
Citation: Almufareh, M.F.;

Humayun, M. Improving the Safety

and Security of Software Systems by

Mediating SAP Verification. Appl. Sci.

2023, 13, 647. https://doi.org/

10.3390/app13010647

Academic Editors: Zhenyu Chen,

Chunrong Fang and Song Huang

Received: 12 November 2022

Revised: 13 December 2022

Accepted: 30 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improving the Safety and Security of Software Systems by
Mediating SAP Verification
Maram Fahaad Almufareh * and Mamoona Humayun *

Department of Information systems, College of Computer and Information Sciences, Jouf University,
Sakaka 72347, Saudi Arabia
* Correspondence: mfalmufareh@ju.edu.sa (M.F.A.); mahumayun@ju.edu.sa (M.H.)

Abstract: Security and performance (SAP) are two critical NFRs that affect the successful completion
of software projects. Organizations need to follow the practices that are vital to SAP verification.
These practices must be incorporated into the software development process to identify SAP-related
defects and avoid failures after deployment. This can only be achieved if organizations are fully aware
of SAP verification activities and appropriately include them in the software development process.
However, there is a lack of awareness of the factors that influence SAP verification, which makes
it difficult for businesses to improve their verification efforts and ensure that the released software
meets these requirements. To fill this gap, this research study aimed to identify the mediating factors
(MFs) influencing SAP verification and the actions to promote them. Ten MFs and their corresponding
actions were identified after thoroughly reviewing the existing literature. The mapping of MFs and
their corresponding actions were initially evaluated with the help of a pilot study. Mathematical
modeling was utilized to model these MFs and examine each MF’s unique effect on software SAP
verification. In addition, two case studies with a small- and a medium-sized organization were used
to better understand the function these MFs play in the process of SAP verification. The research
findings suggested that MFs assist software development organizations in their efforts to integrate
SAP verification procedures into their standard software systems. Further investigation is required to
support the understanding of these MFs when building modern software systems.

Keywords: mediating factors; security; performance; verification; non-functional requirements

1. Introduction

The relevance of software systems to modern civilization generates prodigious con-
cerns about several essential quality attributes. Software developers commonly describe
such qualities as NFRs. Security, performance, reliability, maintainability, usability, and
scalability are all defined by NFRs [1,2]. They constrain the system’s design across backlogs.
NFRs, or system qualities, are as vital as functional requirements. They ensure that the
system is useful and effective. Systems that fail to fulfill any of these requirements may
fail to meet internal business, user, or market expectations [3,4]. These NFRs may result
in substantial legal penalties if they are not adhered to. All NFRs are equally significant
and must be addressed; however, a single study will not be able to handle all of them.
As a result, the goal of this research was to discuss only two NFRs, namely security and
performance. We must understand the MFs for SAP verification to effectively address
SAP needs.

Security is defined as “the condition of being free from danger or peril” [5]. The
use of methods/techniques to analyze, mitigate, and defend software systems against
vulnerabilities is known as software security. These methods guarantee that software
continues to operate and is protected against threats [5,6]. Security considerations must
be made at every level of the software development process. The primary objective is
to find faults and problems as early as feasible. Software performance is another critical

Appl. Sci. 2023, 13, 647. https://doi.org/10.3390/app13010647 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010647
https://doi.org/10.3390/app13010647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6613-0831
https://orcid.org/0000-0001-6339-2257
https://doi.org/10.3390/app13010647
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010647?type=check_update&version=2

Appl. Sci. 2023, 13, 647 2 of 21

component of daily operations, yet many of the issues arise from the software’s actual
code, not from external variables. Software performance difficulties are often introduced
by engineers who were unaware that they would exist. In other cases, problems are not
obvious because they are not caused by the code itself but by how the code responds to
something else [7]. Although security and performance are two different NFRs, they are
somehow related to each other. Security is a performance indicator that is affected by
threats that impact the performance of individual components of software during service
rendering [8]. Both security and performance illustrate the software’s efficiency, implying
that performance and security are indicators of the software’s development level.

Even though various technologies facilitate software development, this is a human-
centered activity that is prone to errors. Software systems must adhere to SAP; to achieve
this, software development companies include quality assurance activities throughout the
product life cycle to analyze these qualities, hence avoiding SAP difficulties after software
release [9]. The general motive for this research effort was as follows: (1) understanding
the significance of SAP requirements for software systems and the need to include SAP
verification in the development process, and (2) identifying the SAP MFs and their role
in software success. Security and performance verification are actions that seek flaws in
these two distinct quality axes. Different verification procedures and methodologies may
be employed alone or in combination, each with its own advantages and drawbacks for
SAP verification.

Various SAP verification methods are out there, but software systems still have flaws.
Performance difficulties are a major concern in several businesses, such as telecoms, and
attacks are also increasing rapidly on various systems, such as on news-reporting sys-
tems [10]. Some of the possible causes for this issue are (1) inefficient verification methods,
(2) software businesses failing to apply adequate verification procedures, or (3) a perceived
split between academia and industry. Automated attack scripts, the availability of attack
knowledge, and worldwide interconnectedness have made it simpler to attack software sys-
tems. To better address the SAP requirements of the software, there is a need to understand
the MFs of SAP and the ways to address these MFs efficiently.

1.1. Research Approach and Contribution

The study’s overall goal was to discover the MFs for SAP verification and their
influence on software success. The following were the specific objectives:

• A thorough literature review to extract the MFs for software SAP;
• Identifying the verification practices for SAP and the techniques used to implement

these practices;
• Analyzing the impact of identified verification practices on SAP individually;
• Validate the findings with the help of case studies.

1.2. Paper Organization

The next part delves into software SAP verification criteria based on the current
research in the area under investigation. Section 3 discusses some existing studies to provide
the current state-of-the-art. Section 4 extracts the mediating factors for SAP verification
from the existing literature. Section 5 elaborates on the proposed methodology. Section 6
presents the case study findings and is followed by Section 7, which presents the results
and recommendations for future research. Table 1 shows the list of abbreviations used in
this study for a better understanding.

Table 1. List of abbreviations used.

Abbreviations Full Form

IAST Interactive application security testing

MF Mediating factors

Appl. Sci. 2023, 13, 647 3 of 21

Table 1. Cont.

Abbreviations Full Form

MS-SDL Microsoft security development lifecycle

NFR Non-functional requirements

QA Quality assurance

RE Requirement engineering

ROI Return on investment

SAMM Software assurance maturity model

SCA Static code analysis

SDLC Software development lifecycle

SSD Secure software development

SSDLC Secure software development lifecycle

SSE-CMM System security engineering capability
maturity model

SAP Security and performance

SVTs Security verification techniques

ZAP Zed attack proxy

2. Background

SAP are key NFRs that need to be paid attention to for achieving a quality software
product. In this section, we will analyze both these NFRs’ roles in software quality and the
techniques used to ensure it.

2.1. Software Security Verification

Software security has always been an afterthought during the testing phase of develop-
ment. In contrast, modern approaches, such as agile, include continuous testing throughout
all stages of the SDLC. Every day, hackers and cybercriminals are coming up with new
methods to take advantage of software flaws. Security should be a priority throughout
the SDLC, allowing developers and stakeholders to identify and resolve possible security
concerns early on in the process [11,12]. Therefore, it is necessary to adopt the concept of
SSDLC, as shown in Figure 1.

Appl. Sci. 2023, 13, 647 4 of 21

at each step of the project rather than merely on functionality. Security vulnerabilities may

be addressed in the SDLC pipeline well before deployment to production with a dedicated

effort. This minimizes the possibility of detecting security vulnerabilities in software and

seeks to lessen the consequences if detected [14]. The purpose of SSDLC is not to replace

conventional security checks but rather to integrate security into software development

duties and empower them to build safe apps from the start.

Figure 1. An insight into security verification.

2.1.2. Security Verification Technique

Security verification refers to the technical verification of the application before de-

ployment. Security verification aims to identify security breaches and to verify that the

developed software meets security requirements [10,15]. Security verification is also nec-

essary to maintain a business’s reputation and prevent sensitive data loss. In order to es-

tablish security requirements, organizations first need to understand the threat and risk

modeling technique/process. Figure 2 elaborates on the threat-modeling process for better

identification of risks and their associated severity.

Figure 2. Threat-modeling process.

Below, we briefly discuss the commonly used security verification techniques.

Figure 1. An insight into security verification.

Appl. Sci. 2023, 13, 647 4 of 21

The security verification of software, also known as security assurance, spins around
the following main techniques, as shown in Figure 1:

• Log inspection;
• Static code analysis;
• Profound penetration testing before release;
• Interactive application security testing (IAST).

The complete concepts of security adoption and verification are better elaborated
in Figure 1. According to Figure 1, organizations need to adopt SSDLC practices during
development, which include security requirement analysis, security design, security imple-
mentation, security testing, and operation and maintenance. Once software development
is complete, it needs security verification before release; this includes applying essential
security verification techniques, as mentioned above. Below, we describe the concept of
SSDLC and key SVTs.

2.1.1. SSDLC

SSDLC involves incorporating security best practices into an existing SDLC for achiev-
ing secure software. The SSDLC procedure demands concerted labor at each level of the
SDLC, from requirement collection through deployment and maintenance [13]. SSDLC
involves a mind change on the part of the development team, focusing on security at each
step of the project rather than merely on functionality. Security vulnerabilities may be
addressed in the SDLC pipeline well before deployment to production with a dedicated
effort. This minimizes the possibility of detecting security vulnerabilities in software and
seeks to lessen the consequences if detected [14]. The purpose of SSDLC is not to replace
conventional security checks but rather to integrate security into software development
duties and empower them to build safe apps from the start.

2.1.2. Security Verification Technique

Security verification refers to the technical verification of the application before de-
ployment. Security verification aims to identify security breaches and to verify that the
developed software meets security requirements [10,15]. Security verification is also nec-
essary to maintain a business’s reputation and prevent sensitive data loss. In order to
establish security requirements, organizations first need to understand the threat and risk
modeling technique/process. Figure 2 elaborates on the threat-modeling process for better
identification of risks and their associated severity.

Appl. Sci. 2023, 13, 647 4 of 21

at each step of the project rather than merely on functionality. Security vulnerabilities may

be addressed in the SDLC pipeline well before deployment to production with a dedicated

effort. This minimizes the possibility of detecting security vulnerabilities in software and

seeks to lessen the consequences if detected [14]. The purpose of SSDLC is not to replace

conventional security checks but rather to integrate security into software development

duties and empower them to build safe apps from the start.

Figure 1. An insight into security verification.

2.1.2. Security Verification Technique

Security verification refers to the technical verification of the application before de-

ployment. Security verification aims to identify security breaches and to verify that the

developed software meets security requirements [10,15]. Security verification is also nec-

essary to maintain a business’s reputation and prevent sensitive data loss. In order to es-

tablish security requirements, organizations first need to understand the threat and risk

modeling technique/process. Figure 2 elaborates on the threat-modeling process for better

identification of risks and their associated severity.

Figure 2. Threat-modeling process.

Below, we briefly discuss the commonly used security verification techniques.

Figure 2. Threat-modeling process.

Below, we briefly discuss the commonly used security verification techniques.

Appl. Sci. 2023, 13, 647 5 of 21

Log Inspection

This SVT is used to discover software failures and faults. Log inspection is a systematic
process that consists of seven activities, as shown in Figure 1. These activities include plan-
ning the inspection, holding kick-off meetings, performing individual checking, conducting
log meetings, editing the document, verifying corrections, and inspection closure [8,10,16].
The verification team is responsible for performing log inspections.

Penetration Testing

The penetration test is often performed using a failure-based approach, with test cases
designed to investigate known flaws found in popular security vulnerability repositories.
Another penetration test approach is experience-based, in which a security expert plays the
role of a malicious user attempting to access the system [17,18]. It is a systematic process
consisting of six steps, as mentioned in Figure 1. Penetration testing is performed either
manually or with the help of automated tools. Arachni, SQL Injection ME, OWASP ZAP,
XSS ME, Meta Exploit, NMAP, Burp Suite, and Whatweb are the most-often-used tools for
automated penetration testing.

Static Code Analysis

Using static code analysis (SCA) before executing a program is a debugging method.
To achieve this task, one must compare a code set to one or more sets of coding rules.
It resolves source code flaws that might lead to vulnerabilities. SCA may be performed
manually by examining each line of code or automatically using automated techniques, but
primarily, SCA is performed in an automated way [10,19]. HP Fortify SCA and Brakeman
are common standard tools used for static code analysis.

Interactive Application Security Testing (IAST)

IAST solutions assist firms in uncovering and managing security risks associated
with runtime application vulnerabilities. IAST uses software instrumentation to monitor
an application’s behavior and performance. IAST solutions put agents and sensors in
operating applications and analyze all application interactions to find vulnerabilities in
real-time.

2.2. Software Performance Verification

The effectiveness of a software system in terms of time restrictions and resource
allocation is measured by its performance. Response time, throughput, and utilization are
the traditional performance measures. The response time is the time it takes a job from start
to finish to transit a certain route inside the system. Throughput is the number of tasks a
certain section of the system can carry out in a given time. The proportion of time that a
certain element of the system is actively functioning for is referred to as utilization [20].
The success criteria for the testing procedure must first be established before performance
testing can begin. Target metrics become the main focus when preparing and creating
performance test cases. Therefore, measurements constitute the basis for performance
testing. Monitoring the appropriate indicators may assist in identifying areas that need
greater attention and determining how to improve them [21]. Figure 3 provides the common
performance testing types and a complete step-by-step performance verification process.

2.2.1. Performance Verification Techniques

To determine if performance is sufficient, an organization must first set milestones.
Then, it should measure the metrics that fall within these milestones and estimate the
outcome by comparing the actual and projected results. Metrics help an organization in the
following ways:

• They serve as a foundation for the testing;
• They aid in the tracking of a project’s progress;
• A QA team may use metrics to describe and quantify a problem to discover a solution;

Appl. Sci. 2023, 13, 647 6 of 21

• Metrics tracking over time helps the organization to compare test results and evaluate
the effect of code changes.

Which performance metrics do a QA team need to track? It depends on the nature
of the software under testing. Some commonly used parameters in performance metrics
include response time, request per second, user transactions, error rate, wait time, average
load time, peak response time, concurrent users, throughput, CPU utilization, memory
utilization, and total user sessions. Performance metrics need to be used very carefully;
some principles of using performance metrics effectively are listed as follows:

• Assemble an exhaustive set of performance criteria by first identifying the specific
business goals of your customer;

• A feature must be given an appropriate measure of success for it to be considered
successful;

• If a software user receives a high performance, reliability, and functionality level,
metrics should reflect this;

• Track metrics over time by doing repeated performance tests;
• Run each software item through its paces one at a time. Perform database, service,

and other checks.

Once the milestone is set, the organization may apply various manual and automated
ways to evaluate software performance. Below, we discuss some of the standard techniques
of performance verification.

Appl. Sci. 2023, 13, 647 6 of 21

• They aid in the tracking of a project’s progress;

• A QA team may use metrics to describe and quantify a problem to discover a solu-

tion;

• Metrics tracking over time helps the organization to compare test results and evalu-

ate the effect of code changes.

Figure 3. An insight into performance verification.

Which performance metrics do a QA team need to track? It depends on the nature of

the software under testing. Some commonly used parameters in performance metrics in-

clude response time, request per second, user transactions, error rate, wait time, average

load time, peak response time, concurrent users, throughput, CPU utilization, memory

utilization, and total user sessions. Performance metrics need to be used very carefully;

some principles of using performance metrics effectively are listed as follows:

• Assemble an exhaustive set of performance criteria by first identifying the specific

business goals of your customer;

• A feature must be given an appropriate measure of success for it to be considered

successful;

• If a software user receives a high performance, reliability, and functionality level,

metrics should reflect this;

• Track metrics over time by doing repeated performance tests;

• Run each software item through its paces one at a time. Perform database, service,

and other checks.

Once the milestone is set, the organization may apply various manual and automated

ways to evaluate software performance. Below, we discuss some of the standard tech-

niques of performance verification.

Log Inspection

Log inspection or monitoring helps to detect malicious behavior, collect events across

different platforms, inspect error and informational events, and create and maintain audit

trails [22]. Thus, it is a valuable measure of evaluating software performance.

Figure 3. An insight into performance verification.

Log Inspection

Log inspection or monitoring helps to detect malicious behavior, collect events across
different platforms, inspect error and informational events, and create and maintain audit
trails [22]. Thus, it is a valuable measure of evaluating software performance.

Response Time Test

The response time verification technique measures the time between a user’s request
and a server’s, application’s, website’s, or device’s response. For example, if a user asks an
application to load a particular web page, the response time is how long it takes the program
to respond. Response time assists developers in assessing if software and websites are
functional and responsive enough to be delivered as a final product [23]. A faster response

Appl. Sci. 2023, 13, 647 7 of 21

time ensures customer satisfaction and higher ratings for software or websites. Slower
response times may indicate faults, hardware difficulties, or connection concerns. The
response time verification consists of four main steps: identifying response time parameters,
performing response time tests, recording the findings, and identifying errors or successes.

Resource Consumption Test

Another crucial performance verification technique of an application’s performance, in
addition to log inspection and response times, is resource consumption. A performance test
is a technique to keep track of how active particular computer system resources are [22,24].
The critical consideration of resource consumption includes four main elements: CPU,
memory, disk, and network.

Throughput

The number of transactions created over time during a test is referred to as “through-
put”. It is also known as the maximum capacity that an application can support. Before
beginning a performance test run, it is typical to set a throughput target, requiring the
application to handle a certain number of requests per hour [25]. The formula for the
throughput is as given in Equation (1)

Throughput =
(number of requests)

(total time)
(1)

After obtaining an overview of related terms, in the next section we provide the
existing studies on software SAP verification in order to obtain a picture of the current
state-of-the-art.

3. Related Work

In this section, we will explore the existing studies to extract the mediating factors
(MFs) that impact the SAP of software so that we may analyze the impact of these MFs on
software development.

Victor et al. in paper [8] identified eight MFs for SAP, which include organizational
awareness, suitable requirements, cross-functional team, verification environment, support
tools, verification methodology, verification planning, and reuse practices. Rapid reviews
were used in this study to identify actions for promoting each identified MF. A survey with
37 software practitioners was conducted for the classification of MFs and their correspond-
ing actions. The MFs, according to this research, may be regarded as crucial considerations
in helping software development firms to implement/improve SAP verification operations
in routine software.

The paper [10] summarizes the findings of a case study conducted on three Brazilian
software companies. The report analyzes the current state of practice for SAP verification
operations. Furthermore, the results are explained in the form of hypotheses, which
constitute suggestions relevant to such actions. In general, there is a growing understanding
of the relevance of software system SAP and verification operations. However, there is a
lack of understanding about how verification should be carried out. This study also offers
suggestions for improving SAP verification operations.

The paper [26] presents an evidence-based body of knowledge that characterizes
the most important NFRs for software systems and appropriate testing methodologies
for evaluating these requirements. The study further delves into the SAP verification
procedures used in software development companies and the MFs that influence decision-
making. In addition, MFs for SAP verification activities, as well as methods to promote
them, are discussed. The conclusions of this study are evidence-based since they are based
on several research methodologies and in-person observations in the software business.

According to the paper [27], several methods have been developed throughout the
years to make the process of developing and deploying secure software easier, with varying
degrees of success. To obtain a better understanding of the underlying difficulties, this

Appl. Sci. 2023, 13, 647 8 of 21

article explains and assesses a variety of SCA approaches and tools using an example that
highlights some of the most common software security concerns. The latter issue may be
handled by taking into consideration a strategy that allows for the identification of security
characteristics and their translation into security rules that can be tested against the criteria
of security standards. This would assist developers throughout the software development
lifecycle and would help to ensure that a product is compliant with security standards.

The study [28] proposes an architectural framework for analyzing the performance
deterioration of software caused by security measures. It introduces a collection of UML
models that describe security mechanisms and may be used with performance-annotated
UML application models to build SAP-critical systems. Model composition enables al-
ternative security solutions to be introduced on the same software architecture, assisting
software architects in finding acceptable security solutions while still fulfilling performance
requirements. The experimental findings justify the suggested technique by comparing
a model-based assessment of a software architecture for managing cultural assets with
values seen in the actual implementation of the system.

3.1. Existing SSDLC Models

In order to better understand SSDLC, we need to analyze the existing SSDLC models.
Below, we provide the details of common SSDLC models and their comparison.

3.1.1. SSE-CMM

Based on software engineering CMM, the SSE-CMM is a process-oriented paradigm
used to create safe systems. The SSE-CMM is divided into processes and stages of maturity.
In general, the procedures specify what the security engineering process must do, and the
maturity levels classify how well the process achieves its objectives. To use the SSE-CMM,
current processes are simply analyzed to see whether basic processes have been satisfied
and what maturity levels they have attained. The same procedure may assist a company in
identifying security engineering procedures that they may need but do not already have
in place.

3.1.2. Microsoft SDL

Microsoft’s SDL incorporates stringent security standards, industry-specific tools, and
required procedures into the creation and maintenance of all software products. By fol-
lowing the SDL methods and criteria, development teams may utilize MS-SDL to produce
better secure software with fewer and less-serious vulnerabilities at a lower development
cost. There are seven phases in MS-SDL comprising the five SDLC core stages and two
auxiliary security tasks. To make sure all security and privacy needs are correctly met,
each of these steps includes necessary checks and approvals. To make sure the core phases
are implemented correctly and that software is kept safe after deployment, the two sup-
porting security activities, training and response, are carried out before and after the core
phases, respectively.

3.1.3. SAMM

SAMM is an open framework designed to assist businesses in developing and imple-
menting a software security strategy appropriate to the unique threats they face. SAMM’s
tools may be used to assess an organization’s current software security procedures, create
a well-rounded software security program in measurable steps, verify the efficacy of a
security assurance program, and quantify security-related endeavors. Because of its adapt-
ability, SAMM may be used by companies of all sizes and in any development methodology.
This model’s flexibility means it may be used throughout an enterprise, inside a business
unit, or even on a standalone project.

After discussing the three commonly used existing SSDLC models, below, we provide
a comparison of these models in Table 2.

Appl. Sci. 2023, 13, 647 9 of 21

Table 2. Comparison of existing SSDLC.

Security Practices SSE-CMM MS-SDL SAMM

Physical security Yes No No

Logical security Yes No No

Definition of security requirements Yes Yes Yes

Secure configuration management Yes No No

Following all applicable laws, policies,
and procedures Yes No Yes

Threat modeling Yes Yes Yes

Risk analysis Yes Yes Yes

Security architecture Yes Yes Yes

Security training and awareness Yes Yes Yes

Secure design Yes Yes Yes

Source code analysis No Yes Yes

Vulnerability analysis Yes Yes Yes

Security verification Yes Yes Yes

Vulnerability management Yes Yes Yes

Secure development techniques and applications Yes Yes Yes

Security in an active operating environment Yes Yes Yes

Secure integration with peripheral Yes Yes Yes

Secure delivery Yes No Yes

The analysis of the literature review and comparison of existing security models
showed that security is one of the important concerns discussed by many researchers and
security organizations. However, we did not find studies that provide solutions for both
security and performance or uncover the MFs that affect SAP.

Security and performance are two essential NFRs that play critical roles in software
quality and effective deployment. The existing research either discusses security or per-
formance; further, they provide general solutions for SAP improvement. Security and
performance are complementary requirements; therefore, there is a need to identify the
factors that mediate the process of SAP verification. This demonstrates the importance of
identifying MFs for software SAP as well as evaluating the functions of these MFs in SAP
verification. To fill this gap, this research first identified the MFs for SAP from the existing
scientific and grey literature. Then, we evaluated the impact of these MFs on software SAP.

4. Mediating Factors for SAP Verification

The SAP-moderating factors may be seen as suggestions that must be taken into
account during SAP verification. To identify these MFs, we searched throughout the
formal and grey literature and identified the following ten factors that serve as MFs for
SAP verification.

4.1. SAP Verification Planning and Methodology

SAP verification is usually not well planned, due to which the software team must
reprioritize verification activities multiple times, increasing time and effort. The planning
phase includes requirement prioritization, dependency identification, and time and bud-
get for performing SAP verification activities. Further, a well-planned and transparent
methodology for performing SAP verification should be defined to smoothly execute the
verification process [8,10,29].

Appl. Sci. 2023, 13, 647 10 of 21

4.2. Suitable Environment for SAP Verification

Organizations need to configure the environment to make it suitable for performing
SAP verification. A proper environment is inevitable for verification since it comprises
both the settings of the infrastructure responsible for system operation as well as the
configuration of the system itself [8,10,29].

4.3. Organizational Support

Organizational views of SAP verification often harm this activity. Among these
perceptions is the notion that SAP verification wastes resources. Typically, businesses
worry about their systems’ security and effectiveness only when something goes wrong.
Another time when companies prioritize SAP is prior to a significant release when a security
or performance failure might negatively affect the organization’s image [26,29]. This shows
that organizations should prioritize SAP verification to produce high-quality software and
to maintain their reputation.

4.4. Defining Complete SAP Requirements/Document Security Policy

A lack of SAP requirements precludes the verification from fulfilling its intended
function (that is, determining if the program fulfills its requirements) since it is impos-
sible to know whether the verification findings are valid without an oracle. Incomplete
requirements also strain other teams (e.g., analysts, architects, and developers) since the
verification team must constantly contact them [8,29,30]. Therefore, SAP requirements
should be completely specified during the requirement-engineering phase along with
test cases.

4.5. Software Team Awareness

SAP verification is not only the job of the QA team; instead, it is the responsibility of
the whole development team. Programmers must be aware of the inherent flaws in the
technology employed in software development and the coding patterns that lead to errors.
They must be provided training for this so that they may avoid using faulty technology
and increase their ability to write error-free code. Managers must also receive training to
see SAP verification efforts as an investment rather than an expenditure. Furthermore,
training may expose managers to the issues that a software product with inadequate SAP
might cause, e.g., loss of customers and high infrastructure costs [8,19,30,31]. Consequently,
managers will see the value of adding SAP verification operations in the product life cycle
and allocating money and time for them.

4.6. Cross-Functional Teams

A single team does not carry out verification operations in isolation. It necessitates
collaboration between many teams with a variety of abilities. Due to the requirement of
installing servers, restoring database backups, and dealing with certain low-level technolo-
gies, infrastructure, database, and technical teams must collaborate. The identification of
the technologies utilized to construct the program and how such technologies may impact
the verification findings requires cross-team collaboration [10,29,32]. Meetings involving
the performance architect, domain experts, marketing stakeholders, and developers may
regularly assist in enhancing team relationships and, as a result, SAP verification.

4.7. Suitable Techniques of SAP Verification/Tool Support

Ad-hoc verification obstructs the creation of criteria for selecting test cases and the
establishment of a definition of done. A suitable verification approach naturally provides
these requirements. For example, using tools without understanding exactly what approach
is being used creates uncertainty regarding the tool’s detection capabilities. Additionally,
the quantity of false-positive flaws found by security tools might be an issue; analyzing all
the problems reported involves significant additional labor [12,16,29]. Therefore, selecting
suitable techniques for SAP verification is necessary for efficiently performing SAP.

Appl. Sci. 2023, 13, 647 11 of 21

4.8. SAP Monitoring and Audit/Define Measure

Monitoring verification operations helps to verify that the software development
team members adhere to SAP’s best practices. Additionally, it enables the team to identify
unusual activity, such as privilege misuse and the impersonation of another user. The
software development team must identify essential metrics that are meaningful and relevant
to the project’s requirements [22,26,29,33]. Metrics that are well-defined aid in assessing
the SAP position over time.

4.9. Allocation of Time and Budget to SAP Verification

SAP verification operations are often neglected when a development project’s time-
frame or budget is shortened. This may affect the system’s quality since the product owner
may terminate the verification process before all activities are completed, reducing the veri-
fication coverage [29,34,35]. As a result, the duration and budget for SAP operations should
be determined at the start of the project when the SAP verification policy is documented.

4.10. Encourage Reusability

Reusing knowledge and artifacts enables SAP verification processes to be more agile.
Reusing functional test cases in performance tests may be advantageous since they reflect
real-world use situations. Additionally, test cases for earlier systems’ parameters may be
adapted, decreasing effort and time. For example, the necessary reaction time for a scenario
may be established using a comparable production system scenario [10,29,36].

Now, we analyze the impact of the above-mentioned MFs/recommendations/best
practices on SAP verification activities in the subsequent sections.

5. Proposed Methodology

This study aimed to optimize software SAP verification by identifying and analyzing
the factors that serve as MFs and indirectly help to improve SAP verification. Before
proceeding toward finding the impact of the identified MFs on SAP verification, there is a
need to identify the actions that may promote the identified MFs. Table 3 lists the MFs of
software SAP and actions/measures for promoting these MFs from the existing literature
on software SAP.

Table 3. MFs and the corresponding actions to promote these MFs.

MFs MFs Detail Actions Actions/Practices to Promote MFs

MF1
SAP verification planning
and methodology

A1 Use of tools to guide planning

A2 Define acceptance criteria

A3 Define systematic verification methodology

A4 Choose a methodology that meets stakeholder demands
and avoids sloppy methods

A5 Create and update procedures that fit the defined
methodology and organizational needs

MF2 Suitable environment for
SAP verification

A1 Execution environment simulation with virtualization
technology

A2 Keeping the verification team up to date on the latest
technology utilized in the project

A3 Assembling test agents in a virtual environment

A4 Using automated verification

A5 Simulating a software’s actual behavior by mimicking
actions

Appl. Sci. 2023, 13, 647 12 of 21

Table 3. Cont.

MFs MFs Detail Actions Actions/Practices to Promote MFs

MF3 Organizational support

A1 Keeping the software team updated on SAP

A2 Educating the customer on the current situation of SAP

A3 Regular security meetings

A4 Resource assignment for SAP verification

A5 External audit to support SAP verification

A6 Promoting training

MF4
Defining complete SAP
requirements/document
security policy

A1 Using techniques for the identification of SAP
requirements

A2 Involving the verification team in the RE process

A3 Motivating the verification team to examine the
testability of the specifications

A4 Involving the RE team in SAP verification activities

MF5 Software team awareness

A1 Promote training

A2 Keeping the development team well-informed
about SAP

A3 Regular meetings

MF6 Cross-functional teams

A1 Building a team with multiple skills

A2 Invest in training to improve team qualification

A3 Promoting interaction and communication

A4 Encourage agile/scrum

A5 Hire qualified people

A6 Leader swapping

MF7
Suitable techniques of SAP
verification/tool support

A1 Identification of suitable tools

A2 Encourage the use of freely available tools

A3 Allow the verification team to suggest tools

A4 Training of new tools

A5 Support from the tool vendor

A6 Using best practices toolset

A7 Develop a culture of tool usage

MF8 SAP monitoring and audit/define
measure

A1 Define key metrics relevant to project needs

A2 External audit

A3 Monitoring plans

[MF9 Allocation of time and budget to
SAP verification

A1 Budget forecasting

A2 Categorizing budget

A3 Budgetary control

A4 Keep customers informed about the benefit of
SAP verification

Appl. Sci. 2023, 13, 647 13 of 21

Table 3. Cont.

MFs MFs Detail Actions Actions/Practices to Promote MFs

MF10 Encourage reusability

A1 Keep track of prevalent faults and utilize test cases to
discover their failures.

A2 Using other comparable systems’ expertise to define
the needs

A3 Reusing functional test cases that reflect real-world use

A4 Adapting settings from related systems test scenarios

A5 Vulnerability mapping by domain to identify
situation-specific vulnerabilities

A6 Design real-time scenarios

Once the MFs and the corresponding actions to promote these MFs were defined, a
methodology was proposed to evaluate the SAP verification process. Algorithm 1 describes
the overall working of the proposed methodology.

According to Algorithm 1, the organization first needs to choose the SSDLC. The choice
of SSDLC depends on various factors, including the nature of the project, budget, and time
constraints. Once the methodology is defined and the requirements for the SSDLC are
established, the MFs for SAP need to be identified. The proposed methodology identified
ten MFs from both the scientific and grey literature. Next, what actions are required to
accomplish these MFs need to be determined. In our case, we extracted the MFs and their
corresponding actions from the existing published literature to ensure their correctness and
effectiveness [8,26,29,35]. Once the MFs and their corresponding actions are identified, the
next step is to prioritize these actions according to the nature and complexity of the project.
For prioritization, every action is assigned a numeric weightage based on its importance
for the project. Next, the organization needs to evaluate each action’s impact on MFs, as
shown in Equation (5). If the impact of an action on the identified MF is high, it will be
adapted; otherwise, it may be ignored. Below, we present the proposed methodology using
mathematical modeling. The idea of mathematical modeling was taken from [37,38].

The objective function of this study was to optimize SPV, as mentioned in Equation (2):

OF = Max(SAP) ∴ Improving SPV (2)

where SPV = f (MF1, MF2, MF3 MF10) (3)

MFi =
n

∑
j=1

AjWj (4)

where wj is the weight assigned to each Aj and Aj represents the actions mentioned in
Table 3

To maximize the overall SAP, appropriate actions need to be taken for improving each
MF; this can be accomplished by satisfying Equation (5):

MFi =
1
n

n

∑
j=1

AjWj ≥ Tv (MFi) (5)

where Tv is the threshold value corresponding to each MFi depending on the nature of the
project and other constraints, i.e., time, budget, team skills, etc. Wj represents the weight
assigned to different actions based on the priority of that action for a particular MF and n
represents the number of actions corresponding to each MFi.

Appl. Sci. 2023, 13, 647 14 of 21

Algorithm 1: Working of the proposed Methodology

Let MF denote mediating factors; A1, A2, A3 An are actions to promote the MF; SPV
refers to SAP verification,

Appl. Sci. 2023, 13, 647 13 of 21

MF10 Encourage reusability

A1
Keep track of prevalent faults and utilize test cases to discover their

failures.

A2 Using other comparable systems’ expertise to define the needs

A3 Reusing functional test cases that reflect real-world use

A4 Adapting settings from related systems test scenarios

A5
Vulnerability mapping by domain to identify situation-specific vul-

nerabilities

A6 Design real-time scenarios

Once the MFs and the corresponding actions to promote these MFs were defined, a

methodology was proposed to evaluate the SAP verification process. Algorithm 1 de-

scribes the overall working of the proposed methodology.

According to Algorithm 1, the organization first needs to choose the SSDLC. The

choice of SSDLC depends on various factors, including the nature of the project, budget,

and time constraints. Once the methodology is defined and the requirements for the

SSDLC are established, the MFs for SAP need to be identified. The proposed methodology

identified ten MFs from both the scientific and grey literature. Next, what actions are re-

quired to accomplish these MFs need to be determined. In our case, we extracted the MFs

and their corresponding actions from the existing published literature to ensure their cor-

rectness and effectiveness [8,26,29,35]. Once the MFs and their corresponding actions are

identified, the next step is to prioritize these actions according to the nature and complex-

ity of the project. For prioritization, every action is assigned a numeric weightage based

on its importance for the project. Next, the organization needs to evaluate each action’s

impact on MFs, as shown in Equation (5). If the impact of an action on the identified MF

is high, it will be adapted; otherwise, it may be ignored. Below, we present the proposed

methodology using mathematical modeling. The idea of mathematical modeling was

taken from [37,38].

Algorithm 1: Working of the proposed Methodology

Let MF denote mediating factors; 𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛 are actions to promote the MF; SPV
refers to SAP verification,

Begin
𝐶ℎ𝑜𝑜𝑠𝑒 𝑆𝑆𝐷𝐿𝐶
𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (𝑆𝑆𝐷𝐿𝐶)

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑀𝐹𝑖 for SPV
𝑓𝑜𝑟 (𝑖 = 1 𝑡𝑜 10)

{
Identify 𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛 → 𝑀𝐹𝑖

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒 (𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛)
𝐴𝑠𝑠𝑖𝑔𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛)
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛) → 𝑀𝐹𝑖
}

𝐼𝑓 (𝐴1, 𝐴2, 𝐴3 … … 𝐴𝑛) = 𝑡𝑟𝑢𝑒
𝐺𝑜 𝑡𝑜 𝐸𝑛𝑑

𝑒𝑙𝑠𝑒
{

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝐴 𝑖
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑖𝑚𝑝𝑎𝑐𝑡(𝐴 𝑖) → 𝑀𝐹𝑖

}
𝐼𝑓 𝑖𝑚𝑝𝑎𝑐𝑡 = ℎ𝑖𝑔ℎ

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝐴 𝑖
𝑒𝑙𝑠𝑒

𝐼𝑔𝑛𝑜𝑟𝑒 𝐴 𝑖
End

The accumulative SPV can be computed as mentioned in Equation (6):

Acc(SPV) = (1
n

5
∑

j=1
AjWj +

1
n

5
∑

j=1
AjWj +

1
n

6
∑

j=1
AjWj +

1
n

4
∑

j=1
AjWj +

1
n

3
∑

j=1
AjWj +

1
n

6
∑

j=1
AjWj +

1
n

7
∑

j=1
AjWj

+ 1
n

3
∑

j=1
AjWj +

1
n

4
∑

j=1
AjWj

1
n

6
∑

j=1
AjWj)) ≥ Acc(Tv)

(6)

To evaluate the impact of a particular MFi on SPV, the partial derivatives can be found
w.r.t. a particular MFi. Equation (7) represents the impact of a specific MFi on SPV by
taking the partial derivatives of Equation (5), as given in Equation (7):

∂

∂MFi
(SPV) =

∂

∂MFi
(MF1, MF2, MF3 MF10) where 1 ≤ i ≤ 10 (7)

For optimization, a threshold value is needed to determine whether the optimization
is achieved or not. The comfort index, Ci, in this case is calculated using the formula
mentioned in Equation (8):

Ci =
10

∑
i=1

(
Tvi −

(
ei

MFi

)2
)

(8)

where ei represents the differences between the actual values and estimated values of MFi.
To evaluate the impact of a particular MF, software organizations need to assign it

a weight first. The weight assignment depends on the MF’s importance for a particular
project, the time used to implement that MF, and the expected ROI. For example, to
accomplish MF1, an organization needs to take five actions. Next, all these actions need to
be prioritized, and each action should be assigned a weight based on its priority.

Appl. Sci. 2023, 13, 647 15 of 21

6. Evaluation of Proposed Methodology Using Case Study

Once the MFs for SAP verification are defined along with actions to promote it, there
is a need to evaluate the suggested MFs and promoting actions. To do so, we performed
two case studies in real settings. A case study is an effective assessment method that gives
sufficient information about a real-world situation [39]. Because the proposed MFs are for
the software sector, a case study was an acceptable research approach in this study. We
performed two case studies in this study to assess the suggested technique. The primary
goal of these case studies was to demonstrate that the discovered MFs and related actions
may be employed in a real-world setting and to demonstrate the feasibility of employing
these actions to enhance SAP verification.

To carry out the case study, we talked with personnel from various software compa-
nies, informed them about the identified practices, and encouraged them to participate
in our research. They were instructed to undertake these activities to examine their SAP
verification methods using the six-scale evaluation mentioned in Table 4. These evaluation
scales are already used in existing reputable studies [40,41] for the evaluation of their pro-
posed approach. The respondents involved in both case studies completed the assessment
at their office and emailed the findings and comments to us. We evaluated the received
information using the formula mentioned in Equation (5). The same evaluation method
has also been adopted by researchers in existing scientific studies [6,42,43].

Table 4. Definition of evaluation scales.

Scales Definition

0 (poor) Management does not feel the need to implement/adapt MFs and
their corresponding practices for SAP verification

2 (weak) Management realized the importance of adapting MFs and their
corresponding practices for SAP verification

4 (Fair) Management has defined a plan for the adaptation of MFs and
their corresponding practices for SAP verification

6 (marginally qualified) MFs and their corresponding practices for SAP verification are
used for some projects

8 (Qualified) Management has integrated the MFs and their corresponding
practices in the SAP verification process

10 (Expert)
Management is fully committed to using MFs and their
corresponding practices for SAP verification throughout the
organization

6.1. Results of an Analysis for an Organization A

Organization A is an IT firm established in Pakistan that operates in 14 countries
throughout Asia, Oceania, Europe, and North America. It is one of the few top IT firms
offering comprehensive services to organizations by combining cutting-edge methods with
in-depth technological research and the expertise of industry leaders. Its customers vary
from startups to Fortune 500 companies and government agencies, and it serves them all
with cutting-edge technology solutions in the realm of new media. Its services are reliable,
safe, and of high quality, allowing businesses of all kinds to flourish. With the goal of
growing its company and establishing itself as one of the top web development firms, it
partners with other established businesses.

Organization A offers a wide range of services, including website design and devel-
opment, mobile and desktop app development, enterprise software development, digital
marketing and e-commerce solutions, information technology and research-based consul-
tancy, SharePoint development, user interface design, optimization, and search engine
optimization. The respondents of the case study were asked to first rank/weight each MF’s
action based on the importance of that action for the organization; the value of weight
was from 0–1, where one means highly important and zero refers to “not at all important”.

Appl. Sci. 2023, 13, 647 16 of 21

Once the weight was assigned to each action corresponding to each MF, the respondents
were further asked to evaluate these actions according to its use in their organization (as
mentioned in Table 4). If the management of the organization was fully committed to using
MFs and their corresponding practices for SAP verification throughout the organization,
then the evaluation score was 10, otherwise it varied depending on its implementation
in the organization. Once all the actions were assigned weights and evaluated by the
participants, the weighted average of each MF was calculated using the formulae men-
tioned in Equation (5). Table 5 shows the results of MF1 as evaluated by the respondents of
Organization A for a better understanding of the proposed methodology. “W” in Table 5
refers to the average value of the weights assigned to each action by all the respondents,
and “X” refers to the average evaluation by all the respondents for a particular action.

Table 5. MF1 evaluation by Organization A.

MF1 A1 A2 A3 A4 A5

W 1 0.9 1 0.9 0.8

X 9 10 8 8 8

WX 9 9 8 7.2 6.4

Evaluation (MF1) = ∑5
i=1 wixi

5 = 39.6/5 = 7.92 ∼= 8
Figure 4 shows the assessment results of Organization A for each MF and its corre-

sponding practices.

Appl. Sci. 2023, 13, 647 16 of 21

mentioned in Table 4). If the management of the organization was fully committed to us-

ing MFs and their corresponding practices for SAP verification throughout the organiza-

tion, then the evaluation score was 10, otherwise it varied depending on its implementa-

tion in the organization. Once all the actions were assigned weights and evaluated by the

participants, the weighted average of each MF was calculated using the formulae men-

tioned in Equation (5). Table 5 shows the results of MF1 as evaluated by the respondents

of Organization A for a better understanding of the proposed methodology. “W” in Table

5 refers to the average value of the weights assigned to each action by all the respondents,

and “X” refers to the average evaluation by all the respondents for a particular action.

Table 5. MF1 evaluation by Organization A.

MF1 A1 A2 A3 A4 A5

W 1 0.9 1 0.9 0.8

X 9 10 8 8 8

WX 9 9 8 7.2 6.4

Evaluation (MF1) =
∑ 𝑤𝑖𝑥𝑖

5
𝑖=1

5
 = 39.6/5 = 7.92 ≅ 8

Figure 4 shows the assessment results of Organization A for each MF and its corre-

sponding practices.

The findings/key points identified during the assessment process were as follows:

• The company is committed to implementing SAP’s MFs. It has already implemented

most of the specified practices since the computed values for most of the MFs were

greater than or equal to the threshold value.

• Respondents said that the customer is usually unaware of the security needs of the

product, due to which documenting the SAP verification requirement is a challenge.

• The organization is deficient in MF7 and MF9, indicating that management should

offer tools for SAP verification and provide time and resources for SAP verification.

Figure 4. Assessment results by Organization A for the identified MFs.

6.2. Results of an Analysis for an Organization B

Organization B is a frontrunner in the software engineering industry. It provides

startups, small- and medium-sized businesses, and enterprises with top-tier custom soft-

ware development services. It has more than 200 employees and is considered among the

well-known companies in Pakistan. This company has exercised caution and forethought

0

1

2

3

4

5

6

7

8

9

10

MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10

W
ei

gh
te

d
 a

ve
ra

ge
 o

f
M

Fs

Mediating Factors for SAP Verifications

Assesment results by Organiztaion A

Threshold Value

Figure 4. Assessment results by Organization A for the identified MFs.

The findings/key points identified during the assessment process were as follows:

• The company is committed to implementing SAP’s MFs. It has already implemented
most of the specified practices since the computed values for most of the MFs were
greater than or equal to the threshold value.

• Respondents said that the customer is usually unaware of the security needs of the
product, due to which documenting the SAP verification requirement is a challenge.

• The organization is deficient in MF7 and MF9, indicating that management should
offer tools for SAP verification and provide time and resources for SAP verification.

Appl. Sci. 2023, 13, 647 17 of 21

6.2. Results of an Analysis for an Organization B

Organization B is a frontrunner in the software engineering industry. It provides
startups, small- and medium-sized businesses, and enterprises with top-tier custom soft-
ware development services. It has more than 200 employees and is considered among the
well-known companies in Pakistan. This company has exercised caution and forethought
in disclosing the material because of the importance of the industry to the economy and
the special nature of the information at hand.

Organization B presented us with its assessment of MFs and related actions, as illus-
trated in Figure 5. The responders from Organization B were given identical instructions to
those given to Organization A. The weighted total of actions for each MF was calculated
using the formulae in Equation (5). Each MF had the same threshold value specified. The
important findings derived from organization B’s responses are described below.

Appl. Sci. 2023, 13, 647 17 of 21

in disclosing the material because of the importance of the industry to the economy and

the special nature of the information at hand.

Organization B presented us with its assessment of MFs and related actions, as illus-

trated in Figure 5. The responders from Organization B were given identical instructions

to those given to Organization A. The weighted total of actions for each MF was calculated

using the formulae in Equation (5). Each MF had the same threshold value specified. The

important findings derived from organization B’s responses are described below.

• Most of the MFs have not been adapted by Organization B, as the weighted sum of

most of these MFs was less than the threshold values.

• The respondents told us that organizations do not provide tool support, time and

budget allocation, and training to the employees while they expect secure and quality

products.

• SAP requirements are not documented properly, which hinders the process of SAP

verification.

• The customer is not actively involved in documenting and testing security require-

ments.

• There is a need to adapt the mentioned practices to promote SAP culture in the or-

ganization.

Figure 5. Assessment results by Organization B for the identified MFs .

6.3. Case Study Participants’ Recommendations/Feedback

The case study allowed us to assess the applicability of the suggested SAP verifica-

tion practices in a real-world setting. A summary of the responses received from case

study participants is as follows

• The participants were able to understand the proposed methodology without any

assistance; they only asked for an explanation of some of the mentioned practices

• The mentioned MFs and their corresponding actions helped them to assess the cur-

rent SAP verification level of their organizations

• The management team showed interest in implementing the mentioned practices in

their organizations and considered them suitable for achieving a secure and quality

product.

0

1

2

3

4

5

6

7

8

9

MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10

W
ei

gh
te

d
 a

ve
ra

ge
 o

f
M

Fs

Mediating Factors of SAP Verifications

Assesment results by Organiztaion B

Threshold Value

Figure 5. Assessment results by Organization B for the identified MFs.

• Most of the MFs have not been adapted by Organization B, as the weighted sum of
most of these MFs was less than the threshold values.

• The respondents told us that organizations do not provide tool support, time and budget
allocation, and training to the employees while they expect secure and quality products.

• SAP requirements are not documented properly, which hinders the process of
SAP verification.

• The customer is not actively involved in documenting and testing security requirements.
• There is a need to adapt the mentioned practices to promote SAP culture in

the organization.

6.3. Case Study Participants’ Recommendations/Feedback

The case study allowed us to assess the applicability of the suggested SAP verification
practices in a real-world setting. A summary of the responses received from case study
participants is as follows

• The participants were able to understand the proposed methodology without any
assistance; they only asked for an explanation of some of the mentioned practices

• The mentioned MFs and their corresponding actions helped them to assess the current
SAP verification level of their organizations

• The management team showed interest in implementing the mentioned practices in
their organizations and considered them suitable for achieving a secure and
quality product.

Appl. Sci. 2023, 13, 647 18 of 21

6.4. Findings and Implications

The results from both case studies showed that the identified MFs and their corre-
sponding actions were applicable in the software industry, and medium-sized organizations
(such as Organization A in our case) are already using these actions. If we analyze the
statistics of Figure 4, eight out of ten practices have already been used by Organization A
at an optimum, as the aggregated value of the MF was more than the set threshold value.
Organization B also uses all the MFs and their corresponding actions, although not at an
adequate level. There is a need to provide awareness about these MFs and complemen-
tary measures to organizations so that they can incorporate security and performance in
their developed products. This study will provide them with a roadmap to address SAP
verification issues.

6.5. Threats to Validity

This section discusses the challenges to the validity of our investigation and how they
might be mitigated to boost confidence in the findings of our study.

6.5.1. Construct Validity

An essential limitation of the proposed methodology was assigning the practices/actions
to the MF. We completed the task based on our own experience and the knowledge gathered
from the literature research. To ensure construct validity, the MFs and their corresponding
practices were evaluated iteratively by two university professors with sufficient expertise
in teaching a software SAP course.

6.5.2. External Validity

It cannot be assured that the findings and conclusions of this research will be relevant
to all software development businesses. Specifically, we performed case studies in just
two firms to evaluate our suggested technique. As a result, generalizations about the
applicability of the suggested approach should be made with care when drawing results.

6.5.3. Internal Validity

A fair picture of the current procedures utilized to enhance SAP verification was
gathered via a literature review, which yielded MFs and the actions that corresponded with
them. Because some sources lacked adequate or clear information on our MFs, objectivity
was required in selecting sources and extracting data. The sources were thoroughly vetted
and chosen based on a set of quality criteria to counteract this danger. We are worried
about the veracity of the findings since the participants in our case study assessed the
organization’s procedures. The evaluation may be subjective since the assessor must
pay close attention to the given criteria to obtain accurate findings. Participants’ prior
knowledge of software SAP and their position within the company are also important
considerations.

7. Conclusions and Future Work

The main goal of this research was to identify the MFs that improve software SAP.
Once the MFs were identified, the next step was to identify the actions that might help to
achieve these MFs. To identify MFs and their corresponding actions, both the formal and
grey literature were used. The identified MFs and their promoting actions were modeled
mathematically, and a case study with two small- and medium-sized organizations was
conducted to validate the proposed methodology. The outcomes of these studies confirmed
the usability of our proposed approach in a real-world environment. This work is expected
to help software organizations increase the SAP verifications of their products and improve
their SAP verification process. They can use the suggested MFs to assess the maturity
of their SAP verification process. The study findings will also increase developers’ level
of awareness about SAP verification. The findings of this research will be relevant for

Appl. Sci. 2023, 13, 647 19 of 21

all software development businesses as they have the liberty to weight/rank the actions
corresponding to each MFs according to the importance for their organization.

This study may be improved in several ways. Researchers may pursue the following
open research directions:

• This approach might be tailored to the demands of various organizations based on
their facilities and methods.

• The proposed technique might be modified to include special features linked to the
technologies such as IoT, big data, Blockchain, and cloud computing.

• The suggested technique might be published publicly and updated with new academic
and industrial practices.

• The evaluation process might be automated in the future to reduce the burden from
user’s shoulders and to remove biasedness.

• This study considered SAP as a set of unrelated metrics, which is not always correct.
SAP, by its nature, tends to bear contradictions. For instance, the more cryptographi-
cally secure a software is, the less its performance metrics’ values. In the future, this
issue may be addressed.

• Further evaluation cases may be added to strengthen the findings.

Author Contributions: Conceptualization, M.F.A. and M.H.; Data curation, M.F.A. and M.H.; Formal
analysis, M.F.A. and M.H.; Methodology, M.F.A. and M.H.; Supervision, M.H.; Writing—original
draft, M.F.A. and M.H.; Writing—review and editing, M.F.A. and M.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Jouf University under
grant No (DSR2022-NF-03).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Will be furnished on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arbain, A.F.; Jawawi, D.N.A.; Kadir, W.; Ghani, I. Case study on non-functional requirement change impact traceability for Agile

software development. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 34–40. [CrossRef]
2. Rahman, M.S.; Reza, H. Systematic mapping study of non-functional requirements in big data system. In Proceedings of the 2020

IEEE International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July 2020–1 August 2020; pp. 25–31.
3. Alwadi, A.; Nahhas, A.; Bosse, S.; Jamous, N.; Turowski, K. A Modernized Model for Performance Requirements and their

Interdependencies. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications
(AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–8.

4. Alwadi, A.; Nahhas, A.; Bosse, S.; Jamous, N.; Turowski, K. Toward a performance requirements model for the early design
phase of IT systems. In Proceedings of the 2018 Sixth International Conference on Enterprise Systems (ES), Limassol, Cyprus, 1–2
October 2018; pp. 9–16.

5. Mirakhorli, M.; Galster, M.; Williams, L. Understanding software security from design to deployment. ACM SIGSOFT Softw. Eng.
Notes 2020, 45, 25–26. [CrossRef]

6. Humayun, M.; Jhanjhi, N.; Almufareh, M.F.; Khalil, M.I. Security Threat and Vulnerability Assessment and Measurement in
Secure Software Development. Comput. Mater. Contin. 2022, 71, 5039–5059. [CrossRef]

7. Yuce, B.; Schaumont, P.; Witteman, M. Fault attacks on secure embedded software: Threats, design, and evaluation. J. Hardw. Syst.
Secur. 2018, 2, 111–130. [CrossRef]

8. Yarza, I.; Agirre, I.; Mugarza, I.; Cerrolaza, J.P. 2022. Safety and security collaborative analysis framework for high-performance
embedded computing devices. Microprocess. Microsyst. 2022, 93, 104572. [CrossRef]

9. Aruna, E.; Reddy, A.R.M.; Sunitha, K. Secure SDLC Using Security Patterns 2.0. In IOT with Smart Systems; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 699–708.

10. Ribeiro, V.V.; Cruzes, D.S.; Travassos, G.H. A perception of the practice of software security and performance verification. In
Proceedings of the 2018 25th Australasian Software Engineering Conference (ASWEC), Adelaide, SA, Australia, 26–30 November
2018; pp. 71–80.

http://doi.org/10.18517/ijaseit.10.1.10176
http://doi.org/10.1145/3385678.3385687
http://doi.org/10.32604/cmc.2022.019289
http://doi.org/10.1007/s41635-018-0038-1
http://doi.org/10.1016/j.micpro.2022.104572

Appl. Sci. 2023, 13, 647 20 of 21

11. Khan, R.A.; Khan, S.U.; Khan, H.U.; Ilyas, M. Systematic Literature Review on Security Risks and its Practices in Secure Software
Development. IEEE Access 2022, 10, 5456–5481. [CrossRef]

12. Rodriguez, M.; Piattini, M.; Ebert, C. Software verification and validation technologies and tools. IEEE Softw. 2019, 36, 13–24.
[CrossRef]

13. Fujdiak, R.; Mlynek, P.; Mrnustik, P.; Barabas, M.; Blazek, P.; Borcik, F.; Misurec, J. Managing the secure software development. In
Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Islands,
Spain, 24–26 June 2019; pp. 1–4.

14. Kamal, A.H.A.; Yen, C.C.Y.; Hui, G.J.; Ling, P.S. Risk Assessment, Threat Modeling and Security Testing in SDLC. arXiv 2020,
arXiv:2012.07226.

15. Varela-Vaca, Á.J.; Rosado, D.G.; Sánchez, L.E.; Gómez-López, M.T.; Gasca, R.M.; Fernández-Medina, E. CARMEN: A framework
for the verification and diagnosis of the specification of security requirements in cyber-physical systems. Comput. Ind. 2021, 132,
103524. [CrossRef]

16. Zhu, J.; He, S.; Liu, J.; He, P.; Xie, Q.; Zheng, Z.; Lyu, M.R. Tools and benchmarks for automated log parsing. In Proceedings of the
2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal,
QC, Canada, 27 May 2019; pp. 121–130.

17. Khan, S.; Parkinson, S. Discovering and utilising expert knowledge from security event logs. J. Inf. Secur. Appl. 2019, 48, 102375.
[CrossRef]

18. Dieber, B.; White, R.; Taurer, S.; Breiling, B.; Caiazza, G.; Christensen, H.; Cortesi, A. Penetration testing ROS. In Robot Operating
System (ROS); Springer: Berlin/Heidelberg, Germany, 2020; pp. 183–225.

19. Hong, K. Performance, Security, and Safety Requirements Testing for Smart Systems through Systematic Software Analysis.
Doctoral Dissertation, University of Michigan Library, Ann Arbor, MI, USA, 2019.

20. Ismail, A.A.; Hamza, H.S.; Kotb, A.M. Performance evaluation of open source iot platforms. In Proceedings of the 2018 IEEE
global conference on internet of things (GCIoT), Alexandria, Egypt, 5–7 December 2018; pp. 1–5.

21. Mandrioli, C.; Maggio, M. Testing self-adaptive software with probabilistic guarantees on performance metrics. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Piraeus, Greece, 19–28 August 2020; pp. 1002–1014.

22. Almeida, F.; Carneiro, P. Performance metrics in scrum software engineering companies. Int. J. Agil. Syst. Manag. 2021, 14,
205–223. [CrossRef]

23. Guo, J.; Yang, D.; Siegmund, N.; Apel, S.; Sarkar, A.; Valov, P.; Czarnecki, K.; Wasowski, A.; Yu, H. Data-efficient performance
learning for configurable systems. Empir. Softw. Eng. 2018, 23, 1826–1867. [CrossRef]

24. Bengtsson, M.; Alfredsson, E.; Cohen, M.; Lorek, S.; Schroeder, P. Transforming systems of consumption and production for
achieving the sustainable development goals: Moving beyond efficiency. Sustain. Sci. 2018, 13, 1533–1547. [CrossRef] [PubMed]

25. Ferme, V.; Pautasso, C. A declarative approach for performance tests execution in continuous software development environments.
In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering, Berlin, Germany, 9–13 April 2018;
pp. 261–272.

26. Ribeiro, V.; Cruzes, D.S.; Travassos, G.H. Understanding Factors and Practices of Software Security and Performance Verification.
In Proceedings of the 19th Brazilian Symposium on Software Quality, Sbcopenlib, Brazil, December 2020, Sbcopenlib, Brazil, 1–4
December 2020; pp. 11–20.

27. Zhioua, Z.; Short, S.; Roudier, Y. Static code analysis for software security verification: Problems and approaches. In Proceedings
of the 2014 IEEE 38th International Computer Software and Applications Conference Workshops, Vasteras, Sweden, 21–25 July
2014; pp. 102–109.

28. Cortellessa, V.; Trubiani, C.; Mostarda, L.; Dulay, N. An architectural framework for analyzing tradeoffs between software security
and performance. In Proceedings of the International Symposium on Architecting Critical Systems, Prague, Czech Republic,
23–25 June 2010; pp. 1–18.

29. Ribeiro, V.V.; Cruzes, D.S.; Travassos, G.H. Moderator factors of software security and performance verification. J. Syst. Softw.
2022, 184, 111137.

30. Hong, D.K. Requirements Testing and Verification for Smart Systems through Systematic Software Analysis. 2019. Available
online: http://www.hongkedavid.com/academic/phd-defense-ke.pdf (accessed on 10 December 2022).

31. Assal, H.; Chiasson, S. Security in the software development lifecycle. In Proceedings of the Fourteenth Symposium on Usable
Privacy and Security (SOUPS 2018), Baltimore, MD, USA, 12–14 August 2018; pp. 281–296.

32. Robey, D.; Khoo, H.M.; Powers, C. Situated learning in cross-functional virtual teams. Tech. Commun. 2000, 47, 51–66. [CrossRef]
33. Ghilic-Micu, B.; Mircea, M.; Stoica, M. The audit of business intelligence solutions. Inform. Econ. 2010, 14, 66.
34. Mao, M.; Humphrey, M. Scaling and scheduling to maximize application performance within budget constraints in cloud

workflows. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, Cambridge,
MA, USA, 20–24 May 2013; pp. 67–78.

35. Sudhakar, G.P.; Farooq, A.; Patnaik, S. Soft factors affecting the performance of software development teams. Team Perform.
Manag. Int. J. 2011, 17, 187–205. [CrossRef]

http://doi.org/10.1109/ACCESS.2022.3140181
http://doi.org/10.1109/MS.2018.2883354
http://doi.org/10.1016/j.compind.2021.103524
http://doi.org/10.1016/j.jisa.2019.102375
http://doi.org/10.1504/IJASM.2021.118061
http://doi.org/10.1007/s10664-017-9573-6
http://doi.org/10.1007/s11625-018-0582-1
http://www.ncbi.nlm.nih.gov/pubmed/30546486
http://www.hongkedavid.com/academic/phd-defense-ke.pdf
http://doi.org/10.1109/47.826416
http://doi.org/10.1108/13527591111143718

Appl. Sci. 2023, 13, 647 21 of 21

36. Kessel, M.; Atkinson, C. Integrating reuse into the rapid, continuous software engineering cycle through test-driven search.
In Proceedings of the 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Software Engineering (RCoSE),
Gothenburg, Sweden, 29 May 2018; pp. 8–11.

37. Xu, Y.; Liu, Z.; Zhang, C.; Ren, J.; Zhang, Y.; Shen, X. Blockchain-based trustworthy energy dispatching approach for high
renewable energy penetrated power systems. IEEE Internet Things J. 2021, 9, 10036–10047. [CrossRef]

38. Rogachev, A. Economic and mathematical modeling of food security level in view of import substitution. Asian Soc. Sci. 2015, 11,
178. [CrossRef]

39. Rashid, Y.; Rashid, A.; Warraich, M.A.; Sabir, S.S.; Waseem, A. Case study method: A step-by-step guide for business researchers.
Int. J. Qual. Methods 2019, 18, 1609406919862424.

40. Al-Matouq, H.; Mahmood, S.; Alshayeb, M.; Niazi, M. A maturity model for secure software design: A multivocal study. IEEE
Access 2020, 8, 215758–215776. [CrossRef]

41. Niazi, M.; Cox, K.; Verner, J. A measurement framework for assessing the maturity of requirements engineering process. Softw.
Qual. J. 2008, 16, 213–235. [CrossRef]

42. Niazi, M.; Saeed, A.M.; Alshayeb, M.; Mahmood, S.; Zafar, S. A maturity model for secure requirements engineering. Comput.
Secur. 2020, 95, 101852. [CrossRef]

43. Niazi, M.; El-Attar, M.; Usman, M.; Ikram, N. An empirical study identifying high perceived value requirements engineering
practices in global software development projects. In Proceedings of the 7th International Conference on Software Engineering
Advances (ICSEA), Lisbon, Portugal, 18–23 November 2012; pp. 283–288.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JIOT.2021.3117924
http://doi.org/10.5539/ass.v11n20p178
http://doi.org/10.1109/ACCESS.2020.3040220
http://doi.org/10.1007/s11219-007-9033-4
http://doi.org/10.1016/j.cose.2020.101852

	Introduction
	Research Approach and Contribution
	Paper Organization

	Background
	Software Security Verification
	SSDLC
	Security Verification Technique

	Software Performance Verification
	Performance Verification Techniques

	Related Work
	Existing SSDLC Models
	SSE-CMM
	Microsoft SDL
	SAMM

	Mediating Factors for SAP Verification
	SAP Verification Planning and Methodology
	Suitable Environment for SAP Verification
	Organizational Support
	Defining Complete SAP Requirements/Document Security Policy
	Software Team Awareness
	Cross-Functional Teams
	Suitable Techniques of SAP Verification/Tool Support
	SAP Monitoring and Audit/Define Measure
	Allocation of Time and Budget to SAP Verification
	Encourage Reusability

	Proposed Methodology
	Evaluation of Proposed Methodology Using Case Study
	Results of an Analysis for an Organization A
	Results of an Analysis for an Organization B
	Case Study Participants’ Recommendations/Feedback
	Findings and Implications
	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusions and Future Work
	References

