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Abstract: In computer vision technology, image segmentation is a significant technological ad-
vancement for the current problems of high-speed railroad image scene changes, low segmentation
accuracy, and serious information loss. We propose a segmentation algorithm, DFA-UNet, based
on an improved U-Net network architecture. The model uses the same encoder–decoder structure
as U-Net. To be able to extract image features efficiently and further integrate the weights of each
channel feature, we propose to embed the DFA attention module in the encoder part of the model
for the adaptive adjustment of feature map weights. We evaluated the performance of the model on
the RailSem19 dataset. The results showed that our model showed improvements of 2.48%, 0.22%,
3.31%, 0.97%, and 2.2% in mIoU, F1-score, Accuracy, Precision, and Recall, respectively, compared
with U-Net. The model can effectively achieve the segmentation of railroad images.

Keywords: deep learning; image segmentation; U-Net; depthwise separable convolution

1. Introduction

With the continuous development of intelligent technology, driverless technology has
been widely used in the field of transportation. In the future, high-speed rails will be a very
critical mode of transportation. Cameras on the front of the vehicle help visualize obstacles
on the track for driverlessness. To achieve driverlessness, the first step is to process the
relevant images. Image segmentation is a complex and critical step in the field of image
processing and analysis, the purpose of which is to segment the parts of an image that
have some special meaning and extract the relevant features. Splitting out image targets is
a difficult task. Some common methods of traditional image segmentation are threshold-
based segmentation, region-based segmentation, model-based deformation, etc. However,
due to the complex background and changing scenes of railroad images, they often contain
a large amount of noise, which is challenging to be accurately segmented by traditional
image segmentation algorithms. Therefore, it is urgently needed to develop a fast and
accurate segmentation method to improve the accuracy of segmentation in complex scenes
and achieve real-time railroad segmentation.

CNN-based encoder-decoder architecture is a commonly used image processing
method. CNN has excellent feature extraction capability that overcomes the limitations of
manual feature extraction. However, many feature extractions can only extract high-level
semantic information while ignoring the underlying semantic information, thus not having
a good segmentation effect.

In this paper, we propose an efficient segmentation network, DFA-UNet. The module
can focus on the image’s main features at the encoder stage and further process them
by downsampling. We present the GAMP module, which improves the network feature
extraction capability by global average pooling as well as maximum global pooling for
the channels.

The network model proposed in this paper consists of the following two main works:

1. A new convolution module, GAMP

Appl. Sci. 2023, 13, 662. https://doi.org/10.3390/app13010662 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7217-3109
https://orcid.org/0000-0003-4771-7984
https://doi.org/10.3390/app13010662
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010662?type=check_update&version=2


Appl. Sci. 2023, 13, 662 2 of 9

In this paper, we propose a new convolutional module, GAMP, which is able to
increase the perceptual field of the network without increasing the number of network
parameters compared to other convolutional blocks. It enables the network to extract richer
semantic information from the images effectively. Compared with other modules, the
GAMP module can better capture the features and detailed areas of the input image in the
results of image segmentation, and the segmentation is perfect.

2. Depthwise fusion-attention block

A fused attention mechanism is added to our model. By fusing the globally averaged
pooling and the globally maximal pooling feature maps, it is possible to output feature
maps that include both the spatial information of the input channels and capture the salient
semantic information in the inputs.

2. Materials and Methods
2.1. Related Work
2.1.1. Traditional Railroad Segmentation

In recent years, there has been a proliferation of methods for railroad segmentation.
Kaleli et al. [1] used the Sobel operator to calculate the gradient of the input image and
applied it to the binary image by Hough transform processing to segment the railroad track.
Qi et al. [2] used the feature extraction method of HOG to extract image features and used
a local area growth-based method to segment the tracks. Teng et al. [3] proposed a visual
rail detection using super pixels with dynamic planning to extract the left and right tracks
without any calibration process. A feature extraction network with a pyramid structure that
was proposed by Wang et al. [4] can increase the detection of railroads without creating a
lot of regions, but the network’s processing speed prevents it from being used for real-time
railroad detection.

2.1.2. Deep Learning Image Segmentation

Image segmentation is a breakthrough in computer vision, and CNN-based image
segmentation algorithms are increasingly being studied. A U-shaped network structure
to obtain contextual information and location information for U-Net was proposed by
Ronneberger et al. [5]. The encoder performs feature extraction through convolution and
pooling operations, and the decoder recovers the features of the image through upsampling
operations. To prevent information loss, the feature map of the decoder is spliced with
the feature map of the encoder, which can effectively realize image segmentation. Zhou
et al. [6] argued that direct concatenation in U-Net is too coarse and will cause the two
connected convolutional layer inputs to have large semantic differences. To address these
issues, they proposed UNet++ to reduce the semantic differences and the learning difficulty
of the network. The Attention U-Net proposed by Oktay et al. [7] adds the mechanism of
attention to the basic U-Net. By automatically learning parameters to adjust the activation
value, it can suppress irrelevant regions in the image, highlight the features of the region of
interest, and segment effectively. The deeper the network, the more likely it is to suffer from
network capacity degradation. In order to solve this problem, He et al. [8] proposed Resnet
for solving the gradient disappearance problem. Jha et al. [9] proposed ResUNet++ with a
ResNet structure, capable of achieving good results from indistinguishable images. The
transformer for sequence-to-sequence prediction has emerged as an alternative architecture
with an innate global self-attentive mechanism by Vaswani et al. [10]. However, the lack of
low-level detail may result in limited localization capability. Because convolution cannot
learn global and long-range semantic information very well, Cao et al. [11] proposed
the SwinUNet, with local and global semantic feature learning by feeding tokenized
image blocks into an encoder module with transformer results. To make the model more
lightweight, Li et al. [12] proposed Rail-Net. although their network has very good detection
speed, their accuracy is relatively low
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2.1.3. Attention Mechanism

Attentional mechanisms are now widely used in computer vision. Hu et al. [13]
focused on the relationship between channels and proposed a new structural unit, SE-Net,
which can model the interdependence between feature map channels. Oktat et al. [7] offered
an Attention Gate in the Attention U-Net network, able to improve local regions of interest
and suppress certain non-interest regions. Due to the popularity of Transformer, Chen
et al. [14] proposed TransUNet based on the transformer architecture. To take advantage
of Transformer and CNNs, the strategy of the TransUNet encoder is a mixture of CNN
and Transformer to build the encoder. Transformer focuses more on global information
but tends to ignore image details at low resolution. This hurts the decoder more to recover
the pixel size, which will result in a coarse segmentation result. However, CNNs can
make up for this shortcoming of Transformer, so mixed coding is of great benefit in the
author’s opinion. For the decoder, it is relatively simple, and it is the conventional transpose
convolutional upsampling to recover the image pixels; simultaneous downsampling from
the CNN of the encoder corresponds to the cascade over the same layer’s resolution. These
are all inherent operations of the original U-Net.

Self-attention is a unique attention mechanism that plays an increasingly important
role in computer vision due to its long-range dependence and adaptability. However,
self-attention was originally designed for NLP. When dealing with computer vision tasks,
it treats images as one-dimensional sequences, thus ignoring the two-dimensional structure
of images. For high-resolution images, only spatial adaptation is achieved, ignoring the
adaptation of channel dimensions. Different channels often represent other objects for
vision tasks, and channel adaptation has also been shown to be necessary. To resolve this
problem, Guo et al. [15] proposed Large Kernel Attention (LKA) to exploit the advantages
of self-attention and large kernel convolution. The decomposition of the LKA operation is
proposed to capture long-term relationships. The LKA achieves adaptation not only in the
spatial dimension but also in the channel dimension.

2.1.4. Depthwise Separable Convolution

Chollet et al. [16] proposed Depthwise Separable Convolution as an efficient convolu-
tional neural network structure consisting of depthwise (DW) convolution and pointwise
(PW) convolution. The calculation of DW convolution is straightforward: it uses one
convolution kernel for each channel of the input feature map and then splices the output of
all the convolution kernels to obtain its final output. To combine the information between
the channels and the feature map, a layer of 1 × 1 PW convolution is added at the end of
the feature map, which connects the maps from the previous step in the depth direction
with weighting to generate a new feature map. Compared with a traditional CNN, DW
separable convolution not only reduces the number of parameters of the model but also
reduces the size of the model.

3. Methods

Most image segmentation methods are processed by simple convolution in the fea-
ture extraction stage. U-Net goes through a simple two-layer convolution process at the
encoder stage to extract the low-level semantic information of the image. In the ResUNet++
downsampling stage, the perceptual image field is enhanced by adding a residual link to
prevent the image gradient from disappearing. However, the stacking of a large number
of 3 × 3 convolution blocks increases the number of parameters. In DCSAU-Net [10,17],
the authors proposed the PFC block, by using a 7 × 7 DW convolution and a 1 × 1 PW
convolution to perform downsampling. DW convolution has strong low-level feature
extraction capabilities. Still, these cannot be extracted from deeper layers of the image.
To take into account local contextual information, large receptive domains, and dynamic
processes, The LKA module combines the advantages of convolution and self-attention
to achieve the adaptation of the channel dimension as well as the spatial dimension. To
increase the perceptual image field and reduce the number of parameters, we propose a
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more efficient architecture of a depthwise fusion-attention block. We achieve access to
low-level semantic information by adding the GAMP module. Our modules mainly consist
of 7 × 7 DW convolution and 1 × 1 PW convolution, which can reduce the number of
parameters and costs. In addition, 3 × 3 convolution blocks are added to the initial block
for downsampling the input image. To avoid gradient disappearance, we also add residual
connections in the GAMP module, which can improve the network performance without
increasing the parameters. Finally, we demonstrate the reason for our choice of 7 × 7 DW
convolution by ablation experiments. The different module pairs are shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 10 
 

image. To take into account local contextual information, large receptive domains, and 

dynamic processes, The LKA module combines the advantages of convolution and self-

attention to achieve the adaptation of the channel dimension as well as the spatial dimen-

sion. To increase the perceptual image field and reduce the number of parameters, we 

propose a more efficient architecture of a depthwise fusion-attention block. We achieve 

access to low-level semantic information by adding the GAMP module. Our modules 

mainly consist of 7 × 7 DW convolution and 1 × 1 PW convolution, which can reduce the 

number of parameters and costs. In addition, 3 × 3 convolution blocks are added to the 

initial block for downsampling the input image. To avoid gradient disappearance, we also 

add residual connections in the GAMP module, which can improve the network perfor-

mance without increasing the parameters. Finally, we demonstrate the reason for our 

choice of 7 × 7 DW convolution by ablation experiments. The different module pairs are 

shown in Figure 1. 

 

   

 

 

 

 

  

(a) (b) (c) (d) (e) 

Figure 1. Comparing our DFA (e) with U-Net (a), Stem Block (b), LKA (c), and PFC (d) designs 

used to extract the low-level semantic information from the input images.  

3.1. GAMP Module 

SE-Net is an attention mechanism that focuses on the channel domain and has been 

widely used in many networks to reinforce the feature information of different channels 

in the feature map. The standard SE-Net first performs the global averaging pooling of 

the input features, which is usually used to aggregate spatial information in different 

channels of the feature map so that the segmentation result can retain more details of the 

original map. However, this tends to ignore the local information within each channel and 

thus dilute some significant or unique features of the input. In order to focus channel at-

tention on the meaningful regions of the input image, we add a global maximum pooling 

operation to the original SE-Net to capture local robust feature information within each 

channel and combine it with the global average pooling results, thus compensating for the 

initial shortcomings of SE-Net. In addition, SE-Net uses full connectivity to find the cor-

relation between different channels, and the number of parameters in the entire connec-

tivity layer is relatively large, which also increases the overall computational effort of the 

network. Therefore, we use a 1 × 1 convolutional network instead of a fully connected 

layer. This will not only achieve the same effect but also reduce the number of parameters 

of the original SE-Net. The specific GAMP module is shown in Figure 2. 
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to extract the low-level semantic information from the input images.

3.1. GAMP Module

SE-Net is an attention mechanism that focuses on the channel domain and has been
widely used in many networks to reinforce the feature information of different channels in
the feature map. The standard SE-Net first performs the global averaging pooling of the
input features, which is usually used to aggregate spatial information in different channels
of the feature map so that the segmentation result can retain more details of the original
map. However, this tends to ignore the local information within each channel and thus
dilute some significant or unique features of the input. In order to focus channel attention
on the meaningful regions of the input image, we add a global maximum pooling operation
to the original SE-Net to capture local robust feature information within each channel
and combine it with the global average pooling results, thus compensating for the initial
shortcomings of SE-Net. In addition, SE-Net uses full connectivity to find the correlation
between different channels, and the number of parameters in the entire connectivity layer
is relatively large, which also increases the overall computational effort of the network.
Therefore, we use a 1 × 1 convolutional network instead of a fully connected layer. This
will not only achieve the same effect but also reduce the number of parameters of the
original SE-Net. The specific GAMP module is shown in Figure 2.
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3.2. Deep Fusion Feature Module

The standard U-Net network uses a stacked 3 × 3 convolution to extract features.
However, such a U-Net can only capture a limited number of receptive fields. The common
practice of expanding the receptive field of a neural network is to use convolutional layers
with large kernels or to stack more convolutional layers. However, using a larger convo-
lutional kernel size can make the number of parameters in the network rise sharply, and
blindly stacking convolutional layers can make the model suffer from gradient dispersion
during deep gradient transfer. To enable the model to obtain richer semantic information
from the input and to balance the complexity of the whole network, we propose a deep
fusion feature module. In this module, we use a set of large-size depth-separable con-
volutions to extract new features from the input image. The input is first subjected to a
7 × 7 channel-by-channel convolution for feature map computation. In this process, we
add the GMAP module and enable it to capture not only the spatial information in the
feature map but also the significant semantic information in the channels, so that the whole
network can focus on some important regional parts of the input image and increase the
regression rate of the segmented image. The feature map extracted by this convolution will
be input into a 1 × 1 point-by-point convolution to integrate the feature information on
each channel and finally output the new features. Since the depth-separable convolution
does not perform well with low-dimensional feature maps, we add a 7 × 7 convolution
before this convolution to extract the initial features and boost the features’ dimensionality.
The specific DFA module is shown in Figure 1e. The GAP and GMP formulas are as follows:

GAPc =
1

H × W ∑H
i=1 ∑W

j=1 uc(i, j) (1)

GMPc = Max(uc) (2)

3.3. DFA-Unet Architecture

The complete DFA-UNet architecture is shown in the figure below, with the encoder in
the left half of the figure and the decoder in the right half. The DFA attention module is used
to extract complex features from the input image, and 2 × 2 maximum pooling in steps of 2
is performed after each block for downsampling. After completing downsampling 4 times,
DFA-UNet will start decoding and each block is up-sampled with bilinear interpolation
to gradually recover the size of the original image. A skip connection is used to stitch
these feature maps with the feature maps from the corresponding encoders, which mixes
low-level and high-level semantic information to generate accurate masks. Finally, a
1 × 1 convolution followed by a sigmoid function is used to output the image segmentation
mask. The complete DFA-UNet architecture is shown in Figure 3.
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4. Experimental Data and Results
4.1. Datasets

To test the validity of the model, we used the public Railsem19 railroad dataset. This
dataset consists of 8500 images. In our experiments, we divided the dataset into 7650 training
images as well as 850 test images.

4.2. Experimental Details

All experiments were implemented using the PyTorch 1.11.0 framework on a single
RTX A5000 Tensor Core GPU, AMD EPYC 7543 32-Core Processor, and 24 GB RAM. We
used a typical segmentation loss function, dice loss, and an SGD optimizer with a learning
rate of 1 × 10−3 to train all models. The number of batch sizes and epochs was set to
16 and 150, respectively. During training, we set the image size of all input models to
256 × 256, except for SwinUNet, which has an image size of 224 × 224.

4.3. Model Evaluation

The evaluation metrics commonly used for image segmentation tasks are mIoU,
Accuracy, Precision, Recall, and F1-score. One of the more dominant indicators is mIoU.
To evaluate the performance of the models, we compared other more popular models and
tested the metrics of each model for this dataset. Compared with other models, our model
shows significant improvements in terms of mIoU, Precision, Recall, and F1-score. The
specific experimental results are shown in Table 1. For the image segmentation task, the
performance of the network on mIoU and F1-score metrics usually receives more attention.
From Table 1, DFA-UNet achieves an F1-score of 0.8997 and a mIoU of 0.8662, which
outperforms ResUNet++ by 1.84% in terms of F1-score and 2.12% in mIoU. Particularly, our
proposed model provides a significant improvement over the two recent transformer-based
architectures, where the mIoU of DFA-UNet is 11.28% and 4.27% higher than SwinUNet
and LeViTUNet, and the F1-score of DFA-UNet is 7.83% and 3.13% higher than these two
models, respectively.

We visualized the mIoU during the training of different models, as shown in Figure 4.
We use a violin drawing, which shows the overall distribution of the data in addition to the
above statistics.
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Table 1. The results of the evaluation on the dataset.

Model mIoU Accuracy Precision Recall F1-Score

U-Net 0.8414 0.9902 0.8706 0.8960 0.8777
Attention UNet 0.8635 0.9924 0.8919 0.9020 0.8928

LeViTUNet 0.8235 0.9905 0.8812 0.8711 0.8684
ResUNet++ 0.8450 0.9921 0.8940 0.8814 0.8813
SwinUNet 0.7534 0.98338 0.8480 0.8196 0.8214

UNet+SEnet 0.8466 0.9912 0.8878 0.88677 0.8795
DFA-UNet 0.8662 0.9924 0.9037 0.9057 0.8997

The following Figure 5 shows the loss plots of different models during training.
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4.4. Model Results

The following Figure 6 shows the results of our model compared with other models. As
you can see from Figure 6, our model is also able to identify well the railroad environment
for dark conditions. For the second row of data in Figure 6, the original image has two
tracks, but the label only labels one track, and our model is able to predict all tracks clearly.
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4.5. Ablation Study

In this section, we performed the DFA-Unet ablation experiments. We analyzed the
number of parameters per model (Params), the number of floating point operations per sec-
ond (Flops), and the number of frames per second (FPS) transmitted by the model. Table 2
shows that our model has fewer parameters. To justify our choice of 7 × 7 convolutional
kernels, we compared different convolutional kernel sizes, and the final result shows the
effectiveness of our choice of 7 × 7-sized convolutional kernels. The results are shown in
Table 3.
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Table 2. Comparison of other parameters of different models.

Model FLOPs Params FPS

U-Net 31.1191G 13.3953M 64.67
Attention UNet 66.6318G 34.8785M 34.47

LevitUNet 33.2142G 52.1438M 43.33
Resunet++ 70.9938G 14.4825M 36.61
SwinUNet 10.7228G 27.1458M 51.14
UNet+SE 31.1229G 13.4711M 48.69

DFA-UNet 24.9564G 8.7517M 49.61

Table 3. Study of different kernel sizes in DFA modules of the DFA-UNet architecture on railway
datasets.

Kernal Size mIoU Accuracy Precision Recall F1-Score

3 × 3 0.8463 0.9909 0.8766 0.8952 0.8805
5 × 5 0.8562 0.9912 0.8872 0.9089 0.8935
7 × 7 0.8662 0.9924 0.9037 0.9057 0.8997
9 × 9 0.8455 0.9907 0.8780 0.8950 0.8813

5. Discussion

Semantic segmentation has been widely used in the field of image analysis, and most
segmentation models are composed in the form of encoder-decoder results and fuse low-
level to high-level semantic information by jumping connections. This simple encoding
processing may lose a lot of valid information. We can retain this valid feature information
by introducing the DFA attention module. Our proposed GAMP module, which introduces
global average pooling, can greatly reduce the number of parameters and optimization
efforts of the model. It can suppress noise, reduce information redundancy, improve the
network’s ability to judge categories, and find all the target distinguishable regions for
prediction. GMP is introduced to maximize the global and ignore other regions with low
scores. After that, we combine the extracted different features by the attention channel
fusion strategy for deeper feature extraction. At the downsampling stage, the feature maps
at different scales can be better extracted by our module. In the upsampling stage, the
same module can recover features at different scales. In the middle of downsampling
and upsampling, we use a simple skip connection to concatenate the features of different
layers to complete the image segmentation. There are also many complex forms of jump
connections, which we will explore further in the future. Table 2 shows that our proposed
model has fewer Flops and Params and can be used as a more lightweight model result.
Our FPS is not very high with the same device, but it can identify some devices in real time.
Future research will focus further on the model for quick real-time detection. As shown in
Figure 4, it can be demonstrated that our proposed model shows higher performance in
most scenarios and is more robust than other SOTA methods.

6. Conclusions

In this paper, we propose a new encoder-decoder architecture for image segmentation:
DFA-UNet. The proposed model consists of the GAMP module and the DFA module. The
GAMP module can effectively extract the low-level features of the image and reduce the
number of parameters of the model, and the DFA module can realize the fusion of different
scale feature maps. We evaluated our model on the Remrail19 dataset, and the results
showed that our model has higher mIoU evaluation metrics compared to other models.
Our model can perform better for complex image segmentation tasks. In the future, we
will focus on optimizing its performance so that it can segment images more accurately in
real time.
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