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Abstract: Tor is widely used to protect users’ privacy, which is the most popular anonymous tool.
Tor introduces multiple pluggable transports (PT) to help users avoid censorship. A number of traffic
analysis methods have been devoted to de-anonymize these PT. Snowflake is the latest PT based
on the WebRTC protocol and DTLS encryption protocol for peer-to-peer communication, differing
from other PT, which defeat these traffic analysis methods. In this paper, we propose a Snowflake
traffic identification framework, which can identify whether the user is accessing Tor and which
hidden service he is visiting. Rule matching and DTLS handshake fingerprint features are utilized
to classify Snowflake traffic. The linear interpolation of the accumulative payload length of the first
n messages in the DTLS data transmission phase as additional features are extracted to identify the
hidden service. The experimental results show that our identification framework F-ACCUMUL can
effectively identify Tor-Snowflake traffic and Tor-Snowflake hidden service traffic.

Keywords: Tor; pluggable transports; traffic identification; hidden service

1. Introduction

With the growing concern for privacy among Internet users, multiple anonymous
techniques have been devoted to implement anonymous access, such as traffic obfuscation
padding, multi-layer encryption, complex path transmission, and other means. Tor [1] is
the most popular anonymous communication system, which owns 6114 active nodes with
2.93 million users and the data bandwidth transmitted of about 670 Gbit/s [2]. Tor also
provides hidden services (HS) [1], which provides anonymity protection for the service
side of the network using multi-hop reverse proxy or resource-sharing storage technology.
The great anonymity provides a breeding ground for some illegal activities, such as drugs,
firearms, human trade, hacking services, etc. [3], and poses a great obstacle to network
regulation. To tackle the negative impact of Tor, researchers have begun to use traffic
analysis extensively. Traffic analysis attempts to judge if a user is connecting to Tor or what
service he is accessing by analyzing the user’s traffic passively, which has become one of
the approaches with the most potential to de-anonymize Tor [4].

In order to improve the anonymity and help users in censorship zones to access Tor,
Tor introduced many integrate pluggable transport (PT) technologies, including Obfs4 [5],
Meek [6], and so on. Users can obfuscate their traffic and secretly connect to Tor, thus
getting around censorship. Several traffic analysis methods [7–10] have achieved success
on de-anonymizing PT, such as Obfs4, Meek, etc. Snowflake, based on WebRTC [11] tech-
nology, is the latest release of PT, which can establish an encrypted connection between
the Tor client and Tor network, and few researchers have worked on it yet. WebRTC is an
advanced open-source protocol framework that is widely used to build multimedia trans-
mission tunnels between browsers, which is a peer-to-peer real-time communication. Some
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censorship circumvention methods bypass the regulation by modifying and inputting users’
data into multimedia protocol tunnels [12,13], which have attracted increasing attention
from researchers in recent years. WebRTC is widely used in many real-time communication
applications (e.g., Facebook Messager, Google Hangouts, the gaming-focused chat Dis-
cord, etc.), thus the censorship cannot block Snowflake by blocking instances of WebRTC
communication.

Snowflake is the latest release of Tor PT, which transmits traffic through the WebRTC
data transmission channel and applies UDP as the transport layer framework protocol.
As an emerging PT technology which effectively bypasses censorship, Snowflake is being
used by an increasing number of users, but there is little research on traffic identification
for it. Due to Snowflake being based on the UDP protocol for data transmission, and other
popular Tor PT such as Obfs4 and Meek being based on TCP for data transmission, most
of the existing traffic identification methods for Obfs4 and Meek do not apply to it. In
addition, Snowflake relies on the WebRTC protocol framework for communication circuit
construction, and the traffic generated will be largely confused with other WebRTC-based
applications. These bring great challenges to the supervision. In this paper, we analyze the
Snowflake protocol and propose a Tor-Snowflake traffic identification framework based
on rule matching and DTLS handshake fingerprint features. Our framework can identify
whether a user is accessing Tor with Snowflake, and can also make a determination about
whether a user is accessing HS with Snowflake. The key contributions of this work are
as follows:

• By analyzing the communication process and system construction of the Snowflake,
we propose the rule-matching technique to pre-identify snowflake traffic quickly.
Beyond this, we raise an accurate Snowflake traffic identification method based on the
DTLS handshake fingerprint.

• Then, we propose a hidden service identification method based on cumulative length
and statistical features. Specifically, we combine the statistical features and the cu-
mulative load length sampling of messages in the DTLS data transmission phase,
which in line with the difference in circuit establishment between Tor normal web
access and hidden service access. Then, a classifier identifies if a Tor user is accessing a
hidden service.

• Our experiments show that our proposed method can accurately identify Snowflake
traffic with little time consumption, and efficiently identify Tor-Snowflake hidden
services traffic.

The remainder of the paper is organized as follows. Section 2 discusses related work
in Tor and Tor PT traffic identification, whereas Section 3 introduces our threat model and
Snowflake communication principle. Architecture of the Tor-Snowflake traffic identification
framework are described in Section 4, and a more detailed experimental evaluation is
reported in Section 5. Section 6 concludes the paper.

2. Related Work

In this section, we first introduce the related work on Tor traffic analysis, and then
describe the existing research on Tor PT traffic identification. We briefly introduce them
as follows.

1. Tor traffic analysis

Many works have been devoted to Tor traffic analysis in recent years. They attempt to
determine whether users are using Tor and what service or content they are accessing by
passively observing user traffic. Lashkari et al. [14] presented a time-based method to char-
acterize and identify Tor traffic within a flow. They confirm that time-based characteristics
of traffic can be used to characterize Tor traffic and efficiently distinguish between different
Tor application traffic. Montieri et al. [15] used the hierarchical classification (HC) frame-
work on the public anonymous dataset Anon17 [16] to classify three famous anonymous
tools’ traffic (i.e., Tor, I2P, and JonDonym). They conducted experiments to analyze traffic
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at different grain from three different levels, and the highest level of application category
obtained a gain of F-measure up to +4.5% with respect to a similar work [17].

WF (Website Fingerprint) has also become an important branch of Tor traffic analysis.
Panchenko et al. [18] proposed a novel website fingerprinting attack in an open-world
scenario, and tested it on a huge real-world representative dataset. Their approach has a
better performance than all state-of-the-art methods in classification accuracy and consumes
less computational resources. They explored the limits of WF at the Internet scale. Rimmer
et al. [19] proposed a novel deep learning (DL)-based WF attack method, which can
automatically perform the feature engineering process. This DL-based WF approach
overcomes the failure of traditional manual feature engineering to cope with the new
changes introduced to the Tor network. They evaluated the method on the largest ever
dataset of WF and found that the best DL model performed with over 2% higher accuracy
than the state-of-the-art attack method [18]. In another work, Sirinam et al. [20] leveraged
a convolutional neural network to construct a WF attack model and evaluated it against
state-of-art defenses (e.g., WTF-PAD and Walkie-Talkie). Results showed over 98% accuracy
on non-defended Tor traffic, and achieved more than 90% accuracy when employing WTF-
PAD [21]. However, only 49.7% accuracy is achieved when applying Walkie-Talkie [22].
This method is still effective in open-world scenarios.

2. Tor PT traffic identification

Traffic analysis brings a huge threat to Tor’s anonymity; therefore, Tor has developed
some censorship-resistant PT tools to help people against traffic attacks in the Tor network.
Many efforts have attempted to de-anonymize PT traffic. Wang et al. [23] presented the
first comprehensive investigation of the detectability of five obfuscated traffic PT tools
used in Tor and constructed a framework to show that censors can reliably identify these
obfuscation tools with a sufficiently low false-positive rate. Shahbar et al. [24] applied
flow-based traffic analysis to evaluate the detecting performance of Tor PT. Adopting
a C4.5 classifier, they found that the use of Tor PT was distinguishable, although some
PTs changed the distribution of traffic or mimicked other traffic. Guan et al. [7] studied
PT-based Tor traffic identification under SSH-encrypted tunnels. The experimental results
show that the availability and untraceability of tunneled Tor traffic can be reduced through
traffic analysis based on machine learning algorithms.

Obfs4 is one of the most popular PTs. Through the analysis of the obfs4 communication
process, He et al. [8] proposed a two-stage identification method combining coarse-grained
filtering based on the randomness of message, time series of handshake phase and message
length distribution with fine-grained identification based on the SVM algorithm for high-
precision identification of Obfs4 traffic, and achieved 99% identification accuracy on their
own experimental datasets.

Meek is another popular PT on which much work has been done. Starting from
the connection characteristics of Meek, He et al. [9] combined static and dynamic packet
features, and performed analysis on the Meek flow fragmentation mechanism. They
extracted relevant features and achieved over 97% accuracy and 99% recall using the SVM
machine learning algorithm. Wang et al. [10] proposed a method using deep learning
methods to automatically learn and extract communication fingerprints using key packet
sequences for the efficient identification of Meek-based Tor hidden services access activities.
The method can significantly reduce the identification time and storage consumption and
achieve a better identification accuracy.

Snowflake, an emerging Tor PT based on WebRTC connections, has few research
works on it. Fifield et al. [25] analyzed differences in WebRTC instances by manual finger-
printing and experimentally discovered the possibility of classifying WebRTC applications
using fingerprinting methods. They pointed out the limitations of Snowflake in bypass-
ing censorship and indicated future directions for using WebRTC to evade censorship.
The threat modeling and circumvention of censorship are discussed by the same author
in [26]. They also discussed the design of Snowflake and WebRTC fingerprint information.
S. Frolov et al. [27] collected a wide range of TLS traffic in real-world data, and used these
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data to analyze TLS implementations of several popular censorship circumvention tools,
including Snowflake. From the collected fingerprint information, Snowflake has some
fingerprint features that significantly distinguish it from other applications. These works
are fragmented presentations for Snowflake or analyses of the possibility of Snowflake
identification by fingerprinting.

In summary, current research has focused more on the identification and classification
of Tor traffic than Tor PT traffic. With the improvement of the censors’ abilities, more and
more users prefer using Tor PT for anonymous communication. Research on Tor PT will be
a trend in the future. Previous work has provided direction and reference for our research,
but some existing methods are no longer applicable due to the development and changes
of Tor-Snowflake. Some of the works [10,28] identify hidden service access behavior under
Tor PT through key message sequences, but the start and end locations of key messages
are difficult to determine and can significantly affect the effectiveness of the identification.
In this paper, we study the emerging Tor PT Snowflake, for which there is little research
available on traffic identification and the identification of hidden service traffic.

3. Background
3.1. Threat Model

We begin by showing our threat model in Figure 1. We assume that the opponent can
passively observe user traffic, such as a network censor located at an ISP or with control of
a large-scale gateway. Censored users, who have normal access to web content, also tend
to evade censors through encryption, steganography, tunneling, anonymization, mutation,
morphing [29], and other methods. In the supervised network, the censor monitors the
packets transmitted in the network and obtains packets’ information without decrypting
them. They have certain computational and storage capacity to process traffic messages or
flow-related information. Then, they use statistical classification, machine learning, deep
learning and other methods to determine the user’s behavior.
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3.2. Communication Principle of Snowflake Protocol

The Pluggable Transport (PT) technology can obfuscate Tor traffic into the back-ground
traffic by cryptographic padding, domain fronting, or tunneling. Snowflake is a state-of-
the-art Tor PT based on WebRTC, built on the base of Flashproxy [30]. It also includes
the domain fronting in its communication process. Snowflake is more like a hybrid of
previous PT technologies, providing easy-to-use access to Tor for Tor users in the censorship
region. Snowflake is based on establishing WebRTC connections between peers and sending
access requests to the Tor network via browsers volunteering outside the censorship area.
WebRTC, the core technology that Snowflake relies on, is a web framework and suite
of protocols that support peer-to-peer connections between browsers. In the following
section, we will introduce the communication principle of Snowflake from two aspects:
the communication process of Snowflake and the UDP-based encrypted data transmission
protocol DTLS (Datagram Transport Layer Security).
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3.2.1. Snowflake Communication Process

Figure 2 illustrates the communication process of Snowflake. Snowflake consists of
three main components. The snowflake client is a Tor client configured with the snowflake
PT plugin, which is responsible for initializing service requests and establishing peer-
to-peer connections with snowflake proxies. The snowflake proxy is a small in-browser
WebRTC proxy that establishes a connection with the snowflake client by WebRTC and
relays Tor traffic to the Tor network. The broker is responsible for rendezvous and is used to
complete the online matching between the client and the snowflake proxies, which usually
requires domain-fronting techniques for establishing communication. Snowflake uses these
components to negotiate communications and build WebRTC connections to hide and
forward traffic to the Tor network. Snowflake’s communication process can be divided
into three main phases: the preparation phase, the rendezvous phase, and the WebRTC
connection establishment phase.
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1. Preparation phase

From the traffic of Tor-Snowflake visited websites collected in the experiment, we
found that the Snowflake client initiates DNS requests for a specific set of STUN domains
before it starts communicating. After getting the corresponding DNS response, it will
wait for a while and then initiate a DNS request for a specific domain-fronting server.
Finally, based on the IP address of the domain-fronting service, the subsequent rendezvous
phase is conducted. We refer to the process of a Snowflake client initiating a DNS request
for a specific set of domains as the preparation phase for Snowflake communication.
The discovery of this phase supports our subsequent proposal of the rule-based pre-
identification method for Tor-snowflake traffic.

2. Rendezvous phase

The second stage in the Snowflake communication process is the rendezvous phase. In
this phase, the snowflake client and proxy exchange information necessary for a WebRTC
connection via the broker. The snowflake client establishes an HTTPS connection with
the broker through domain-fronting technology. Domain-fronting technology [31] is an
application layer technology that hides the real destination address of HTTP messages
wrapped inside HTTPS by using different domain names at different communication
protocol levels.

In the rendezvous phase, the snowflake proxy and snowflake client establish connec-
tion with the broker, respectively. By sending a POST request to the broker, both parties
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exchange SDP (Session Description Protocol) information, which can support the establish-
ment of WebRTC peer connection. The SDP data in the rendezvous phase is transmitted
encrypted via TLS, so they cannot be extracted by message analysis. The detailed process
is referred to in Figure 2.

3. WebRTC connection establishment phase

The last phase of Snowflake communication is WebRTC (Web Real Time Communica-
tion) connection establishment. WebRTC is a set of protocols and technology combination
for negotiating bidirectional secure real-time communication between two WebRTC peers.
It is mostly used for P2P real-time communication in audio and video application sce-
narios. WebRTC connection establishment consists of four processes: signaling exchange,
connection establishment, secure encryption, and point-to-point communication.

The signaling exchange process is the rendezvous phase mentioned above. It presents
the following process in the network traffic. After sending a DNS response to the domain-
fronting servers [31], the snowflake client establishes a TLS connection and transfers SDP
information through it immediately.

The connection establishment process is essentially NAT traversal using ICE (Interac-
tive Connectivity Establishment) negotiation, which is a combination of the STUN (Session
Traversal Utilities for NAT) [32] and TURN (Traversal Using Relays around NAT) pro-
tocols to build peer-to-peer connections. Snowflake uses the STUN protocol to achieve
NAT traversal.

In a secure encryption process, Snowflake builds a data-channel based on the WebRTC
DTLS protocol to achieve secure data transmission. DTLS is similar to the TLS protocol,
except that DTLS is based on UDP as the transport layer. For a detailed analysis of the
DTLS protocol communication process, see Section 3.2.2.

In the peer-to-peer communication process, SCTP (Stream Control Transmission Pro-
tocol) is used to send and receive DTLS-encrypted data-channel messages between two
WebRTC peers with secure bidirectional communication.

Snowflake establishes a secure and reliable peer-to-peer communication tunnel be-
tween user browsers in the censorship region and volunteer browsers outside the censorship
region through the above processes. It passes user-generated Tor traffic to the Tor core net-
work to achieve censorship evasion, which poses a great challenge to the current censorship
and regulation against Tor.

3.2.2. DTLS Protocol Analysis

Facing the problems of UDP protocol such as no authentication of both communication
parties and no guarantee of reliable message transmission, DTLS provides an end-to-
end secure data transmission channel for UDP. It uses PSK (Pre-Shared Key) or ECC
(Elliptic Curve Cryptography) to achieve encryption during the handshake process, cookie
authentication mechanism and certificate to achieve authentication of both communicating
parties, adding sequential number, caching the message segment arriving out of order and
retransmission mechanism to achieve reliable transmission. In this paper, we study the
Snowflake based on DTLS1.2 [33] in WebRTC for encrypted data transmission. The process
of DTLS connection establishment can be divided into two phases: an initial handshake
phase and a data transfer phase.

In the initial handshake phase, similar to TLS, the client and server implement a DTLS
handshake which transfers multiple types of handshake messages. It allows them to verify
their identity and negotiate the keys, passwords, and other cryptographic parameters to be
used in the connection. During the data transfer phase, the communication is encrypted
with the agreed-upon method and secret.

Among these handshake messages, the Client Hello message and Server Hello message
contain a lot of fingerprint information. The Client Hello message contains the highest
supported version of DTLS, the handshake protocol length, random numbers, encryption
suites supported by the client, and optional extensions. Server Hello contains the DTLS
version supported by the server, the cipher suit chosen by the server, a random number, and
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an optional extension. They also contain message sequence, fragment offset and fragment
length fields. Since the length of the handshake message may exceed the MTU of the
UDP datagram (usually limited to 1500 bytes), the handshake message is split into several
fragments for transmission through the fragment mechanism. Since DTLS handshakes
are not encrypted, some features exist in these fingerprints that can significantly identify
different applications.

Snowflake’s DTLS fingerprint supports the identification of Snowflake traffic. Snowflake
is essentially a tool that attempts to mimic traffic, and it achieves obfuscation by trying to
make Snowflake’s WebRTC difficult to distinguish from other applications of WebRTC. But
there are still some differences. From the study of S. Frolov et al. [27], it is clear that the
fingerprint information extracted from Snowflake has high discrimination in the collected
fingerprint dataset from the experiment. From the analysis of WebRTC fingerprints of
Snowflake by D. Fifield et al. [26], it is clear that these differences are mainly found in the
DTLS handshake phase fingerprint information. Therefore, we propose a Snowflake traffic
identification method based on fingerprinting information in the DTLS handshake phase.

In the DTLS data transfer phase, both the client and server can transmit encrypted
and authenticated data with the negotiated key. Although the content of the commu-
nication is encrypted, features such as the payload length, direction and time interval
of the transmitted message can still reveal the circuit establishment process. These fea-
tures’ information supports our later-proposed method for identifying HS traffic in the
Tor-Snowflake scenario.

4. Architecture of Tor-Snowflake Traffic Identification Framework

In this section, we present a framework that identifies Tor-Snowflake traffic and
snowflake-based Tor HS access activity. The framework will be introduced in three parts:
the general introduction of the Snowflake traffic identification framework and the pre-
identification method, the Snowflake traffic identification method based on DTLS hand-
shake fingerprint information, and the HS access activity identification method in the
snowflake scenario based on DTLS data transmission message accumulative payload
feature extraction.

4.1. Snowflake Traffic Identification Framework

This section proposes a traffic identification framework for Tor’s latest PT Snowflake.
The framework of the Snowflake traffic identification and Tor hidden service access activity
identification under the Tor-Snowflake scenario is shown in Figure 3.
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First, we control clients through automated scripts and capture traffic generated
from clients into pcap files. We also collect traffic on the controlled gateway. Then, the
pre-identification of Snowflake access behavior is performed by a rule-based matching
approach. We analyze the pecp files according to the special behavior pattern of DNS
query before Snowflake communication. On this basis, we filtered suspicious UDP flow
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and extracted handshake fingerprint features of the DTLS protocol. These features were
combined and fed into an ML model and trained a classifier, which gives Snowflake’s
identification result. Furthermore, we extracted relevant statistical features and used our
proposed ACCUMUL method to process Snowflake’s DTLS flows. In the end, we used
the extracted features to train a Snowflake traffic classification model based on machine
learning algorithms to identify HS access activities in the Tor-Snowflake scenario.

In the following parts, we analyze the pre-identification method based on the Snowflake
communication process from the perspective of Snowflake communication messages.
Snowflake utilizes WebRTC technology to establish peer-to-peer connections that require
NAT traversal through STUN (Session Traversal Utilities for NAT) [32], which is mostly
used in real-time-communication scenarios. Snowflake provides a list of available STUN
server domain information, which is usually hard-coded in Tor’s configuration file torrc.
When the Snowflake client first starts up, it randomly selects a subset of these STUN server
lists to initiate DNS requests. It looks for the hostname resolution using both IPv4 and
IPv6(DNS ‘A’ and ‘AAAA’ records). The set of DNS request messages sent is shown in the
Figure 4.
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After completing the DNS query to the STUN server, a DNS request to the domain-
fronting server corresponding to the torrc hard-coded by snowflake PT will be sent. After
obtaining the response, a TLS connection for the rendezvous phase will be established with
the domain-fronting server immediately.

Based on the above analysis, the Tor-Snowflake traffic pre-identification proposed in
this paper consists of two main rules. The first rule is to extract the DNS queries initiated
by a single user in the packet to STUN servers in a short period of time. If these DNS
queries point to multiple STUN servers and these STUN servers are in torrc’s Snowflake
hard-coded list, the user is probably using Snowflake to try to access Tor, then turn to the
second rule of pre-identification. The second rule is based on the first rule, in which after
the client gets a DNS response to the above STUN server, the client continues to launch
DNS queries to the hard-coded domain-fronting server address in torrc. By the above two
rules, the suspicious Snowflake traffic can be filtered out.

4.2. Snowflake Identification Based on DTLS Handshake Fingerprint

Snowflake data transmission relies on WebRTC technology to establish communication
tunnels, and it uses DTLS to achieve secure and reliable encrypted data transmission [33].
DTLS reuses a lot of existing TLS code in its design, making the two protocol structures
similar, with comparable security mechanisms and protection levels, and ensuring reliable
data delivery. Therefore, the method of applying classification for TLS encrypted traffic
will also be applicable to the field of DTLS traffic identification to a certain extent.

In this paper, we propose a Snowflake traffic identification method based on DTLS
handshake fingerprinting information. This method is summarized from a previous
study [26] on the analysis of the TLS used in Censorship Circumvention. The traditional
TLS fingerprint-based application identification method usually constructs the extracted
fingerprint information into fingerprint tags by the hash algorithm, and identifies the corre-
sponding application by comparing it with a large database of fingerprint tags. We apply
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machine learning methods to construct models for the classification and identification of
Snowflake by using the extracted fingerprint information as features.

Based on the results of user pre-identification in the first step of the framework,
we parse the filtered suspicious traffic, merge UDP flows according to the five-tuple
information {srcIP, srcPort, dstIP, dstPort, Protocol}, and extract DTLS message protocols
from them. According to the DTLS handshake protocol layer format specification, we parse
the DTLS handshake messages and extract fingerprint information from the Client Hello
and Server Hello messages, respectively.

For successfully parsed Client Hellos, we extracted the DTLS record version, record
length, fragment offset, fragment length, length of cipher suites, list of cipher suites, length
of extension, and list of extensions. The above fingerprint information was used to form
the fingerprint characteristics of the DTLS Client Hello. In addition, the corresponding
server response Server Hello message is parsed, allowing us to see what cipher suite and
extensions were negotiated successfully. For each Server Hello message, we parsed the
DTLS record version, record length, fragment offset, fragment length, chosen cipher suite,
length of extension, and list of extensions. The DTLS handshake fingerprint information
we selected to extract is shown in the Table 1.

Table 1. Features selected from DTLS handshake process.

Feature Client Hello Server Hello

DTLS record version 3 3

Record length 3 3

Fragment offset 3 3

Fragment length 3 3

Cipher suite length 3 3

Cipher suites 3

Extension Length 3 3

Extensions 3 3

Cipher suit chosen 3

For the collected fingerprint features, we use the one-hot-encoding method for pre-
processing, which uses N-bit status registers to encode N states. Each state has its own
independent register bits, and at any moment, only one bit is valid, which is mostly used
in the scenario of distance or similarity calculation between features when dealing with
classification, regression, cluster, and other problems. Since with the machine learning
Random Forest algorithm it is easy to compare the importance of the impact of different
features on the classification results, we chose it to build a multi-classification model to
implement Snowflake traffic identification and feature importance ranking based on DTLS
fingerprint information features. The specific fingerprint recognition results and evaluation
will be presented in Section 5.

4.3. Snowflake Tor HS Access Identification Based on DTLS Data Message

By default, Tor provides anonymity protection for users but does not hide the identity
of the servers they visit, so the IP address information of a server can be obtained at the
exit node or at a location between the server and the exit node. Tor addresses the potential
privacy leaks faced by these service providers with the provision of hidden service. When
a Tor user requests a resource that is provided by hidden service, instead of establishing a
traditional three-hop circuit to the service provider, the Tor user establishes a connection to
rendezvous points through a series of steps, and relays traffic through that node to access
the hidden service. It shows that there is a significant difference in circuit construction
between Tor hidden service activities and general access activities, and this difference is
mainly reflected in the features of transmitted messages.

Tor-Snowflake still follows the communication and forwarding mechanism of Tor.
The Snowflake client just establishes communication tunnels with volunteer nodes out-
side the censorship area with the help of WebRTC technology to achieve access to the Tor
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network, which neither changes the operation mechanism of Tor nor affects the circuit
establishment process. Therefore, Snowflake communication is the upper layer protocol of
Tor communication, similar to the relationship between the UDP protocol and IP protocol.
After Snowflake completes the establishment of the communication tunnel with the peer
point, it encapsulates the Tor communication data messages generated by the client in the
data-channel of WebRTC for transmission. Since there is a difference in circuit establish-
ment between Tor HS activities and general access activities, we analyze the messages in
the DTLS data transmission phase of Snowflake PT. We propose a method based on the
accumulative total payload sampling of messages in the DTLS data transmission phase,
where a fixed number of m additional features are extracted from the accumulated message
payload length and combined with common traffic classification features such as statistical
characteristics of the communication packets, statistical characteristics of the packets inter-
val time, input–output message number ratio and size ratio to identify Tor- snowflake HS
access activities. Since the circuit establishment process exists only at the beginning of the
DTLS data transmission phase of Snowflake traffic, the first n messages of this phase are
extracted and our proposed feature selection method is performed.

Based on the Snowflake flow identified in the previous subsection, the DTLS data
transmission message is parsed to extract the encrypted payload length of the message.
The constituted length sequence S = (p1, . . . , pm). |pi| indicates the payload length of
messages, and the positive or negative value of p indicates the transmission direction of
messages, when pi > 0 indicates an output message, and pi < 0 indicates an input mes-
sage. The accumulative message payload in the data transmission phase can be expressed as
A (S) = ((0,0), (i1, a1), (iN,aN)), where iN indicates the message location index,
a1 = p1, ai = ai−1 + pi for i = 2, . . . , N. We obtain m equally spaced sampling points
A1, . . . , Am by sampling in the segmented linear interpolation function of the A sequence.
By this method, a fixed number of identifiable features can be extracted from Snowflake
flows of different lengths. Each sampling point contains the accumulative characteristics of
the length sequence of all previous messages, which implies the information of message
length and transmission direction during the circuit construction process. In addition, the
location of the sampling point sequence can also reflect the difference in different circuit
construction processes in the message transmission phase to a certain extent. In the next
section, we experimentally verify that the optimal combination of parameters (n, m) can
be achieved when choosing the first 300 messages during the DTLS data transmission
process and selecting 40 sampling points at equal intervals on the corresponding message
payload sequence in our experiment. The specific fine-tune process is described in detail in
Section 5.3. In the remainder of this paper, we refer to this feature extraction method based
on linear interpolation sampling of the accumulative message payload length in the DTLS
data transmission phase as ACCUMUL.

5. Experiment Evaluation

In this section, we perform experiments related to Snowflake traffic fingerprinting
and the optimal combination of extracted number of messages n and sampling point
frequency m. We analyze the effectiveness of Snowflake traffic identification and hidden
service identification in Tor-Snowflake scenarios by quantitative evaluation methods. In
this paper, we use the precision rate, recall rate, F1 score, and the time consumption of
traffic identification as evaluation criteria.

5.1. Data Collection

When a client is configured to access the website with a specific obfuscator PT
Snowflake, we capture the exchanged network traffic through the deployed automated
network traffic collection environment to form the Snowflake traffic dataset. We used an
experiment host with Ubuntu 22.04 and Tor 0.4.6.10 installed, which performed Snowflake
general access activities and Snowflake hidden service access activities in a real network
environment. We ran shell scripts and python scripts to control the state of the Tor service
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and automatically access web pages to generate traffic. We utilized the python scapy library
to automate traffic collection. For each visit, we start capturing traffic before opening a
new Tor-Snowflake process to access the web page, when we know from the status code
that a web page has been fully accessed and successfully responded, we close the Tor and
Snowflake processes after a delay of a few seconds (usually less than 5 s). Finally, we
terminate the traffic capture process. Therefore, in our experiment, when a client visits a
website, new connections and circuits will always be established. The traffic we capture
contains the full Tor or Tor hidden service circuit establishment process for each access.
In order to ensure that Snowflake successfully establishes a connection before web access
and to improve the availability of the collected traffic, we use the Linux kernel function
inotify [34] to monitor the changes in the Tor log file notices.log, capture the signal that
Snowflake PT successfully establishes a connection and use it as a flag to start web access.

Some previous work [35] has argued that traffic generated by automated scripts is not
as close to the real network environment as that generated by manual access. We take this
into consideration. In a real network environment, people visiting web pages will display
different operation latency and random behavior patterns. These are the weaknesses of
automated scripts. We overcome these drawbacks by adding latency in writing scripts and
by configuring the relevant parameters to mimic human behavior. Since training a credible
and available classifier requires multiple visits to the web to generate large amounts of
traffic, an automated script is a reliable choice.

The set of addresses accessed in the experiment consists of hidden service domains
and normal website domains. For the hidden service domains set, we randomly select
10,000 addresses from the websites previously obtained by our lab through the Tor hidden
service address search engine. For the normal domains set, we extract the Alexa Top
10,000 websites to form the address set. Combining the impact of the prevailing network
environment and the usage status of some websites, the effective traffic data generated by
the experimentally accessed addresses are shown in Table 2.

Table 2. Tor-Snowflake dataset structure.

Measures Flows

Tor-Snowflake Ordinary 5271
Tor-Snowflake HS 6150

In order to compare and determine the effectiveness of the method for identify-
ing Snowflake traffic based on DTLS handshake fingerprinting features, we combined
DTLS handshake traffic from other WebRTC applications collected during the study of
Snowflake indistinguishable by K. MacMillan et al. [36] with randomly selected flows from
the Snowflake traffic we collected, formed a new WebRTC DTLS handshake fingerprint
dataset. The effective traffic flow of the dataset is shown in Table 3.

Table 3. WebRTC fingerprint dataset structure.

Snowflake Facebook
Messenger

Google
Hangouts Discord

Flows 1855 1580 1995 1989

5.2. Fingerprint Model Identification Effect and Feature Importance Comparison

Based on the WebRTC DTLS handshake fingerprint dataset collected and composed in
the previous subsection, we conducted corresponding experiments on Snowflake-based Tor
traffic identification. We carried out comparison experiments on different machine learning
algorithms for extracting handshake fingerprint features to identify Snowflake traffic, and
discovered that the fingerprint features extracted by this method perform well and have
similar results for five machine learning algorithms, namely Random Forest, XGBoost,
AdaBoost, LinearSVM, and KNN. The specific experimental results are shown in Figure 5.
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The experimental results demonstrate that the fingerprinting method for Tor-Snowflake
traffic is effective and the average accuracy of different algorithms achieved more than
99.8%. This method can be applied to a wide range of machine learning models, and the
identification requires processing only a small number of DTLS handshake messages. The
experiment on the dataset shows that the method consumes less time for extracting finger-
print features and model training for classification, and has better real-time identification
of Tor-Snowflake traffic.

The importance ranking of the fingerprint features in the experiment according to
Random Forest is shown in Figure 6. The chosen cipher suite in Server Hello has the highest
feature importance of 18%. The fragment length of Server Hello, the cipher suites, and
the cipher suites length in Client Hello also have a great impact on the Snowflake traffic
identification model. The first four features combined can achieve about 50% importance.
From the server side of the Snowflake communication, the cipher suite chosen by the
volunteers outside the censored area during the handshake negotiation largely reveals the
application. The fragment length on the server side changes with the application form the
experiment results. The cipher suites content and length of the Client Hello message often
differ depending on client application. These fingerprint features can effectively guide the
identification of Tor-Snowflake traffic.
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5.3. Optimal Combination of Parameters

From Section 4.3, the key role in the proposed Tor HS identification method for the
Snowflake scenario is the selection of the first n messages in the data transmission phase and
the number of selected messages with accumulative payload length sampling frequency
m. The selection of the appropriate number of messages n can improve the identification
efficiency of the whole framework and maintain a good identification accuracy. In addition,
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for the selection of the m value, as m increases, the interval distance between sampling
points becomes smaller, and the loss caused by sampling will be less. On the other hand, a
large number of features will have a negative impact on the calculation time consumption,
which will reduce the learning efficiency and increase the risk of overfitting. In order to
obtain the best combination of parameters, we set the interval of the massage number n
from 50 to 350 and take 50 as the step size. The number of sampling points m range from
20 to 200 and are taken in steps of 20. We construct the model using the Random Forest
algorithm for testing. The results of the experiments are shown in Table 4.

Table 4. Experimental results for the optimal combination of parameters (n, m).

n = 50 n = 100 n = 200 n = 300 n = 350

m = 20 0.5425/1.27 0.5826/1.22 0.8791/1.03 0.9807/0.84 0.9806/0.79
m = 40 0.5301/1.56 0.5721/1.46 0.8844/1.27 0.9812/1.04 0.9796/0.98
m = 60 NULL 0.5772/1.70 0.8771/1.43 0.9813/1.23 0.9795/1.14
m = 80 NULL 0.5913/1.92 0.8763/1.62 0.9796/1.42 0.9801/1.30

m = 100 NULL 0.5927/2.12 0.8750/1.81 0.9801/1.58 0.9813/1.45
m = 120 NULL NULL 0.8783/2.01 0.9796/1.76 0.9796/1.59
m = 140 NULL NULL 0.8761/2.20 0.9795/1.92 0.9796/1.76
m = 160 NULL NULL 0.8778/2.37 0.9790/2.09 0.9807/1.92
m = 180 NULL NULL 0.8764/2.56 0.9796/2.26 0.9807/2.09
m = 200 NULL NULL 0.8757/2.55 0.9806/2.30 0.9801/2.09

The higher the precision rate, the smaller the number of n and m, and the less training
time is consumed, for the optimal combination of parameters we need. The balance
between the recognition effect of the model and the time consumption of feature extraction
is achieved. Therefore, the optimal number of messages in the data transmission phase is
the first 300 messages, and 40 sampling points are extracted as additional features by the
ACCUMUL method for the accumulative payload length in the data transmission phase.
From the experiment results, the optimal parameter combinations for (n, m) are (300, 40).

We believe that this method is more beneficial to reflecting the difference between the
construction of Tor circuits and Tor HS circuits, because it is implemented for the process of
circuit establishment by extracting the payload length of the transmitted data. There is no
decryption of the data, and these features are easily extracted. To summarize the above,
we believe that the method is portable and expandable, and can be applied to the future
problem of difficulty in identifying HS traffic brought about by the new obfuscated PT.

5.4. Comparison of Different Machine Methods on Tor-Snowflake HS Identification

We use the same five machine learning algorithms to partition the training set from
our own Tor-Snowflake dataset to train models and check the validity using a ten-fold
cross-validation method. We select the first 300 messages of the DTLS data transmission
and construct the dataset by sampling 40 sample points for the accumulative message
payload length. We construct the experiment results in the form of a confusion matrix
for calculating the accuracy rate, precision rate, recall rate, and F1-score. The recognition
performance of the five models is shown in Table 5.

Table 5. Recognition performance of five models.

Classifier Accuracy Precision Recall F1 Time

Random Forest 0.9917 0.9860 0.9825 0.9871 1.0498
K-Neighbors 0.9903 0.9856 0.9831 0.9867 0.0126

XGBoost 0.9897 0.9848 0.9820 0.9859 0.3623
AdaBoost 0.9858 0.9824 0.9815 0.9836 0.9731

SVM-Linear K 0.9763 0.9551 0.9406 0.9559 0.2953
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As seen from the table, our proposed method ACCUMUL achieves an accuracy of
over 99% in identifying HS traffic under the Tor-Snowflake scenario when building models
using RF and KNN. The result indicates that models constructed by extracting features
through ACCUMUL method can effectively identify Tor-Snowflake HS access activities
in the network. Among them, the Random Forest algorithm shows better results in most
evaluation metrics. The KNN algorithm is close to the results of RF, but its model training
time consumption is less. When using the ACCUMUL method to extract features to identify
HS access activities, the KNN algorithm would be a better choice, which can improve the
overall identification speed of the Tor-Snowflake traffic. The XGBoost and AdaBoost
algorithms also have a good performance in the results, but the linear classifier SVM has a
relatively poor performance. To summarize the above, the nonlinear classifier has a good
performance in identifying Tor-Snowflake HS access activities, and it is more appropriate
to choose KNN for model training of the framework for HS traffic identification.

6. Conclusions

Many illegal users and services hide their location and communications through Tor
and Tor Hidden Service, so-called Dark-Web. Tor introduced several PT to improve users’
anonymity and help them across the censorship. Multiple traffic classification methods
have been developed to de-anonymize Tor and PT. Snowflake is the latest release of Tor PT
based on the WebRTC, a multimedia peer-to-peer communication technology. It applies
UDP as the transport layer framework protocol, which defeat previous traffic classification
methods. In this paper, we propose a Tor-Snowflake traffic identification framework
F-ACCUMUL, which can identify if a user is connecting Tor through Snowflake PT and
whether he is accessing a hidden service. Specifically, we use a rule-matching method to
pre-identify traffic quickly. Then, we extract some fingerprint features of the Snowflake
DTLS handshake to identify the snowflake traffic accurately. On the basis of this, the
first 300 messages of the Snowflake DTLS data transmission phase are extracted and the
accumulative payload length are sampled (ACCUMUL). Finally, the Tor-Snowflake HS
traffic is identified. The results show that our proposed Tor-Snowflake traffic identification
framework can identify Snowflake traffic quickly and accurately. In addition, the feature
extraction ACCUMUL method can efficiently identify Tor-Snowflake HS access activities
by extracting additional features in combination with statistical features related to traffic
identification when choosing the parameter combination of (300, 40).

There are still some deficiencies in our research. The F-ACCUMUL Snowflake traffic
identification framework is able to identify Snowflake traffic in the network quickly and ac-
curately. In addition, it can effectively identify the activity of accessing HS in Tor-Snowflake
scenarios. However, our proposed identification method based on Snowflake handshake
fingerprinting can be resisted by PT developers by eliminating fingerprint information spe-
cific to the Snowflake DTLS handshake phase or morphing. This may lead to a long-term
offensive and defensive stalemate. In addition, our proposed framework uses machine
learning algorithms and does not involve deep learning algorithms. Therefore, in the future,
we need to propose a more robust approach for Tor-Snowflake traffic identification that can
adapt to the changes of Snowflake version updates. We will also test the effectiveness of
our proposed ACCUMUL method to identify HS access activities on other Tor PTs.
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