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Abstract: Aerial remote sensing image object detection, based on deep learning, is of great significance
in geological resource exploration, urban traffic management, and military strategic information. To
improve intractable problems in aerial remote sensing image, we propose a high-precision object
detection method based on YOLOv5 for aerial remote sensing image. The object detection method
is called KCFS-YOLOv5. To obtain the appropriate anchor box, we used the K-means++ algorithm
to optimize the initial clustering points. To further enhance the feature extraction and fusion ability
of the backbone network, we embedded the Coordinate Attention (CA) in the backbone network of
YOLOv5 and introduced the Bidirectional Feature Pyramid Network (BiFPN) in the neck network of
conventional YOLOv5. To improve the detection precision of tiny objects, we added a new tiny object
detection head based on the conventional YOLOv5. To reduce the deviation between the predicted
box and the ground truth box, we used the SIoU Loss function. Finally, we fused and adjusted the
above improvement points and obtained high-precision detection method: KCFS-YOLOv5. This
detection method was evaluated on three datasets (NWPU VHR-10, RSOD, and UCAS-AOD-CAR).
The comparative experiment results demonstrate that our KCFS-YOLOv5 has the highest accuracy
for the object detection in aerial remote sensing image.

Keywords: aerial remote sensing image; object detection; coordinate attention mechanisms; feature
fusion; SIoU loss; tiny object detection

1. Introduction

In recent years, with the continuous development of wireless communication, ma-
terials science, artificial intelligence, track analysis, and other technologies, the amount
of valuable information in aerial remote sensing images has increased significantly. With
the improvement of imaging quality, the multi-scale object which exists in the image con-
tains more detailed and strategic information; some multi-scale targets in aerial remote
sensing images such as vehicles, civil facilities, and aircraft can also be found easily by
the search equipment, for which the aerial remote sensing images have become a hot spot
for scholars in geology [1], agricultural [2], military [3], and forestry [4]. In the era of
artificial intelligence, the economic and strategic values of aerial remote sensing images
are gradually reflected. For example, Yao et al. [5] proposed an improved algorithm based
on Mask RCNN to improve the accuracy of identifying special geological structures, and
the unique geographical structure can be protected to achieve the role of disaster reduc-
tion. Meng et al. [6] used an object detection algorithm based on visual text information
to search for the point of the gas leakage in aerial remote sensing images, their research
can alleviate environmental pollution and prevent economic losses. Therefore, the high-
precision detection method of multi-scale objects in aerial remote sensing images has high
research value.
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On the research of the object detection, the high-precision detection of multi-scale
objects in aerial remote sensing images remains a formidable challenge. First, the multi-
scale object is readily disturbed by environmental factors such as light intensity, topographic
influences, and prevailing climatic conditions in the background of the aerial remote sensing
images, objects are easily ignored by detection methods. Second, the ability of object feature
extraction and fusion of existing detection methods still have room to be improved, because
the loss of feature information will lead to a decrease in detection accuracy. Third, due to
the large size of aerial remote sensing images, the feature of the tiny object is easily covered
by the feature of the large object, which will result in the reduction of detection accuracy, if
the algorithm pays too much attention to the object with large size, the detection accuracy
of objects that have tiny sizes will be reduced. Fourth, the existing loss function usually
ignores the vector angle between the ground truth box and the prediction box, which affects
the detection accuracy in the detection task.

The detection ability of the traditional object detection algorithm based on the template
matching method [7] is not efficient, because this method needs to manually extract and
classify object features, its speed and accuracy are difficult to guarantee when dealing with
a large number of tiny objects. Machine learning algorithms [8] often need to describe a
large number of features by complex mathematical statistical methods, and their detection
performance and generalization ability are obviously insufficient.

With the development of deep learning methods in the research of object detec-
tion, a large number of object detection methods based on deep neural networks have
been proposed. Among them, the representative two-stage algorithm are R-CNN serial
algorithms [9–11], while the representative single-stage algorithms are YOLO serial al-
gorithms [12–17] and SSD serial algorithms [18,19]. The emergence of these algorithms
based on deep neural networks has greatly improved the performance of object detection.
The aerial remote sensing image as a kind of image is also used in the research of object
detection. Yan et al. [20] proposed an improved Faster-RCNN algorithm to improve the
recognition accuracy of mineral resources. Luo et al. [21] improved the detection precision
of aircraft objects in remote sensing images by reducing the feature fusion output ports of
neck network in YOLO algorithm. Although the above algorithm has excellent detection
effect in a single category of object detection, the applicability is poor because remote
sensing images often contain different categories of objects.

Aiming at the problem of object detection in aerial remote sensing images, an improved
YOLOv5 object detection method called KCFS-YOLOv5 was proposed. The improved al-
gorithm realizes the high-precision detection of multi-scale objects in aerial remote sensing
images such as aircraft, vehicles, baseball fields and other common remote sensing objects. We
used KCFS-YOLOv5 detection method in three aerial remote sensing image datasets [22–24],
and achieved better detection average accuracy than the existing algorithms.

The innovation of our KCFS-YOLOv5 is reflected in the following aspects:

• We adopted the K-means++ clustering method to optimize the initial clustering points
of anchor box.

• We embed the CA attention module into the backbone network of the YOLOv5 to
improve the feature extraction ability of the algorithm for objects in aerial remote
sensing images.

• We embedded BiFPN in the neck network of YOLOv5 to optimize the network framework
to strengthen the fusion ability of the neck network for different dimensional features.

• Based on main characteristics of aerial remote sensing images which contain many
tiny objects, we added a new tiny object detection head based on the conventional
YOLOv5 to preserve the texture features of tiny objects and improve the detection
accuracy for tiny objects.

• We selected the SIoU loss function to replace the conventional GIoU loss function to
reduce the deviation between the predicted box and the ground truth box which can
improve the detection performance.
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The rest of our article is arranged as follows: Section 2 recommends the universal
advanced object detection modules and their practical value of object detection in aerial
remote sensing images, and the conventional YOLOv5 object detection algorithm model is
also introduced in this section. The proposed KCFS-YOLOv5 object detection method is
covered in Section 3. Section 4 presents the simulation environment and the preparation
for experiments. The simulation results and the discussion are demonstrated in Section 5
and Section 6, respectively. The conclusion is presented in Section 7.

2. Related Works
2.1. Current Mainstream Object Detection Algorithm

Many studies have been investigated to address these tricky challenges. For example,
before 2010, although traditional object detection methods such as template matching [7]
and machine learning [8] are convenient to implement, the detection performance was poor.
In 2012, Krzyzewski et al. [25] proposed a Deep Convolutional Neural Network (D-CNN)
called AlexNet to bring object detection into the era of deep learning. Girshick [9] proposed
a two-stage object detection algorithm called the region convolutional neural network
(R-CNN), it surpasses other algorithms in detection accuracy, but the detection speed is
slower. On this basis, Sun et al. [10] and Ren et al. [11] proposed the Fast Region-Based
Convolutional Neural Network (Fast R-CNN) and the Faster Region-Based Convolutional
Neural Network (Faster R-CNN) which improve the speed and accuracy of the R-CNN
algorithm. Although the improved two-stage algorithm has improved the detection effi-
ciency, it is still difficult to meet the needs of practical detection. Therefore, to intensify the
practicability of the algorithm, Anguelov et al. [18] proposed a single-stage detection (SSD)
algorithm; SSD serial algorithms have high detection accuracy and speed, but a disadvan-
tage is that they require many manual parameters, which causes difficulties in practical
applications. Since 2016, Redmon et al. [12] introduced the YOLO module (You Only Look
Once), and YOLOv2 [13]. They balance the detection accuracy and detection speed to
realize real-time detection of ordinary-sized objects. Meanwhile, because of its unique
grid cell framework, the detection performance of tiny objects is relatively poor. In 2018,
Redmon et al. [14] proposed YOLOv3, by adding Mosaic data augmentation to strengthen
the network’s ability to surpass the two-stage model in accuracy and YOLOv4 [15] was born
in 2020. YOLOv5 is the most recognized sequel to the YOLO serial algorithms. Although
the average detection accuracy and the detection efficiency have been improved compared
to the previous works, the detection effect of multi-scale objects with complex backgrounds
still needs to be improved.

2.2. Object Detection in Aerial Remote Sensing Images

In recent years, with the development of deep convolutional network applications
in images, many scholars performed much valuable research in the field of multi-scale
object detection in aerial remote sensing images. Da et al. [26] embedded the transition
module, the residual network and the spatial pyramid pooling structure into the original
YOLOv3 network, which could improve the detection precision of tiny ships in remote
sensing images. Luo et al. [21] improved the detection precision of aircraft objects in
remote sensing images by reducing the feature fusion output ports of neck network in
YOLO algorithm. Cao et al. [27] optimized the CSP framework in the YOLO backbone
network, enhanced the non-linear classification ability of the network with Mish activation
function, and embedded the pyramid pooling framework in the neck network. The above
methods strengthened the ability of feature fusion, and made the detection accuracy of
objects increase. Li et al. [28] proposed an effective object detection method in low altitude
environment for remote sensing images. Although it has high detection accuracy for
low-altitude UAV objects, the detection result of aerial remote sensing images is poor.
Wang et al. [29] embedded CBAM [30] attention module into the conventional YOLOv5
network to strengthen the ability of the algorithm to detect tiny objects in 2021. Although
the algorithm makes the detection accuracy improve, It requires a lot of computation and
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reduces the operation efficiency. On this basis, Yang et al. [31] introduced the ECA [32]
module and the SAHI [33] framework in YOLOv5 and tested them on three aerial remote
sensing image datasets, achieving excellent detection results. However, they ignored the
initial clustering points of anchor box and position features of multi-size objects, therefore,
the detection accuracy could still be improved.

2.3. Attention Mechanism in Object Detection Task

The principle of the conventional attention mechanism is based on the visual selectivity
of humans. In daily life, human beings always focus on the more important parts of a
picture using their own previously-obtained information. The attention mechanism module
adaptively updates the weights and screens the information to focus the attention on the
more noteworthy information, ignores the useless information, and further converges the
algorithm vision. Currently the main attention mechanisms are channel domain attention
mechanisms, spatial domain attention mechanisms and fusion attention mechanisms.

The spatial attention mechanism obtains the attention weight mainly through the
relative position of all objects in the image. STNs (Spatial Transformer Networks) [34]
converts the object in reverse space to reduce the degree of image information loss and
improve the accuracy in the detection task.

The representative algorithm for channel attention module is the SEnet (Squeeze-and-
Excitation Networks) [35]. The method of the global average pool is used to extract and
classify the information of different channels, and generates the probability statistics of
each channel, and then relies on the fully connected layer to generate the weights between
different channels, and finally outputs the weighted channel weights.

The mixed domain attention mechanism is a fusion algorithm which fuses the spatial
attention mechanism and the channel attention mechanism. The representative algorithm is
the CBAM [30] module. This module proves that input sequence of attention mechanisms
has an impact on the experimental results, The authors input the feature map into the
channel attention mechanism and then the spatial attention mechanism, and achieved
better feature extraction results.

In recent years, various advanced attention mechanisms have been widely used in
object detection. For example, Sun et al. [36] embedded the channel attention mecha-
nism into YOLOv5 framework to achieve the high-precision detection of the leaf disease.
Wang et al. [29] embedded a mixed attention mechanism into the Two-Stream Convolution
Network to strengthen detection ability of the algorithm for human action recognition
tasks. The above studies prove that adding an appropriate attention mechanism in the
object detection task is helpful in improving the performance of the algorithm.

Based on valuable previous studies, a novel network model, we called KCFS-YOLOv5,
is developed to improve the detection precision of multi-scale objects in aerial remote
sensing images.

2.4. Principles of the Conventional YOLOv5 Detection Framework

The YOLOv5 object detection framework proposed in 2020 by Ultralytics LLC is an
improved framework based on the YOLO series. Structurally, it is a one-stage detection
framework composed of four units: the Input, the Backbone network, the Neck network,
and the Output. After drawing on the advantages of earlier versions of the YOLO series
and other detection algorithms, YOLOv5 embeds the Focus layer into the input for data
augmentation. Meanwhile, it used the DarkNet53 in the backbone to extract the main
features from the image. A feature fusion framework which incorporates the feature
pyramid structure [37] (FPN) and the bottom-up Path Aggregation Network [38] is also
embedded in the neck network to strengthen the short-circuit linking and cross-layer fusion
in multi-scale features. The complete YOLOv5 framework is shown in Figure 1. The four
constituent units in the YOLOv5 network are demonstrated as follows:
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Figure 1. The conventional YOLOv5 algorithm framework.

Input: similar to YOLOv4, YOLOv5 uses the Mosaic module to augment the data. It
uses four photographs, thus significantly increasing the amount of data between different
pictures. Fusion enhances the detection generalization ability of background information
and multi-scale objects and reduces the computational burden. The improved framework
adjusts the size of input images to a unified 640 × 640 pixels through the adaptive image
scaling module to improve data complexity. Meanwhile, in the process of network param-
eter training, the input framework generates the preset anchor box of the object through
a K-means adaptive anchor box algorithm, calculates the deviation between the preset
anchor and the ground truth box of the object, and update the network weight through the
reverse transmission of the fusion framework.

The backbone network: YOLOv5 adopts CSPDarknet53 [14] as the backbone network;
the backbone network consists of Focus layer, CSPNet framework and Spatial Pyramid
Pooling (SPP) module [39]. The Focus layer is a method for data enhancement on the data
side. When dealing with larger feature maps, YOLOv5 can first split and splice a feature
map, then pass concatenating layers to stack images so that feature representations at
different levels can then be extracted through convolutional layers. The CSPNet framework
forms the backbone network and enhances the feature fusion ability of feature maps with
different dimensions through residual connections, which is the basis of backpropagation
in the network. The SPP module performs maximum pooling in four different dimensions:
1 × 1, 5 × 5, 9 × 9, and 13 × 13, to strengthen the network’s receptive ability of pictures
and differentiate feature information.

The Neck network: this fuses the texture information and position information in the
feature map to strengthen the ability of information fusion on multi-scale objects, the neck
network of YOLOv5 adopts the fusion structure of PAFPN [40]. The FPN structure further
enhances the features of different dimensions in the network through Up-sampling, Graph
fusion ability and multi-size object detection ability. The PAN framework can bring the
information of the shallow layer to the bottom layer through short-circuit links, which
improves the detection results of disturbing objects.
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The Output: The output consists of the NMS module and the loss function, the original
YOLOv5 used CIoU loss function in the output. It overcomes the problem where IoU is
not steerable in special cases and improves the detection effect when the prediction frames
overlap. Weighted NMS is used to consolidate the detection performance in multi-objective
environment, thus obtaining the optimal detection framework.

Although YOLOv5 has shown excellent performance in different tasks of object de-
tection, it still has some problems to be optimized in the object detection task for remote
sensing images. The problems are as follows:

• The conventional YOLOv5 algorithm uses K-means algorithm to cluster anchor boxes
at the output, but the K-means clustering algorithm randomly selects the center points
of the K pre-training marked boxes in the data set as the center of each cluster. If the
location of the initial points is not selected properly, the final clustering result should
be very negative.

• Aerial remote sensing images contain rich information and multi-size objects. The
traditional deep convolution structure makes it difficult to effectively extract the
texture features of objects in the aerial detection task, and some important feature
information will be ignored by the conventional feature extraction network.

• The conventional YOLOv5 uses the PAN+FPN framework as the neck network. This
feature fusion network focuses on strict hierarchical information fusion, and ignores
the information fusion between the shallow network and the bottom network, which
will lead to the loss of feature information in the deep network.

• Aerial remote sensing images are rich in multi-size objects. For tiny objects, the output
ports of the feature fusion framework of the original YOLOv5 algorithm are in three
sizes, which makes some tiny objects output from the medium size port, and reduces
the detection accuracy.

• The conventional YOLOv5s uses the GIoU loss function as the function of the predicted
box, it ignores the vector angle between the predicted box and the ground truth box,
which affects the detection accuracy in the detection task.

3. Improvements of the KCFS-YOLOv5

Aiming at the above problems, we put forward several measures to improve YOLOv5.

• We use the K-means++ algorithm [41] to optimize the initial clustering points of the
anchor box, which makes the initial clustering points of anchor box distributed on
the whole feature map as much as possible. In this method, the object on the feature
map can be detected as much as possible, and the probability of missing detection can
be reduced.

• We embed the Coordinate Attention (CA) module [42] into the backbone network of
YOLOv5 to improve the feature extraction ability of objects in aerial remote sensing
images, especially tiny objects.

• We embedded the Bidirectional Feature Pyramid Network (BiFPN) [43] in the neck
network of YOLOv5 to optimize the network framework to improve the fusion ability
of the neck network for different dimensional features.

• Based on the characteristics of aerial remote sensing images which contain many tiny
objects, we added a new tiny object detection head based on the conventional YOLOv5
to preserve the texture features of tiny objects and improve the detection accuracy of
tiny objects.

• We replaced the GIoU function with the SIoU [44] function, which can reduce the
deviation between the predicted box and the ground truth box and improve the
detection performance.

3.1. The Clustering Anchor Box Optimization

In the conventional YOLOv5 algorithm, the detection anchor box will have a certain
effect on detection results. The initial anchor boxes in the conventional algorithm are
nine anchor boxes of random sizes designed and generated using the K-means clustering
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algorithm, it covers objects of various sizes. However, the K-means algorithm randomly
selects the center points of the K pre-training marked boxes in the data set as the center of
each cluster. If the location of the initial points is not selected properly, the final clustering
result should be very negative. It significantly affects the mean average precision (Map)
of training. We therefore propose a K-means++ algorithm-based [41] anchor framework
generation mechanism for optimization.

First, we set the number of center points K that need to be clustered, and randomly
select a center point C f irst of a pre-training marker framework C from the graph as the
initial clustering center.

Second, we reselect all points except the initial cluster point we picked Rrest in the
dataset and compute the IOU distance D(C f irst, Rrest) of Rrest and C f irst can be denoted by:

D(C f irst, Rrest) = 1− IOU(C f irst, Rrest) (1)

Then, the probability Pnext 1 that each reselect point Rrest to become the next cluster
center Rnext in the first iteration can be expressed as:

Pnext 1 =
D2
(

C f irst, Rnext

)
∑Rrest∈data D2

(
C f irst, Rrest

) (2)

Furthermore, using the Roulette method, the probability Pnext of selecting the next
cluster point Csecond will be evaluated, and the process is shown in Figure 2.

𝐶𝑓𝑖𝑟𝑠𝑡

𝑅𝑟𝑒𝑠𝑡 1

𝑅𝑟𝑒𝑠𝑡 2

𝐶𝑠𝑒𝑐𝑜𝑛𝑑.

𝐶𝑓𝑖𝑟𝑠𝑡

𝑅𝑟𝑒𝑠𝑡 2
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𝐷2 𝐶𝑓𝑖𝑟𝑠𝑡 , 𝑅𝑟𝑒𝑠𝑡 2

σ𝑅𝑟𝑒𝑠𝑡∈𝑑𝑎𝑡𝑎
𝐷2 𝐶𝑓𝑖𝑟𝑠𝑡 , 𝑅𝑟𝑒𝑠𝑡

Roulette method

Figure 2. The process of generating the second cluster center.

After applying a K-mean++ algorithm, two cluster centers C f irst and Csecond in the
graph are generated. We change the probability Pnext 2 that each reselected point Rrest to
become the next cluster center Rnext in subsequent iterations which can be expressed as:

Pnext 2 =
D2(Cclose, Rnext)

∑Rrest∈data D2(Cclose, Rrest)
(3)

where Cclose represents the cluster center closest to each reselect point Rrest, and the process
is shown in Figure 3.

Like the first loop, we will evaluate the probability Pnext 1 to select the next cluster
point Cthird by the Roulette method. After iterating the K-means++ algorithm K times, we
can generate K cluster centers such as: C f irstCsecond · · ·Ck. Based on the K optimised cluster
centers we have obtained, we use the traditional K-means clustering method that comes
with YOLOv5 to generate anchors.
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Figure 3. The process of generating subsequent cluster centers.

This method ensures that there is a certain distance between the initial K cluster
centers, which can effectively alleviate the problem that the cluster center points tend to
local optimal solutions due to the chance of random selection, and at the same time it can
improve the detection accuracy.

3.2. Coordinate Attention Module

The attention mechanism module converges the algorithm vision through the network
adaptive update weight and information screening [30]. The algorithm used in the present
research, The Coordinate Attention (CA) [42] modules is embedded in the bottom of the
backbone network of YOLOv5. The CA module is built as depicted in Figure 4. The
feature representation of objects in various environments can be enhanced with the help of
these modules.

Residual

X Avg Pool X Avg Pool

Concat + Conv2d

BatchNorm + Non-linear

Conv2dConv2d

Sigmoid Sigmoid

Re-weight

Input

H×1×C

H×1×C

H×1×C

1×W×C

1×W×C

1×W×C

1×(W+H)×C/r

1×(W+H)×C/r

Output

Figure 4. The conventional Coordinated Attention module.

CA is a convolutional attention mechanism that combines the channel attention and
position information, which realizes attention extraction in different dimensions of channel
and space of feature maps. In contrast to channel attention, which uses two-dimensional
global pooling to convert the input into a single feature vector, CA disassembles the channel
attention into one-dimensional features in two distinct directions. The input feature map
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is a tensor of arbitrary size X = [x1, x2, · · · , xC] where C is the number of channels in
the feature map, H is the height of the feature map, and W stands for the width of the
feature map.

First, an average pooling kernel measuring (1, W) and (H, 1) is used to encode each
channel in horizontal and vertical coordinates, respectively. At height h and width w, the
outputs of the c-th channel are formulated as follows:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (4)

zw
c (w) =

1
H ∑

0≤i≤H
xc(j, w) (5)

These two transformations result in feature fusion in the height and width directions
of the space. The convolution kernel which has size one is used to transform the two feature
maps, and an intermediate feature map f ∈ RC/r × (H+W) containing both horizontal and
vertical spatial information is generated. The formula is shown below:

f = δ(F1([zh, zw])) (6)

where r is the ratio of Down-sampling.
Second, the spatial dimension of the middle feature map f will be divided into two

distinct tensors, f h and f w. Furthermore, a convolution kernel which has size one will be
used to convert the two processed feature maps f w and f h to the same number of channels
as X, as given by:

gh = σ(Fh( f h)) (7)

gw = σ(Fw( f w)) (8)

where σ is the activation function called sigmoid. The processed feature map f h and f w

will be generalized as the attention weight of the system, and the final output is given by:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (9)

Coordinate attention integrates more location information and semantic information
on the previous attention mechanism such as CBAM, so that the network can learn the
feature map and achieve higher detection accuracy in the multi-size object detection task.

Here, the CA module is inserted into the bottom of the backbone network to strengthen
the capabilities of the backbone network to extract and learn semantic features of different
dimensions. This structure can make the backbone network better obtain the pre-training
weight, and Figure 5 displays the model comparison results. As Figure 5 shows, the colors
of different regions indicate the degree of the attention module in the network to different
positions of the image. The more the color tends to blue, the higher the attention of the
network to the region. From the results, adding the CA module enhances the capability of
feature extraction of the object in deep network. Aiming at the distribution characteristics of
tiny objects and important location information in the aerial remote sensing images. Based
on the conventional feature extraction network, more location information and semantic
information are retained in the specific multi-size object feature extraction, which lays the
foundation for the subsequent detection process.
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(a) (b) (c)

Figure 5. The feature map comparison of YOLOv5 and YOLOv5 with Coordinate Attention module.
Where, (a) is the original remote sensing image; (b) is the feature map without the Coordinate
Attention module; (c) is the feature map with the Coordinate Attention module.

3.3. Optimize the Feature Fusion Framework

In the conventional YOLOv5 framework, PAN+FPN framework is used in the feature
fusion framework of neck network, this framework can make the information fusion more
effective and realize information communication between the shallow layer and deep layer
of the network. Compared with the ordinary optical image, the aerial remote sensing image
has more tiny objects scattered randomly and the complex background. Therefore, we hope
to fuse more multi-size object features in different dimensions. However, the framework of
PAN+FPN emphasizes strict Up-sampling and Down-sampling in the process of feature
fusion, and does not focus on the fusion of multi-size object features in aerial remote sensing
images. The Bidirectional Feature Pyramid Network (BiFPN) [43] framework can effectively
solve the above problems. In this paper, we embed the BiFPN framework into the neck
network of the YOLOv5. The framework of the BiFPN is shown in Figure 6. Compared with
the framework of PAN+FPN, instead of emphasizing strict stepwise sampling, BiFPN uses
a short-circuit link method to better integrate information from different layers. Meanwhile,
the conventional YOLOv5 uses Concat fusion method, which cannot extract features
effectively. BiFPN introduces a weighted feature fusion method, which can adjust the
importance of different features by training weights, emphasizing the object features and
ignoring the background information. BiFPN normalizes the weight of each feature to a
value between 0 and 1, which indicates the importance of the feature. Furthermore, the
process is as follows:

O = ∑
i

ωi
ε + ∑j ωj

Ii (10)

where, the feature map is represented as the O. the ωi and ωj are the weights of the feature
map. The value of ε is 0.0001, which ensures the stability of weight update. In the improved
neck network, short-circuit links are added to P3 and P4 layers for weighted feature fusion
of different dimensions. Furthermore, the fusion process of layer P4 is shown as follows:

Ptd
4 = Conv

(
ω1Pin

4 + ω2Sample
(

Pin
5
)

ω1 + ω2 + ε

)
(11)

Pout
4 = Conv

(
ωn

1 Pin
4 + ωn

2 Pin
4 + ω3Sample

(
Pout

3
)

ωn
1 + ωn

2 + ωn
3 + ε

)
(12)

where Conv is the process of convolution. Furthermore, Sample represents the process of
Up-sampling and Down-sampling.
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Figure 6. The conventional framework of the BiFPN.

3.4. The New Tiny Object Detection Head

In the original YOLOv5 framework, the image is subjected to 8, 16, and 32-fold down-
sampling to generate different levels of feature maps which be sent to the detection head,
that is, the detection head obtains 20 × 20 (small), 40 × 40 (medium), and 80 × 80 (large)
feature maps if the size of the input image is 640 × 640. Compared with the ordinary
optical image, the remote sensing image has more tiny objects. Excessive downsampling
will destroy the features of tiny objects in aerial remote sensing images such as aircraft and
vehicles. Feature extraction for large feature maps can reduce the receptive field of input
feature maps, reduce the loss of feature information in networks, and strengthen the tiny
object detection ability. We added a new tiny object detection head based on the original
YOLOv5 to preserve the texture features of tiny objects. The improved framework is shown
in Figure 7, and we will obtain the new detection head with the size of 160 × 160 by 4 times
downsampling. The framework of the improved object detection module is illustrated in
Figure 8. Figure 9 presents the comparison of the detection results using the improved
object detection module and the conventional object detection module in YOLOv5.

Featuren Fusion Layer

Neck Head

4 times downsampling

8 times downsampling

16 times downsampling

32 times downsampling

New feature output

Figure 7. The new feature fusion module.
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Figure 8. The framework of the improved object detection module.

(b)

(a)

Figure 9. This is the comparison results using the improved object detection module and the original
YOLOv5. (a) is the result of the conventional YOLOv5, (b) is the result of the improved object
detection module.

3.5. Optimization of the Loss Function

Tiny objects in aerial remote sensing images place extremely onerous requirements
on the precision of the loss function in the network because of their tiny feature objects
and important texture information. The loss function is used at the output of the original
YOLOv5s framework, relying on it to calculate the deviation value between the predicted
box and the ground truth box of the detection object. The conventional YOLOv5s uses
the GIoU loss function [45] as the function of the predicted box; the complete function
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is represented as follows: first, the minimum circumscribed rectangle C of the two AB
detection boxes can be calculated, and then the ratio of the size of the AB area difference set
to the area of the circumscribed rectangle C is calculated, and then the GIoU is attained by
subtracting this ratio from the IoU value of AB. Compared with the IoU function of the early
YOLO series, although GIoU solves the problem that IoU is not steerable in some cases and
cannot be judged when the IoU is the same, but when the predicted box overlaps with the
ground truth box, GIoU will return to IoU, repeating the above problems; the subsequently
proposed CIoU loss function [46] takes into account information such as the height-width
ratio of the frame and the position of the center. Although it solves the problem of box
overlap, it ignores the deviation in the orientation between the ground truth box and the
predicted box, which leads to “wandering” of the predicted frame in the training process,
and finally affects the updating of the weight, so as to reduce the detection performance.

GIOULoss = (IOU− C− (A ∪ B)
C

) (13)

The SIoU [44] is an improved loss function based on the CIoU and GIoU function. It
considers the vector angle between ground truth box and the predicted box, providing
regression direction guidance for predicted box, and redefining the penalty function. In
the tiny object detection-based remote sensing images, the performance of object detection
results can be improved. Its working principle is to calculate the angle loss value between
the ground truth box and the predicted box, as defined by:

Λ = 1− 2× sin2(arcsin(
Ch
σ
)− π

4
) = cos(2× (arcsin(

Ch
σ
)− π

4
)) (14)

where Ch is the height difference between the center point between the predicted box and
the ground truth box, and σ is the deviation in distance between the center point of the
predicted box and the ground truth box. The process is shown in Figure 10.

𝑏𝑔𝑡

𝑏

𝐶𝑤

𝐶ℎ

𝜎

𝛼
𝛽

Figure 10. Calculation of the angle loss value.

The deviation in distance between the prediction box and the detection box can be
defined as follows:

4 = ∑
t=x,y

(1− e−γρt) = 2− e−γρx − e−γρy (15)

ρx = (
bgt

Cx
− bCx

Cw
)

2

, rhoy = (
bgt

Cy
− bCy

Ch
)

2

, gamma = 2−Λ (16)
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where hw and hh are the minimum enclosing rectangle of the ground truth box and the
predicted box, respectively. The process is shown in Figure 11.

𝑏𝑔𝑡

𝑏

ℎ𝑤

ℎℎ

Figure 11. The process of redefining the distance deviation.

Evaluation of loss shape is defined as:

Ω = (1− e−ww)
θ
+ (1− e−wh)

θ (17)

ww =

∣∣w− wgt
∣∣

max(w, wgt)
, wh =

∣∣h− hgt
∣∣

max(h, hgt)
(18)

where (w,h) and (wgt,hgt) denote the width and height of the predicted box and the ground
truth box, respectively, and θ represents the degree of attention that the loss function pays
to the shape loss.

Finally, based on the IoU values of the predicted box and the ground truth box and
the above parameters, the SIoU loss function is determined as follows:

LossSIoU = 1− IoU +
4+ Ω

2
(19)

Based on the diversity of shapes and sizes of target objects in remote sensing images,
especially to improve the algorithm performance of tiny objects in aerial remote sensing
images and reduce the deviation between the predicted box and the ground truth box at
the output of the object detection model. This paper strengthens the detection ability of the
overall framework, by replacing the original GIoU loss function with a more accurate SIoU
loss function that considers direction factors in the improved object detection module.

Therefore, based on the above improvement points, we proposed the KCFS-YOLOv5:
a High-Precision detection method for object detection in aerial remote sensing images,
and the detection process of KCFS-YOLOv5 is shown in Figure 12.
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Figure 12. The detection process of KCFS-YOLOv5.

4. Simulation
4.1. Simulation Environment

These experiments build a deep network framework based on Pytorch platform.
Meanwhile, the hardware configuration of the experiment is as follows: the graphics card
is NVIDIA GTX2060 with 8 GB of memory, the core processor is AMD Ryzen 7 5800H
with Radeon Graphics. To alleviate the computational burden in terms of the GPU in
the experiment, CUDA is introduced to accelerate the experiment (Python is used as a
compilation language).

4.2. Evaluation Indicator

For precision, we recall that the Map is often used as an experimental indicator of
algorithm performance in the task of object detection. Among them, the accuracy rate (Pr)
is the ratio of the number of samples classified as correct by the system to the total number
of samples, which is expressed as follows:

Pr =
PT

PT + PF
× 100 (20)

where PT denotes the correct samples which are assigned correctly; and PF represents the
positive samples that are incorrectly assigned. The recall rate (Re) is the ratio of positive
samples in a sample which are predicted to be right, and its expression is:

Re =
PT

PT + NF
× 100 (21)

where PT refers to the correct samples which are categorized correctly, NF represents the
negative samples which are assigned to the negative answer. However, in general, recall
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and precision are difficult to maintain at high levels at the same time. Therefore, the function
of the parameter map is to integrate these two parameters to achieve a comprehensive
evaluation of the system’s performance. Meanwhile, the expression can be expressed as:

Map =
∑N

k=1 P(k)∆R(k)
C

(22)

where N is the total number of samples in the test set, P(k) denotes the accuracy rate
when K samples are identified simultaneously, ∆ R(k) represents the change in recall rate
after differentiation, and C is the number of object categories in the multi-class object
detection task.

On the other hand, in order to further explore the detection speed of the algorithm,
Latency and FPS of each algorithm are counted and compared. Where, latency represents
the average inference time to detect an image, and FPS means the number of image frames
detected per second. Their relationship is defined as:

FPS =
1000

Lantency
(23)

In addition, we will also count the computation of each module, which is used to
measure the size of the network and is represented as the NP.

4.3. Dataset

We evaluated the proposed improved YOLO5 model on three aerial remote sensing
image datasets: NWPU VHR-10 [23], UCAS-AOD-CAR [24], and RSOD [22].

The NWPU VHR-10 dataset is a geographic remote sensing dataset for spatial object
detection. It contains 650 images containing objects and 150 background images, a total
of 10 categories of objects, which were taken from Google Earth. In the process of data
processing, we uniformly adjust each image to a size of 640 × 640 pixels and divide the
image into training set, validation set and test set with a ratio of 7:2:1. Among them, there
are 560 images in the training set, 160 images in the verification set and 80 images in the
test set.

The RSOD dataset contains 976 images, four categories, and 6950 labeled objects. It
has a uniform size of 1000 × 1000 pixel. Although the RSOD dataset is widely used in
object detection tasks, the number of objects in different categories is not balanced. The
further to enrich the content of the dataset, data augmentation is performed based on the
original dataset; the original image is cut, flipped, and pixel-filled under the premise of
keeping the image aspect ratio unchanged. In the end, the size of the processed dataset is
increased from 976 images to 1500 images.

The UCAS-AOD dataset is an aerial remote sensing image dataset for vehicle and
aircraft detection. It contains 300 vehicle images and 600 aircraft images, which were taken
from Google Earth in 2014. All images in the dataset are 1280 × 659 pixels in size and
evenly distributed in orientation. To verify the detection effect of the improved YOLOv5
framework on dense tiny objects, we selected vehicle datasets with denser distribution
in the dataset for simulation experiments. We uniformly adjust each image to a size of
640 × 640 pixels and randomly assigned the image into training set, validation set and test
set with a ratio of 7:2:1. After image processing, the number of training sets, test sets and
validation sets is 210 images, 30 images and 60 images, respectively.

5. Simulation Results
5.1. Effects of Kmeans++ Clustering Anchor Box

In order to prove the effect of K-means++ clustering anchor box algorithm, we add
K-means++ clustering anchor box algorithm to the conventional YOLOv5 algorithm, and
evaluate the effect of the improved algorithm on three different datasets. The results are
shown in Table 1.
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Table 1. Comparison of the detection performance of the improved algorithm embedded with
K-means++ algorithm and the conventional algorithm.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS

YOLOv5 91.08 91.08 86.26 54.3 90.67 90.59 89.56 56.5 86.48 85.30 83.36 60.6
YOLOv5+K-means++ 91.71 95.86 87.82 52.1 93.97 95.27 91.41 54.3 88.17 91.04 83.68 55.9

The experimental result is the average value calculated by several experiments. It can
be seen that the improved algorithm has different improvement effects on the three test
data sets. The improved result is approached to the global optimal value of the algorithm.
Therefore, we believe that adding the Kmeans++ clustering anchor box algorithm in
YOLOv5 is conducive to improving detection performance.

Meanwhile, the method of the K-means++ clustering anchor box will increase the
computation and detection speed of the improved algorithm. Since it runs independently
of the improved algorithm, its number of parameters is not counted in the total number of
parameters of the improved object detection.

5.2. Effects of Coordinate Attention Module

To compare the results of different attention modules, we added several advanced
attention modules in the YOLOv5 algorithm for contrast experiments. Among them,
SE [35] is a classical channel attention module, and it is the basis for other attention
models. The CBAM is a fusion attention model that integrates channel attention and spatial
attention, which has excellent performance on different datasets. NAM [47] is a lightweight
fusion attention module based on the CBAM module. The ECA is an improved attention
mechanism based on SE module. We added these attention modules and the Coordinate
attention module to the back of the backbone network and sent the processed feature
map to the same feature fusion layer. We conducted simulation experiments on the RSOD
dataset which has abundant object categories, and the results are shown in the following
Table 2:

Table 2. The effects of different attention mechanism module on RSOD dataset.

Algorithm Map (%) Pr (%) Re (%) P (M) Lantency (ms) FPS

YOLOv5 90.67 90.59 89.56 7.072 17.7 56.5
YOLOv5+SE 91.56 91.64 87.65 7.200 18.3 54.6

YOLOv5+CBAM 93.76 95.25 91.80 7.302 19.5 51.3
YOLOv5+NAM 92.14 92.98 89.54 7.237 20.3 49.3
YOLOv5+ECA 93.07 94.01 90.33 7.222 18.7 53.5
YOLOv5+CA 94.17 95.27 91.41 7.253 19.6 51.0

From Table 2, we can see that after embedding coordinate attention module into
YOLOv5 algorithm, the improved algorithm achieves the best detection effect on the
RSOD dataset. Where, Map Pr and Re reach 94.17%, 95.27% and 91.41%, respectively. The
precision of the algorithm framework can be improved obviously without dramatically
increasing the computation and the Lantency. Therefore, we finally decided to embed the
coordinate attention module in the YOLOv5.

To further explore the effect of coordinate attention module on task of object detection,
we used the YOLOv5 algorithm embedded with the coordinate attention module for object
detection on three different datasets, and evaluated the detection results. The results are
shown in Table 3.
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Table 3. Effects of Coordinate Attention module on three datasets.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS

YOLOv5 91.08 91.08 86.26 54.3 90.67 90.59 89.56 56.5 86.48 85.30 83.36 60.6
YOLOv5+CA 93.00 94.18 88.27 50.0 94.17 95.27 91.87 51.0 87.80 85.54 84.24 52.1

It can be seen from Table 3, the YOLOv5 algorithm embedded with Coordinate At-
tention module has achieved improved detection accuracy on three different datasets.
Meanwhile, the detection speed of the improved algorithm is not significantly reduced.
Therefore, we finally decided to use the Coordinate Attention module in the improved
YOLOv5 algorithm.

5.3. Effects of the Bidirectional Feature Pyramid Network Framework

Compared with the ordinary optical image, the aerial remote sensing image has more
multi-size objects which scattered randomly in the complex background. To further fuse
more object features in different dimensions and ignore background interference. We embed
the BiFPN framework into the neck network of the YOLOv5, and tested the improved
algorithm on three different datasets. The results are shown in Table 4.

Table 4. Effects of the bidirectional feature pyramid network framework on three different datasets.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS

YOLOv5 91.08 91.08 86.26 54.3 90.67 90.59 89.56 56.5 86.48 85.30 83.36 60.6
YOLOv5+BIFPN 91.92 92.77 88.67 52.4 92.29 91.19 90.85 54.9 88.66 89.75 84.38 55.6

The experimental result is the average value calculated by several experiments. It
can be seen from the results that the improved algorithm has excellent improvement
effects on the three test datasets. Meanwhile, the improved YOLOv5 algorithm with
BiFPN framework still has high detection speed. Therefore, we finally decided to use
the Bidirectional Feature Pyramid Network(BiFPN) framework in the improved YOLOv5
object detection method.

5.4. Effects of the New Tiny Object Detection Head

Compared with the conventional YOLOv5 framework, the new tiny object detection
head is inclined to extract and detect features of tiny objects. Therefore, we embed the
new tiny object detection head into the neck network of the YOLOv5 to further achieve the
feature of tiny objects, and tested the improved algorithm on three different aerial remote
sensing datasets. We introduced the results in Table 5.

Table 5. Effects of the new tiny object detection head on three different datasets.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS

YOLOv5 91.08 91.08 86.26 54.3 90.67 90.59 89.56 56.5 86.48 85.30 83.36 60.6
YOLOv5 + New tiny
object detection head 93.47 93.58 89.04 45.2 91.79 93.30 88.83 46.7 87.92 87.52 83.51 48.8

The new tiny object detection head improves the extraction and detection ability of
tiny object features by UP-sampling. Therefore, the improvement effect is obvious for the
dataset rich in tiny objects. The three datasets used in the experiment are all aerial remote
sensing datasets, which contain a plenty of tiny objects such as aircarft and ships. It can
be seen that the addition of the new tiny object detection improves the detection accuracy
of the three datasets. Therefore, we decided to embed the new tiny object detection in the
improved YOLOv5 object detection method.
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To further explore the improvement effect of the improved neck network on the
accuracy, we fused the Bidirectional Feature Pyramid Network(BiFPN) and the new tiny
object detection head into the conventional YOLOv5 algorithm, and simulated the improved
fusion neck network in the above dataset. Table 6 is the results.

Table 6. Effects of the improved fusion neck network on three different datasets.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re(%) FPS

YOLOv5 91.08 91.08 86.26 54.3 90.67 90.59 89.56 56.5 86.48 85.30 83.36 60.6
YOLOv5+Improved

neck network 93.77 93.69 89.71 42.6 93.77 93.60 92.87 42.9 89.86 90.02 86.85 45.5

The improved fusion neck network embedded with the conventional YOLOv5 network
achieves the best detection performance which is better than adding the Bidirectional
Feature Pyramid Network(BiFPN) framework and the new tiny object detection head alone.
Meanwhile, the FPS of the improved algorithm is not significantly reduced. Therefore, the
YOLOv5 algorithm with the improved fusion neck network has excellent performance. To
further measure the practical value of the improved neck network, we count the parameters
of the above improved fusion neck network. The results are shown in Table 7.

Table 7. The parameters of the above improved neck network.

Algorithm P (M)

YOLOv5 7.072
YOLOv5+BIFPN 7.137

YOLOv5+New tiny object detection head 7.224
YOLOv5+Improved fusion neck network 7.298

Compared with the original algorithm, the number of network parameters of the
improved fusion neck network has been improved, which will increase the network’s
demand for hardware. Since aerial remote sensing images are rich in tiny objects, the
increased number of parameters and detection latency are tolerable compared to the
improved detection accuracy. Therefore, we finally decided to embed the improved fusion
neck network into the improved YOLOv5 object detection method.

5.5. Effects of the SIoU Loss Function

The confidence loss function which used in the YOLOv5 model is the GIOU loss. The
GIoU loss and its improved version DIoU loss [48] and CIoU loss ignore the vector angle
between the ground truth box and the prediction box, which affects the detection accuracy
in the detection task. We used the SIoU function to improve the detection accuracy on
above three datasets and we will present the results in Table 8.

It can be seen from Table 8 that when we applied the SIoU loss function in YOLOv5
algorithm, the best detection results were obtained. Compared with the conventional
YOLOv5 framework, the value of the Pr and the FPS have been greatly improved. There-
fore, we decided to choose SIoU as the loss function of the improved YOLOv5 object
detection method.

Table 8. The detection results after adding several advanced loss functions in YOLOv5.

Algorithm NWPU VHR-10 RSOD UCAS-AOD-CAR
Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS Map (%) Pr (%) Re (%) FPS

YOLOv5+GIoU 91.08 91.08 86.26 53.1 90.67 90.59 89.56 54.9 86.48 85.30 83.36 59.1
YOLOv5+DIoU 91.75 92.78 87.27 54.0 90.99 91.73 89.10 57.3 86.72 86.71 83.64 58.8
YOLOv5+CIoU 92.58 93.22 88.89 54.3 91.46 93.13 89.45 56.5 88.16 89.36 83.74 59.5
YOLOv5+SIoU 92.99 94.76 89.73 56.2 91.77 94.60 90.87 58.1 88.58 89.55 84.22 63.3
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5.6. Ablation Experiment

To further measure the availability of the improved algorithm which introduced above,
ablation experiments are conducted on the NWPU VHR-10 dataset. The experimental
results are summarized in Table 9.

Table 9. The simulation results of adding each module to YOLOv5 in turn on NWPU VHR-10 dataset.

Algorithm Map (%) Pr (%) Re (%) P (M) FPS

YOLOv5 91.08 91.08 86.26 7.072 54.3
+K-means++ 91.71 (+0.63) 95.86 87.82 7.156 52.1

+CA 93.11 (+1.40) 93.44 88.22 7.278 49.8
+Improved fusion neck network 93.97 (+0.86) 93.51 89.33 7.341 41.3

+SIoU(Improved Algorithm) 94.21 (+0.24) 94.20 89.42 7.341 43.9

Although the improved YOLOv5 network increases the number of parameters in the
network and slightly reduces the detection speed, it achieved a 3.13% increase in Map
value on the NWPU VHR-10 dataset. Meanwhile, the accuracy rate and the recall rate are
also increased by 3.12% and 3.16%, respectively. Based on the above improved methods,
we propose our new detection method in aerial remote sensing images: KCFS-YOLOv5.

5.7. Evaluation Model

Furthermore, in order to measure the excellent detection accuracy of the KCFS-
YOLOv5 object detection method, we will present the results of a series of comparative
experiments in the following article. The results from Table 10 show that compared with the
conventional object detection method, the KCFS-YOLOv5 method significantly improves
the detection performance of tiny objects in aerial remote sensing images.

Table 10. Comparison of the KCFS-YOLOv5 with the common algorithms on the NWPU VHR-10 dataset.

Category SSD/% Faster-RCNN/% YOLOv3/% YOLOv5/% CAD [49]/% ATTS [50]/% CANet [51]/% Ours/%

Airplane 85.1 91.6 89.8 98.6 97.0 99.8 99.9 99.5
Ship 72.7 81.9 77.9 83.3 77.9 92.5 86.0 85.1

Storage tank 80.6 83.0 83.3 97.6 95.6 97.1 99.3 98.1
Baseball diamond 85.1 85.8 89.4 97.5 93.6 92.7 97.3 98.8

Tennis court 80.2 80.1 84.5 92.4 87.6 93.7 97.8 96.4
Basketball court 70.6 82.9 74.6 82.9 87.1 96.7 84.8 92.4

Ground track field 83.4 94.0 88.1 98.8 99.6 98.4 98.4 99.5
Harbor 67.6 78.1 71.6 80.3 99.9 99.7 90.4 84.0
Bridge 83.4 61.3 87.4 93.0 86.2 71.5 89.2 94.3

Vehicles 72.2 76.1 76.3 86.4 89.9 91.6 90.3 93.8
Mean AP 78.1 81.5 82.3 91.1 91.5 93.4 93.3 94.2

The KCFS-YOLOv5 achieves the best Map detection result compared with other
advanced algorithms on the NWPU VHR-10 dataset. Meanwhile, the detection results of
each object category in the dataset are greatly improved compared with the conventional
algorithm. The simulation results show the excellent performance of the improved YOLOv5
algorithm, and Table 10 shows the detection effect comparison of the KCFS-YOLOv5 with
the conventional algorithms on the NWPU VHR-10 dataset. Our KCFS-YOLOv5 has
achieved the highest detection accuracy, and some detection results are shown in Figure 13.

In order to further measure the performance of KCFS-YOLOv5 object detection method
on other datasets, we used the KCFS-YOLOv5 algorithm to detect the object on RSOD
dataset and the UCAS-AOD-CAR dataset, respectively, and the results of comparative
experiments on the RSOD dataset are shown in Table 11.
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(g) (h) (i)

Figure 13. There are some detection results of the KCFS-YOLOv5 on the NWPU VHR-10 dataset.
(a) is the airplane, (b) is the vehicle, (c) is the ship, (d) is the tennis court, (e) is the baseball diamond,
(f) is the bridge, (g) is the storage tank, (h) is the ground track field, and (i) is the basketball court.

Table 11. Comparison of the KCFS-YOLOv5 with other advanced algorithms on the RSOD dataset.

Category Faster-RCNN/% YOLOv4/% YOLOv5/% RSyoloX [31]/% FCOS [52]/% DA2FNet [50]/% Ours/%

Aircraft 90.2 88.8 92.6 - 91.0 95.7 97.4
Oil tank 88.3 89.6 94.0 - 97.6 97.7 98.6

Playground 72.1 76.4 81.2 - 86.1 90.6 85.6
Overpass 80.9 91.5 94.9 - 99.7 95.1 99.5
Mean AP 82.9 86.6 90.7 93.1 93.6 94.8 95.3

- These data are not presented in citation [31].

Based on the above data, the improved object detection method improves the detection
accuracy of each object in the RSOD dataset. Compared with the current advanced object
detection method, it also has the highest detection accuracy, and can be competent for
multi-size object detection tasks with excellent practicability. The detection results are
illustrated in Figure 14.

The KCFS-YOLOv5 also has excellent detection performance on the UCAS-AOD-CAR
dataset. Figure 15 shows its detection results on the UCAS-AOD-CAR dataset.
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Figure 14. This is the detection result of the KCFS-YOLOv5 on the RSOD dataset. Where, (a) is the
aircraft, (b) is the oiltank, (c) is the overpass, (d) is the playground.

(a) (b)

(c) (d)

Figure 15. This is the detection result of the KCFS-YOLOv5 on the UCAS-AOD-CAR dataset. (a–d) are
the vehicle.

In the end, we used some advanced remote sensing image detection algorithms to test
these three datasets, and we put the simulation datasets in Table 12.
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Table 12. Comparison of the KCFS-YOLOv5 with the common algorithms on all three datasets.

Dataset Evaluation Metrics Faster-RCNN YOLOv3 YOLOv4 YOLOv5 Ours

NWPU VHR-10

Map (%) 81.39 82.29 86.31 91.08 94.21
Precision (%) 90.23 88.12 89.97 91.08 94.20

Recall (%) 85.36 84.43 86.68 86.26 89.42
parameters (M) 60.684 61.949 62.725 7.072 7.341

Latency (ms) 139.3 24.8 23.3 18.4 22.8
FPS 7.2 40.3 42.9 54.3 43.9

RSOD

Map (%) 82.88 84.73 86.62 90.67 95.27
Precision (%) 86.46 87.14 87.68 90.59 96.11

Recall (%) 85.41 86.18 86.59 89.56 93.05
parameters (M) 60.684 61.949 62.725 7.072 7.341

Latency (ms) 126.4 23.7 22.9 17.7 22.6
FPS 7.9 42.2 43.7 56.5 44.2

UCAS-AOD-CAR

Map (%) 84.54 81.66 85.03 86.48 90.13
Precision (%) 84.75 83.47 84.15 85.30 89.80

Recall (%) 82.81 83.38 83.11 83.36 86.51
parameters (M) 60.684 61.949 62.725 7.072 7.341

Latency (ms) 114.8 23.1 22.3 16.5 21.4
FPS 8.7 43.3 44.8 60.6 46.7

Compared with other advanced object detection algorithms, our KCFS-YOLOv5 ob-
ject detection algorithm achieves the best detection results on all three datasets which
demonstrates excellent detection accuracy.

6. Discussion

Based on the above research, in Section 6, we will discuss the connection between
previous research and our KCFS-YOLOv5 algorithm, and demonstrate the contribution of
each improvement point and the future plan of the algorithm based on the experimental
data obtained in Section 5.

6.1. About the K-Means++ Algorithm

The detection anchor framework will have a favorable effect on detection results. In
the conventional YOLOv5 algorithm, the initial anchor boxes are designed and generated
using the K-means clustering algorithm which randomly selects the clustering center
points. We use a K-means++ algorithm for optimization. The optimized results are shown
in Table 1. Compared with the conventional algorithm, KCFS-YOLOv5 has improved in
each evaluation indicator on the three datasets. Although this method can improve the
detection ability, it will reduce the detection speed. In the future, we will try to simplify
this model.

6.2. About the Backbone Network

The backbone network extracts the texture information and position information in
the feature map. To further enhance the feature extraction ability of the backbone network,
many studies have been investigated to address these tricky challenges. Li et al. [28] inte-
grated the SE attention mechanism module into YOLOv5 network to achieve the accuracy
improvement of the high detection accuracy for low-altitude UAV objects. Yang et al. [31]
embedded ECA attention mechanism into YOLOX [17] network, proposed RS-YOLOX,
and realized the high-precision detection of satellite remote sensing images. Based on the
above research, we decided to embed CA attention mechanism module into the YOLOv5
backbone network to strengthen the feature extraction capacity of the network.

We compared the detection performance with some advanced attention mechanisms
(the results are shown in Tables 2 and 3). The CA attention mechanism module achieves the
excellent detection results on the test dataset. The detection accuracy of YOLOv5 embedded
with CA attention mechanism module is greatly improved compared with the conventional
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algorithm on three datasets. Therefore, we decided to embed the CA attention mechanism
in the improved YOLOv5 backbone network.

Although this method can improve the detection accuracy, it will reduce the detection
speed. In the future, we will try to simplify this model. Many scholars have performed
valuable research in this field. For example, Yi et al. [53] added Mobilenet to the YOLO
network to lightweight the detection network. However, this improved method will lead
to the reduction in detection accuracy. Therefore, we do not adopt this method.

6.3. About the Neck Network

The function of the neck network is the information fusion of feature maps with
different dimensions. Many studies have been investigated to improve the information in-
tegration capabilities of the neck network. Li et al. [20] embedded feature pyramid network
(FPN) into the Faster-RCNN to improve the neck network’s ability of different dimen-
sions. Li et al. [54] embed BiFPN module into the proposed AB-DLM detection method to
implement the driver distraction behavior detection and obtain excellent detection accuracy.

We embed BiFPN in the improved YOLOv5 based on its excellent performance. The
detection results on the three datasets are shown in Table 4. Furthermore, the detection
accuracy of the YOLOv5 detection method embedded in BIFPN has been significantly
improved on three datasets.

On the other hand, the abundant tiny objects in aerial remote sensing images make us
have to improve the framework for the detection results of tiny objects. In order to enhance
the detection capacity of tiny objects, we added the new tiny object detection head to the
original YOLOv5 network, and tested the improved YOLOv5 on three datasets. The results
in Table 5 show that the improved YOLOv5 network has higher detection accuracy.

The improved YOLOv5 proposed by Luo et al. [21] integrated PAN and FPN networks
to enhance feature fusion ability and achieve better detection accuracy. Therefore, we also
fused the BiFPN and the new tiny object detection head to obtain the new improved neck
network. We tested the new improved neck network on three datasets. It can be seen from
Table 6, the new improved neck network achieves the best detection accuracy, which is
better than using the BiFPN or the new tiny object detection head alone. Therefore, we
decided to use the new improved neck network.

In the future, we will continue to explore the framework of the neck network to
improve the feature fusion capability.

6.4. About the Loss Function

The conventional YOLOv5 uses the GIoU loss as the positioning loss function. The
GIoU loss and its improved version ignore the vector angle between the ground truth box
and the prediction box, which affects the detection accuracy in the detection task. The
SIoU [44] is an improved loss function based on the CIoU function. It considers the vector
angle between ground truth box and the predicted box, providing regression direction
guidance for predicted box, and redefining the penalty function. Therefore, we used the
SIOU loss function on the three datasets and obtained the best detection results (the results
are shown in Table 8).

In the future, we will continue to embed other advanced loss functions in YOLOv5 to
improve the detection performance of the algorithm.

7. Conclusions

We aimed at the characteristics of object detection methods in aerial remote sensing
images, such as intensive distribution, complex background, and poor generality. We
carried out a series of improvements based on YOLOv5, tested the improved model on
three datasets, and achieved excellent detection results. Finally, we proposed an advanced
high-precision aerial object detection method: KCFS-YOLOv5.

To achieve excellent detection performance, we first used the K-means++ clustering
algorithm to optimize the center of the anchor, which improves the detection accuracy
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of YOLOv5. Second, the CA attention mechanism module is embedded to strengthen
feature extraction ability, retain more semantic information and reduce the interference
of complex backgrounds. Third, the neck network is optimized by adding Bidirectional
Feature Pyramid Network (BiFPN) and new tiny object detection head, which can enhance
the feature fusion ability in different dimensions of the neck feature fusion network to
improve the detection accuracy. Finally, the loss function is replaced with SIoU Loss to
improve the fitting degree of the predicted box and the ground truth box, and reduce the
influence of the deviation thereon.

Although our KCFS-YOLOv5 object detection method realizes high-precision detection
in aerial remote sensing images, compared with the conventional YOLOv5 method, it has
slightly more calculation parameters. In future research, we will try to embed more
lightweight modules and residual frameworks into the KCFS-YOLOv5 object detection
method, so as to reduce the network scale and improve its detection accuracy.
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YOLO You Only Look Once
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