D52 ≡ [M5L2(L5 − D5)] cos(θ2 + θ5) = D25 (A69)

D53 ≡ 0 = D35 (A70)

D54 ≡ [M5L4(L5 − D5)] cos(θ4 − θ5) = D45 (A71)

D55 ≡
[

I5 + M5(L5 − D5)
2
]

(A72)

H511 ≡ −[M5L1(L5 − D5)] sin(θ1 + θ5) (A73)

H522 ≡ −[M5L2(L5 − D5)] sin(θ2 + θ5) (A74)

H533 ≡ 0 (A75)

H544 ≡ −[M5L4(L5 − D5)] sin(θ4 − θ5) (A76)

where M1 = M5 = 4.55 kg, M2 = M4 = 7.63 kg, M3 = 49.00 kg are the masses of
link1~link5, M2, M4 denote the masses of exoskeleton thighs, M1, M5 denote the masses of
legs, M3 denotes the mass of torso, L1 = L5 = 0.502 m, L2 = L4 = 0.431 m are the lengths
of link1, 2, 4, 5, D1 = D5 = 0.247 m, D2 = D4 = 0.247 m, D3 = 0.280 m are the distances
between the mass centers of link1, 2, 3, 4, 5 and those lower joints, I1 = I5 = 0.105 kg ·m2,
I2 = I4 = 0.089 kg ·m2, I3 = 2.350 kg ·m2 are the moments of rotational inertias for link1,
2, 3, 4, 5 and G = 9.8 m/s2 is the acceleration of gravity.

Substituting (A12)~(A76) into (1)~(2) yields[
D
˜

(
⇀
θ

)] ..
⇀
θ +

[
H
˜

(
⇀
θ ,

.
⇀
θ

)]
+ G

˜

(
⇀
θ

)
=

[
⇀
τ

(
⇀
θ ,

.
⇀
θ ,

..
⇀
θ

)]
(A77)

where

D
˜

(
⇀
θ

)
≡


D11 D12 D13 D14 D15
D12 D22 D23 D24 D25
D13 D23 D33 0 0
D14 D24 0 D44 D45
D15 D25 0 D45 D55

 (A78)
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H
˜

(
⇀
θ ,

.
⇀
θ

)
≡
[
H1 H2 H3 H4 H5

]T (A79)

H1 = H122

( .
θ2

)2
+ H133

( .
θ3

)2
+ H144

( .
θ4

)2
+ H155

( .
θ5

)2
(A80)

H2 = H211

( .
θ1

)2
+ H233

( .
θ3

)2
+ H244

( .
θ4

)2
+ H255

( .
θ5

)2
(A81)

H3 = H311

( .
θ1

)2
+ H322

( .
θ2

)2
+ H344

( .
θ4

)2
+ H355

( .
θ5

)2
(A82)

H4 = H411

( .
θ1

)2
+ H422

( .
θ2

)2
+ H433

( .
θ3

)2
+ H455

( .
θ5

)2
(A83)

H5 = H511

( .
θ1

)2
+ H533

( .
θ2

)2
+ H533

( .
θ3

)2
+ H544

( .
θ4

)2
(A84)

G
˜

(
⇀
θ

)
≡
[
G1 G2 G3 G4 G5

]T (A85)

⇀
θ ≡

[
θ1 θ2 θ3 θ4 θ5

]T (A86)
..
⇀
θ ≡

[ ..
θ1

..
θ2

..
θ3

..
θ4

..
θ5

]T
(A87)

.
⇀
θ ≡

[ .
θ1

.
θ2

.
θ3

.
θ4

.
θ5

]T
(A88)

⇀
τ ≡

[
τ1 τ2 τ3 τ4 τ5

]T (A89)

Define the input, output, state, noise and matched uncertainty variables of the FLHBR
to be

⇀
u ip ≡

[
τ1 · · · τ5

]T
=

[
uip_1 · · · uip_5

]T ,
⇀
u op ≡

[
θ1 · · · θ5

]T ,
⇀
x se ≡

[
xse_1 · · · xse_10

]T , xse_1 = θ1, xse_2 =
.
θ1, xse_3 = θ2, xse_4 =

.
θ2, xse_5 = θ3,

xse_6 =
.
θ3, xse_7 = θ4, xse_8 =

.
θ4, xse_9 = θ5, xse_10 =

.
θ5,

p
∑

j=1

⇀
q
∗
noise_jΩn_j,

p
∑

j=1

⇀
q
∗
noise_jΩun_j.

Then the dynamic equation of the FLHBR system can be derived shown in (3)~(51).

Appendix B

In this appendix, we prove that the proposed feedback linearization control can
achieve the almost all disturbance decoupling performance. Properly design the composite
Lyapunov functions [35] L f _l for transformed subsystem (125)~(126) to be

L f _l = k
[

L1
f _l + · · ·+ L5

f _l

]
(A90)

and
Li

f _l ≡
1
2

ei
tr_track

T
Ei

Lei
tr_track (A91)

Then, the differentiation of the composite Lyapunov function is given by
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d
dt

(
L f _l

)
= k

2

( •
e1

tr_track

)T

E1
Le1

tr_track
+

(
e1

tr_track

)T
E1

L

( •
e1

tr_track

)

+· · ·+
( •

e5
tr_track

)T

E5
Le5

tr_track
+

(
e5

tr_track

)T
E5

L

( •
e5

tr_track

)
= k

2ε

(
e1

tr_track

)T[
E1

L
(

A1
L
)
+
(

A1
L
)T E1

L

]
e1

tr_track + · · ·+
k
2ε

(
e5

tr_track

)T[
E5

L
(

A5
L
)
+
(

A5
L
)T E5

L

]
e5

tr_track

+ k
ε

{(
⇀
Ωun +

⇀
Ωn

)T[(
ϕ1

Tl

)T
E1

Le1
tr_track + · · ·+

(
ϕ5

Tl

)T
E5

Le5
tr_track

]}

+ k
ε

{(
⇀
Ωun +

⇀
Ωn

)T[(
ϕ1

Tl

)T
E1

Le1
tr_track + · · ·+

(
ϕ5

Tl

)T
E5

Le5
tr_track

]}

≤ − k
2ε

[
‖e1

tr_track‖
2
+ · · ·+ ‖e5

tr_track‖
2
]
+ k

ε

{(
⇀
Ωun +

⇀
Ωn

)T[(
ϕ1

Tl

)T
E1

Le1
tr_track + · · ·+

(
ϕ5

Tl

)T
E5

Le5
tr_track

]}

≤ − k
2ε

[
‖e1

tr_track‖
2
+ · · ·+ ‖e5

tr_track‖
2
]
+ k

ε

[
‖
(
⇀
Ωun +

⇀
Ωn

)
‖(

‖ϕ1
Tl
‖‖E1

L‖‖e1
tr_track‖+ · · ·+ ‖ϕ5

Tl
‖‖E5

L‖‖e5
tr_track‖

)]
≤ − k

ε

[
Li

f _l

λmax(E1
L)

+ · · ·+
L5

f _l

λmax(E5
L)

]
+ 529

46
k2

ε2 ‖ϕ1
Tl
‖2‖E1

L‖
2‖e1

tr_track‖
2
+ 1

46‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

+· · ·+ 529
46

k2

ε2 ‖ϕ5
Tl
‖2‖E5

L‖
2‖e5

tr_track‖
2
+ 1

46‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

≤ − k
ε

1
λ∗max

L f _l +
529
46

k2

ε2 ‖ϕ1
Tl
‖2‖E1

L‖
2‖e1

tr_track‖
2
+ 1

46‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

+· · ·+ 529
46

k2

ε2 ‖ϕ5
Tl
‖2‖E5

L‖
2‖e5

tr_track‖
2
+ 1

46‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

≤ −
(

1
ελ∗max

− 529
46

k‖ϕ1
Tl
‖2‖E1

L‖
2

1/2ε2λmin(E1
L)
− · · · − 529

46
k‖ϕ5

Tl
‖2‖E5

L‖
2

1/2ε2λmin(E5
L)

)(√
k
(

L f _l

))2

+ 0.1304‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

= −P
(√

k
(

L f _l

))2

+ 0.1304‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2

(A92)

where

P =
1

ελ∗max
−
(

529
46

) k(ε)‖ϕ1
Tl
‖2‖E1

L‖
2

1/2ε2λmin(E1
L)
− · · · −

(
529
46

) k(ε)‖ϕ5
Tl
‖2‖E5

L‖
2

1/2ε2λmin(E5
L)

> 0 (A93)

i.e.,
d
dt

(
L f _l

)
≤ −PL f _l + 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A94)

Define
αs(ε) ≡

P
2

(A95)

S ≡ 2αs(ε) (A96)

S1 ≡ 0.1304

(
sup

t0≤τ≤t
‖
(
⇀
Ωun +

⇀
Ωn

)
‖
)2

(A97)

S2 ≡
k(ε)

2
λ∗min (A98)

Then

d
dt

(
L f _l

)
≤ −2αsL f _l + 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
≤ −S · S2

(
‖etr_track‖2

)
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A99)
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Let the tracking error etr_track of the transformed system be

etr_track ≡
[
e1

tr_track · · · e5
tr_track

]T
≡
[
e1

tr_1 e1
tr_rem

]T
, e1

tr_rem ∈ <
dvr f−1 (A100)

Then we obtain

d
dt

(
L f _l

)
≤ −S · S2

(
‖e1

tr_1‖
2
+ ‖e1

tr_rem‖
2
)
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A101)

Firstly, applying (A101) easily yields

d
dt

(
L f _l

)
+ S · S2‖e1

tr_1‖
2
≤ −S · S2

(
‖e1

tr_rem‖
2
)
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
≤ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A102)

i.e.,
d
dt

(
L f _l

)
+ S · S2‖e1

tr_1‖
2
≤ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A103)

Integrate both sides of (A103) to obtain

L f _l(t)− L f _l(t0) + S · S2

t∫
t0

(
uop_1(τ)− u1

op_track(τ)
)2

dτ ≤ 0.1304
t∫

t0

‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2
dτ (A104)

i.e.,

S · S2

t∫
t0

(
uop_1(τ)− u1

op_track(τ)
)2

dτ ≤ L f _l(t0) + 0.1304
t∫

t0

‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2
dτ (A105)

hence

t∫
t0

(
uop_1(τ)− u1

op_track(τ)
)2

dτ ≤
L f _l(t0)

S · S2
+

0.1304
S · S2

t∫
t0

‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2
dτ (A106)

Similarly, we obtain the tracking error for uop_i, 2 ≤ i ≤ 5 as

t∫
t0

(
uop_i(τ)− ui

op_track(τ)
)2

dτ ≤
L f _l(t0)

S · S2
+

0.1304
S · S2

t∫
t0

‖
(
⇀
Ωun +

⇀
Ωn

)
‖

2
dτ, 2 ≤ i ≤ 5 (A107)

Therefore, we verify the significant result that the third condition of the almost distur-
bance decoupling performance is well proved.

Next, we need to prove that the first condition of the almost disturbance decoupling
performance holds. From (A101), we can obtain

d
dt

(
L f _l

)
≤ −S · S2

(
‖etr_track‖2

)
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A108)

Define
‖⇀u op_track−total‖

2
≡ ‖etr_track‖2 (A109)

From (A108) and (A109), we obtain

d
dt

(
L f _l

)
≤ −S · S2

(
‖⇀u op_track−total‖

2
)
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A110)

i.e.,
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d
dt

(
L f _l

)
≤ −(S · S2 − 1)

(
‖⇀u op_track−total‖

2
)
− ‖⇀u op_track−total‖

2
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
(A111)

According to the following inequality, the output state trajectory is located in the
outside of the global ultimate attractor:

− ‖⇀u op_track−total‖
2
+ 0.1304‖

(
⇀
Ωun +

⇀
Ωn

)
‖

2
< 0 (A112)

We obtain
d
dt

(
L f _l

)
≤ −(S · S2 − 1)

(
‖⇀u op_track−total‖

2
)

(A113)

From (A90) and (A91), we obtain

L f _l = k
[

L1
f _l + · · ·+ L5

f _l

]
≤ k 1

2

{
λmax(E1

L)e
1
tr_track

+ · · ·+ λmax(E5
L)e

5
tr_track

}
≤ k 1

2 λ∗max

{
e1

tr_track
+ · · ·+ e5

tr_track

} (A114)

Let Qmax ≡ k
2 λ∗max and we obtain

L f _l ≤ Qmax

(
‖⇀u op_track−total‖

2
)

(A115)

Similarly, we obtain

L f _l = k
[

L1
f _l + · · ·+ L5

f _l

]
≥ k 1

2

{
λmin(E1

L)e
1
tr_track

+ · · ·+ λmin(E5
L)e

5
tr_track

}
≥ k 1

2 λ∗min

{
e1

tr_track
+ · · ·+ e5

tr_track

} (A116)

Let Qmin ≡ k
2 λ∗min and we obtain

L f _l ≥ Qmin

(
‖⇀u op_track−total‖

2
)

(A117)

Combining (A115) and (A117) yields

Qmin

(
‖⇀u op_track−total‖

2
)
≤ L f _l ≤ Qmax

(
‖⇀u op_track−total‖

2
)

(A118)

(A112), (A113) and (A118) imply that the system is in the input-to-state stable state
for the disturbance input. Then the input-to-state stable theorem in [32] concludes the
significant result that the first condition of the almost disturbance decoupling performance
is completely verified.

Next, we need to prove that the second condition of the almost disturbance decoupling
performance holds.

Combining (A108), (A109), (A118) and (A97) yields

d
dt

(
L f _l

)
≤ −S · S2

Qmax
L f _l + S1 (A119)

Use the comparison theorem in [33] for (A119) to obtain

L f _l(t) ≤ L f _l(t0) exp
(
−S · S2

Qmax
(t− t0)

)
+

QmaxS1

S · S2
, t ≥ t0 (A120)
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Then, we obtain the tracking error with integral sense to be

∣∣∣uop_1(t)− u1
op_track(t)

∣∣∣ ≤
√

2L f _l(t0)

kλ∗min
exp

(
− S · S2

2Qmax
(t− t0)

)
+

√
2QmaxS1

kλ∗minS · S2
(A121)

and

∣∣∣uop_i(t)− ui
op_track(t)

∣∣∣ ≤
√

2L f _l(t0)

kλ∗min
exp

(
− S · S2

2Qmax
(t− t0)

)
+

√
2QmaxS1

kλ∗minS · S2
, 2 ≤ i ≤ 5 (A122)

So, we can prove that the second condition of the almost disturbance decoupling
performance holds, and the convergent rate is given by S · S2/2Qmax.

Combining (A108) and (A109) yields

d
dt

(
L f _l

)
≤ −S · S2

(
‖⇀u op_track−total‖

2
)
+ S1 (A123)

Let us consider the range ‖⇀u op_track−total‖ > r, r ≡
√

S1
S·S2

. It is an easy routine to

obtain d
dt

(
L f _l

)
< 0, and then the global ultimate attractor of the transformed system is

written by
Br ≡

{
[etr_track] : ‖etr_track‖2 ≤ r

}
(A124)

with the convergent radius r ≡
√

S1
S·S2

.
Next, we need to prove the globally exponential stability of the transformed system.

Combining (A118) and (A120) obtains

L f _l(t) ≤ L f _l(t0) exp
(
−S · S2

Qmax
(t− t0)

)
+

QmaxS1

S · S2
(A125)

and

Qmin‖
⇀
u op_track−total‖

2
≤ L f _l ≤ L f _l(t0) exp

(
− S·S2

Qmax
(t− t0)

)
+ QmaxS1

S·S2

≤ Qmax‖
⇀
u op_track−total(t0)‖

2
exp

(
− S·S2

Qmax
(t− t0)

)
+ QmaxS1

S·S2

(A126)

Then

‖⇀u op_track−total‖
2
≤ Qmax

Qmin
‖⇀u op_track−total(t0)‖

2
exp

(
−S · S2

Qmax
(t− t0)

)
+

S1

S · S2

Qmax

Qmin
(A127)

Then we can conclude the significant result that the globally exponential stability of
the transformed system is well proved.
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