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Abstract: This study aimed to develop an optimal methodology for the design of a miniaturized,
1–3 piezoelectric composite focused ultrasound transducer. Miniaturized focused ultrasound (FUS)
devices, generally guided through catheters, have received considerable attention in the biomedical
and ultrasound fields as they can overcome the technical restrictions of typical FUS transducers.
However, miniaturized transducers cannot readily generate a high acoustic intensity because of their
small aperture sizes and the vibration mode coupling. As such, 1–3 composite transducers, having a
high electromechanical coupling and efficient vibration directivity, break through the current technical
restrictions. However, the systematic methodology for designing miniaturized FUS transducers
has not been thoroughly discussed so far. Therefore, in this study, we designed 1–3 piezoelectric
composite transducers using analytical and numerical methods. Specifically, extensive parametric
studies were performed through finite element analysis under the coupled field with piezoelectricity,
structural vibration, and acoustic pressure. The simulation results confirmed that the optimal design
of the 1–3 composite type transducer produces much higher (>160%) acoustic pressure output at the
focal point than the single-phase device. Furthermore, the array type of the interstitial transducer
was predicted to produce an unprecedented acoustic intensity of approximately 188 W/cm2 under a
short duty cycle (1%). This study will provide valuable technical methodology for the development
of interstitial, 1–3 composite FUS transducers and the selection of optimal design parameters.

Keywords: 1–3 composite; piezoelectric; focused ultrasound; miniaturized transducer; transducer design

1. Introduction

Ultrasound has been commonly used for medical purposes owing to its safety, effective
penetration, and radiation-free characteristics [1,2]. Focused ultrasound (FUS) is one of the
emerging technologies in the biomedical field. FUS concentrates acoustic energy to the focal
spot, thereby heating or ablating the target issue [3]. FUS waves targeted at a tissue cause
a vibration of the biomolecules, which results in the generation of frictional heat [4]. The
rise in temperature of a tissue beyond a certain threshold causes the coagulative necrosis of
the tissue [5].

Conventional high-intensity FUS performs non-intrusively, delivering ultrasound
waves from the outer side of the body [6,7]. The conventional modality is still attractive
as a noninvasive medical treatment. However, non-intrusive FUS techniques should be
performed with care, as FUS delivered in an indirect manner may cause unwanted damage
to healthy tissue and complications after the treatment [8]. Moreover, some bio-organs
that lie behind a media with a high acoustic impedance, such as bones, are challenging
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to treat with the noninvasive FUS method [9]. Therefore, precise monitoring of the tar-
get lesion, such as with MRI or CT imaging, may be required during noninvasive FUS
ultrasound treatment [9,10].

In recent years, interstitial FUS has been actively studied to overcome the technical
restrictions in the noninvasive FUS [11–13]. Miniaturized FUS transducers, generally di-
rected through catheters, are capable of heating and directly ablating the target tissue
by transmitting acoustic waves near the target [14–16]. The direct application of acoustic
waves can minimize the potential of damage in unwanted tissues compared to the typical
noninvasive FUS modality. However, the geometric restriction of the aperture of the device
is one of its most challenging issues as the aperture size directly affects the efficiency of the
acoustic transmission.

Piezoelectric materials, such as PZT, are most commonly used as active layers of FUS
devices owing to their effective energy conversion and the fast response time [17]. PZT
materials, due to the benefits, have been commonly used in various engineering fields,
including sound and vibration control, biomedical imaging, structural health monitoring,
and so on [18–21]. The thickness and the piezoelectric property of the active layer determine
the operating frequency of the device when the vibration modes along the thickness and
the lateral directions are decoupled [22]. However, as for interstitial, miniaturized, FUS
transducers, in the case where the lateral dimension becomes similar to the thickness, the
vibration mode along the thickness direction is coupled with the lateral mode, resulting in
an inefficient transmission of acoustic waves.

The composite type of the active element may not have the geometric restrictions
of the single-phase piezoelectric transducers. For example, a 1–3 composite (1-D connec-
tion of the piezoelectric element and a 3-D connection of polymer matrix) piezoelectric
material comprises small-width piezoelectric columns combined with a passive media
such as epoxy [23]. All the individual active elements have a relatively small width com-
pared to the thickness of the device; thus, it exhibits a distinguished thickness vibration
mode [11,23]. In addition, the 1–3 composite structure normally decreases the overall acous-
tic impedance level, reducing the acoustic mismatch between the transducer and the target
acoustic medium such as blood, water, and bio tissues [23–25]. As such, due to its potential
benefits, 1–3 piezocomposites have been widely employed for the industrial [26–28] and
the biomedical applications [29–31].

For decades, there have been some engineering efforts to analyze the characteristics
of 1–3 piezoelectric composite through numerical simulations. For example, Hayward
and Hossack examined geometric influences, such as pillar shape, pillar orientation, and
pillar slope, on the dynamic and electromechanical properties in the 1–3 piezoelectric
composite design, through finite element analysis (FEA) [32,33]. Hayward and Gachagan
demonstrated the numerical analysis of an air-coupled 1–3 composite transducer in respect
of the influence of air propagation [34]. Kim and Roh proposed a homogenizing method of
1–3 piezo composites and verified the feasibility through the FEA [35]. Kim et al. simulated
mechanical stress in the interfacial area of a flexible 1–3 composite transducer [36]. Another
Kim et al. demonstrated the benefits of 1–3 composite transducer with the wide frequency
bandwidth, capturing pulse-like signals in an enhanced accuracy [27]. However, in past
research, there has been a lack of investigations on the extensive parametric study through
structure-acoustic coupled numerical analysis and the corresponding influence on the actual
acoustic pressure output in interstitial FUS transducer. Therefore, given the recent increase
of attention to the interstitial FUS transducers, the systematic methodology to predict the
performance of such miniaturized transducers under coupled physical conditions is very
substantial and meaningful to reduce engineering cost before fabricating the actual device.

The goal of this study is to design a miniaturized (<2 mm in the aperture size) FUS
transducer with a 1–3 piezoelectric composite (Figure 1) and to predict the performance
of the new design by using FEA. In this study, we hypothesized that the 1–3 piezoelectric
material is beneficial for the efficient delivery of ultrasound waves along the thickness
direction owing to the decoupling of the lateral vibration mode. The research scope of
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this study is to design a miniaturized, interstitial, 1–3 piezo composite FUS transducer
and to validate the feasibility through computer simulation. This article is organized as
follows. In the method section, we introduce the analytical and numerical models to predict
the acoustic pressure output over the acoustic field. The design method for the confocal
FUS transducer is also demonstrated. The result section will provide the influence of the
extensive parametric variation on the transducer performance. The simulation results
will suggest the optimal design of a single 1–3 composite element and will predict the
performance of the confocal transducer. Finally, we will make the relevant discussions
on the simulation results, followed by the conclusion of the research. The study provides
a promising, novel design of the interstitial FUS transducer capable of delivering a high
acoustic intensity.
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Figure 1. Schematic of the miniaturized, interstitial, focused ultrasound transducer, directed by the
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2. Materials and Methods
2.1. 1–3 Piezoelectric Composite Design

Figure 1b illustrates a 1–3 composite transducer in the thickness mode. This model is
symmetric of strain in the x-y direction. The transducer operates by using the E3 field. In
addition, the model satisfies the identical vertical strain and electric field requirements for
polymer and piezoelectric rods.

The effective constitutive equation was derived as follows [19,37]:

T3,eff = cE
33,effS3,eff − e33,effE3,eff, (1)

D3,eff = e33,effS3,eff + εS
3,effE3,eff, (2)

where cE, e, ε, T, S, D, and E are the stiffness under free electric field, piezoelectric constant,
dielectric permittivity, stress, strain, electric displacement, and electric field, respectively.
The superscript denotes the direction of each parameter. cE, e, and ε of a 1–3 composite
having the volume fractions V and V in the active and the passive materials, were derived
as follows [19,37]:
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The resonance frequency (f r) of composite transducers is determined by the relation

kt,eff =

√
π

2
fr

fa
tan
(

π

2
fa − fr

fa

)
, (6)

fa =
vL,eff

2h
, (7)

where f r and f a are the resonance and the anti-resonance frequencies, respectively, kt,eff is
the effective electromechanical coupling, ρeff is the effective density, and vL,eff is the speed
of sound in the composite.

Figure 2 shows the simulated properties of the 1–3 composite composed of PZT-4
and epoxy material. We chose PZT-4 as the active material as PZT-4 is mechanically
robust while having a sufficiently high piezoelectric coefficient [38]. Its effective stiffness
becomes lower than that of the single-phase material when a polymer (i.e., epoxy) with
a relatively low elastic modulus is added to it (Figure 2a). The addition of the passive
layer made the piezoelectric constant and the dielectric permittivity low, as shown in
Figure 2b,c. By contrast, the effective coupling coefficient exhibits the maximum value
in the 1–3 composite phase (Figure 2d). For example, the maximum effective coupling
coefficient is approximately 0.46 at 64% of the PZT-4 volume fraction, whereas the coupling
coefficient in the single-phase material is 0.38. The operation (or the resonance) frequency
of the transducer is determined by the thickness of the transducer (Equations (6) and (7)).
Figure 3 shows the predicted resonance frequency of the PZT-4/epoxy 1–3 composite
transducer at various thicknesses of the transducer. Table 1 lists the material properties
used for the analytical and numerical simulations.
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Figure 3. Prediction of the resonance frequency in the thickness vibration mode of the 1–3 piezoelectric
composite transducer.

Table 1. Material properties in the numerical simulation [14,29,37].

Material Properties Value

PZT-4

Density ρ (kg/m3) 7500

Stiffness under free electric field

cE
11 (×109 Pa) 139.0

cE
33 (×109 Pa) 115.4

cE
31 (×109 Pa) 74.3

cE
15 (×109 Pa) 25.6

Piezoelectric coefficient
e31 (C/m2) −5.2

e33 (C/m2) 15.1

Dielectric permittivity
εS

11/ε0 762

εS
33/ε0 663

Epoxy

Density ρ (kg/m3) 1100

Stiffness
cp

31 (×109 Pa) 5.3

cp
33 (×109 Pa) 3.1

2.2. Finite Element Analysis for Transducer Design

Figure 4 shows the procedure of the numerical simulation for the design optimization
of the 1–3 piezoelectric composite transducer. First, the piezoelectric volume fraction
exhibiting the maximum coupling coefficient was determined. Next, the thickness of the
1–3 composite was determined to obtain the target operation frequency at the piezoelectric
volume fraction. The thickness and the volume fraction, estimated through the analytical
simulation, were used as the reference information for the numerical simulation (i.e., FEA).

Figure 5a shows the finite element model and the boundary conditions. For the
simulation, we used the ANSYS Workbench (v. 19.2, Canonsburg, PA, USA), a commercially
available software. The 1–3 composite transducer had a piezoelectric volume fraction of
64% so that it could exhibit the maximum electromechanical coupling. It is worth noting
that the analytical model cannot explain the influence of the kerf width in the composite
material, which must be investigated through FEA. A voltage of 100 V (AC) and ground
conditions were applied at the upper and lower surfaces of the piezoelectric rods. The
mechanical vibration of the 1–3 composite transducer was transferred to the acoustic model
through the fluid-structure interaction condition at the outer surfaces of the transducer.
The acoustic media was set as water. The lower surface of the transducer was regarded
as having air backing after applying the impedance condition of 500 Rayls [11,31]. For
computation efficiency, a quarter model was utilized for the simulation.
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nance frequency (b) for the prediction of the acoustic pressure output in the 1–3 composite transducer.

The pressure and the acoustic intensity outputs, produced by the single-phase and the
1–3 composite transducers, were computed through FEA and were compared with each
other at the same frequency conditions for fair comparison (Figure 5b). Once the frequency
effect was confirmed, the influence of the lateral size of piezoelectric rods was examined. It
is noticeable that the analytical solution was estimated by the overall volumetric ratio of
the piezoelectric material in the composite, ignoring the influence of the lateral vibration of
the active elements.

2.3. Design of Arrayed FUS Transducer

For the side-viewing FUS device, the axial dimensions are relatively free from the
dimensional restriction compared with the forward-viewing device [12,39]. Therefore,
we employed the linearly aligned, confocal, miniaturized, side-viewing, FUS transducer
that was composed of the 1–3 piezoelectric composite material (Figure 1a). Specifically,
each transducer was aligned along the same focal distance. The confocal design was
expected to be able to potentiate the resulting acoustic pressure output by concentrating
the acoustic energy at the focused point. The kerf width for the final design was chosen
as approximately 15 µm, corresponding to the thickness of the commercially available
dicing saw. Changes in the acoustic pressure and the acoustic intensity were observed after
increasing the number of participating transducer elements. The numerical simulation
used the boundary conditions described in Section 2.2.
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3. Results
3.1. Simulation Results for Acoustic Pressure

Figure 6 shows the acoustic pressure fields at some chosen frequencies for the single-
phase and the 1–3 composite transducers. In every frequency case, the 1–3 composite
transducers exhibit much higher acoustic pressure outputs compared with the single-phase
transducers, as shown in Figure 7. The percentile difference in the acoustic pressure output
reduced as the operating frequency increased (Figure 7). However, the acoustic pressure
output in the 1–3 composite transducer was still much larger than that of the single-phase
device. For example, the acoustic pressure output in the 1–3 composite was approximately
160% greater than that of the single-phase one under the 5 MHz operation condition.

Appl. Sci. 2023, 13, 615 7 of 15 
 

3. Results 
3.1. Simulation Results for Acoustic Pressure 

Figure 6 shows the acoustic pressure fields at some chosen frequencies for the single-
phase and the 1–3 composite transducers. In every frequency case, the 1–3 composite 
transducers exhibit much higher acoustic pressure outputs compared with the single-
phase transducers, as shown in Figure 7. The percentile difference in the acoustic pressure 
output reduced as the operating frequency increased (Figure 7). However, the acoustic 
pressure output in the 1–3 composite transducer was still much larger than that of the 
single-phase device. For example, the acoustic pressure output in the 1–3 composite was 
approximately 160% greater than that of the single-phase one under the 5 MHz operation 
condition. 

 
Figure 6. Comparison of the acoustic pressure fields produced by the 1-phase and the 1–3 piezoe-
lectric composite transducers under the operation frequencies of (a) 2 MHz, (b) 3 MHz, (c) 4 MHz, 
and (d) 5 MHz. 

 
Figure 7. Comparison of acoustic pressure outputs in the single-phase and the 1–3 composite trans-
ducers at selected frequency conditions. 

Figure 6. Comparison of the acoustic pressure fields produced by the 1-phase and the 1–3 piezoelectric
composite transducers under the operation frequencies of (a) 2 MHz, (b) 3 MHz, (c) 4 MHz, and (d) 5 MHz.

Appl. Sci. 2023, 13, 615 7 of 15 
 

3. Results 
3.1. Simulation Results for Acoustic Pressure 

Figure 6 shows the acoustic pressure fields at some chosen frequencies for the single-
phase and the 1–3 composite transducers. In every frequency case, the 1–3 composite 
transducers exhibit much higher acoustic pressure outputs compared with the single-
phase transducers, as shown in Figure 7. The percentile difference in the acoustic pressure 
output reduced as the operating frequency increased (Figure 7). However, the acoustic 
pressure output in the 1–3 composite transducer was still much larger than that of the 
single-phase device. For example, the acoustic pressure output in the 1–3 composite was 
approximately 160% greater than that of the single-phase one under the 5 MHz operation 
condition. 

 
Figure 6. Comparison of the acoustic pressure fields produced by the 1-phase and the 1–3 piezoe-
lectric composite transducers under the operation frequencies of (a) 2 MHz, (b) 3 MHz, (c) 4 MHz, 
and (d) 5 MHz. 

 
Figure 7. Comparison of acoustic pressure outputs in the single-phase and the 1–3 composite trans-
ducers at selected frequency conditions. 
Figure 7. Comparison of acoustic pressure outputs in the single-phase and the 1–3 composite
transducers at selected frequency conditions.



Appl. Sci. 2023, 13, 615 8 of 15

Figure 8 shows the variations of the acoustic pressure outputs of the 1–3 composite
transducer with the width of the piezoelectric rods. The dimension ratio between the
length and thickness of the piezoelectric rod had a significant effect on the acoustic pressure
output. For example, the pressure level at the focal point was potentiated by decreasing the
lateral dimension of each piezoelectric rod (i.e., lower dimension ratio). Table 2 lists the
dimension ratios of the piezoelectric rod and the corresponding acoustic pressure outputs.
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Figure 8. Acoustic pressure output at the focal point with respect to the width of the piezoelectric
rods in the 1–3 composite transducer.

Table 2. Acoustic pressure output at 5 MHz with respect to the width-to-thickness ratio of the
piezoelectric rod in the 1–3 composite transducer.

Width of
Piezoelectric
Rods (µm)

Dimension Ratio
(Width-to-Thick) Max. Pressure (MPa)

Array Dimension of
the

Piezoelectric Rods

200 µm 0.625 2.97 8 by 8

100 µm 0.313 6.65 16 by 16

50 µm 0.156 7.60 32 by 32

25 µm 0.078 7.73 64 by 64

3.2. Simulation Results for Electric Impedance

The mechanism affecting the performance of the 1–3 piezoelectric composite was
examined through the electric impedance responses. Figure 9 presents a comparison of
the electric impedances of the single-phase and the 1–3 composite transducers at each
frequency condition. Electric impedance in the single-phase transducer did not show a
clear resonance peak at the designed thickness of the piezoelectric material. Nonetheless,
at higher frequency conditions (e.g., 5 MHz in Figure 9d), the resonance peak became more
dominant, approaching the designed frequency range. Therefore, the 5 MHz, single-phase
transducer could produce a relatively high acoustic pressure output compared with the
lower frequency cases.

By contrast, electric impedance in the 1–3 composite transducer exhibited the pre-
dominant resonance peak at the designed frequency range. The frequency bandwidth was
also relatively broad for the 1–3 composite design. Moreover, the secondary resonance
frequencies were far from the main resonance band. Figure 10 shows the variation in the
electric impedance curve with respect to changes in the dimension ratio of the piezoelectric
rod in the 1–3 piezoelectric composite. At a high dimensional ratio (e.g., 200/320 µm,
width/thickness), the frequency peak at resonance seems to be affected by the other vibra-
tion mode, showing a kind of discontinuity around the resonance and the anti-resonance
frequencies. Nonetheless, in all the width cases except the 200 µm case, the impedance level
and the resonance frequency were all very similar, with a difference of approximately 2%.
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3.3. Simulation of Confocal, Linear Array, Transducer

The mechanism affecting the performance of the 1–3 piezoelectric composite was
examined through the electric impedance responses. The simulation was conducted with
free boundary conditions to observe the vibration mode shape related to the transducer
structure only. The unit and zero voltages are applied at the top and the bottom sur-
faces, respectively. Figure 9 compares the electric impedances of the single-phase and the
1–3 composite transducers at each frequency condition. Electric impedance in the single-
phase transducer did not show the clear resonance peak at the designed thickness of the
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piezoelectric material. For example, Figure 10 demonstrates the vibration mode shapes in
the single and the 1–3 composite transducers. The 1–3 composite transducer predominantly
deformed along the thickness direction while the lateral vibration was well suppressed. In
contrast, vibration pattern in the single-phase transducer was highly affected by the higher
modes of the lateral vibration. Nonetheless, at higher frequency conditions (e.g., 5 MHz
in Figure 9d), the resonance peak became more dominant, approaching the designed fre-
quency range. Therefore, the 5-MHz, single-phase transducer could produce a relatively
high acoustic pressure output compared to the lower frequency cases.

In contrast, electric impedance in the 1–3 composite transducer exhibited the pre-
dominant resonance peak at the designed frequency range. The frequency bandwidth
was also relatively broad with the 1–3 composite design. Moreover, the secondary res-
onance frequencies were far apart from the main resonance band. Figure 11 shows the
variation of the electric impedance curve with respect to the change in the dimension ratio
of the piezoelectric rod in the 1–3 piezoelectric composite. In a high dimensional ratio
(e.g., >200/320 µm, width/thickness), the frequency peak at the resonance seems like being
affected by the other vibration mode, showing a kind of discontinuity around the resonance
and the anti-resonance frequencies. Nonetheless, in the width cases below 200 µm, the
impedance level and the resonance frequency were all very similar with a difference of
about 2%.
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3.4. Simulation of Confocal Transducer

The advantages of the 1–3 composite transducer were confirmed by comparing the
performances of the 1–3 composite and the single-phase transducers. Based on the con-
firmed design of the 1–3 composite, a confocal transducer was designed to further intensify
the pressure output. Few additional active elements were deployed along with using the
identical focal point, where the focal point was given by the focal depth (i.e., 4.3 mm)
estimated from the single 1–3 composite transducer.

Figure 12a shows the acoustic pressure fields achieved by the multi-element of
1–3 composite piezoelectric transducers, where the volumetric percentage is 64% and the
rod width is 61.5 µm for the piezoelectric material. As shown in Figure 12a,b, the acoustic
pressure and the acoustic intensity were magnified by employing more transducers and
focusing the acoustic beam on the identical focal point. The electric impedance level at the
resonance was also reduced by adding more active elements (Figure 12c). Table 3 sum-
marizes the performance of the miniaturized, 3-by-1 arrayed 1–3 composite piezoelectric
transducer. The maximum acoustic pressure output reached over approximately 23.6 MPa
in the zero-to-peak level on applying just 100 V (AC) to the miniaturized FUS device. The
acoustic intensity in the spatial-peak time-averaged level was estimated as approximately
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188 W/cm2 with a short duty cycle (i.e., 1%). Finally, the high acoustic area over 20 MPa
was positioned within a spatial boundary of approximately 1 mm.
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acoustic pressure field with respect to the number of the transducer elements, (b) the acoustic
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impedance responses with the varying number of active elements in the water media.

Table 3. Simulated specification of the designed focused ultrasound transducer.

Specification Unit Value Specification Unit Value

Num. of elements - 3 by 1 Acoustic intensity W/cm2 188.2

Aperture size mm2 2 × 2 Acoustic pressure MPa 23.6

Operation freq. MHz 5 MHz Electric impedance Ohm 7.8

4. Discussion

The numerical simulation results revealed the performances of the single-phase and
the 1–3 composite transducers. The single-phase transducer could not produce a higher
acoustic pressure output than the 1–3 composite one, as shown in Figures 6 and 7. This
is because the thickness of the active layer, which determines the operation frequency,
approaches the lateral size of the active element in relatively low-frequency operation
conditions (e.g., <5 MHz). The close resonance frequencies of the vertical and the lateral
vibrations cause coupling of the vibration modes. Figure 9 shows the vibration coupling in
the electric impedance response. For example, for the single-phase transducers (i.e., dashed
lines), the lateral vibration modes are found in many different frequency bands, which
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interfere with the thickness vibration mode. Consequently, the high impedance due to the
mode coupling has an adverse effect on the generation of the acoustic pressure output from
the FUS transducer. However, the influence of the vibration coupling in the miniaturized
transducer design is difficult to eliminate in the typical single-phase transducer as the
lateral dimension of the active layer must be relatively small in accordance with the size of
the lumen where the FUS device would travel in the human body.

By contrast, the electric impedance curve in the 1–3 composite design shows a clear
resonance with a relatively broad frequency band (Figure 9). The high electromechanical
coupling (e.g., ~46% in the 1–3 composite and ~38% in the single-phase) and the predomi-
nant thickness vibration mode could produce a relatively high acoustic pressure output,
as shown in Figure 6. The lateral dimension of the small piece of the piezoelectric rods
was differentiated from the thickness size by employing the 1–3 composite design, which
resulted in the de-coupling of the lateral and the thickness vibration modes. Nonetheless,
the width of the single piezoelectric rod in the 1–3 composite could still affect the perfor-
mance of the transducer in the case where the width was not small enough compared
to the thickness. Specifically, even though there was no significant change in the electric
impedance with respect to the lateral dimension (Figure 11), the acoustic pressure output
was affected by the lateral size of the single piezoelectric rods in the 1–3 composite (Fig-
ure 8). For a relatively large lateral dimension, the dimensional ratio became small, causing
interference of the lateral vibration mode and the corresponding low acoustic pressure
output along the thickness direction. Therefore, the dimension ratio of the piezoelectric rod
in the 1–3 composite needs to be small enough (<~1:6) to isolate the mode coupling effect.
In other words, according to the simulation results, it was suggested that the width of the
piezoelectric rod should be approximately six times smaller than the thickness. However, a
too-small size of the piezoelectric rods may compromise the feasibility of fabrication.

We, in this study, determined the geometric parameters of a single 1–3 piezo composite
based on the simple procedure described in Figure 4. The approach assumed that the
transducer with design parameters chosen by the maximum coupling value would produce
the almost maximum acoustic pressure output. However, as shown in Figure 2b, the
electromechanical coupling slightly changes in the span of from about 0.25 to 0.94 of the
piezoelectric volume fractions. Therefore, we examined if the criteria to select the maximum
coupling region would be reliable. For example, -5% reduction in the coupling value
compared to the maximum makes two opposite scenarios; the first condition exhibits low
acoustic impedance (i.e., reduction in the acoustic mismatch) (Figure 13a), yet the second
one occupies a dense piezoelectric volume while compromising the acoustic impedance
(Figure 13c). The thickness of the transducer was, in each simulation model, adjusted to
correspond to the new speed of sound, caused by the change of electromechanical coupling.
Figure 13a,c demonstrated the trade-off between the acoustic impedance and the piezo
volume fraction. Therefore, the selection of the maximum electromechanical coupling can
be a decent criterion for designing the FUS transducer design. Once the performance of
a single 1–3 composite element is confirmed, the additional design effort can be made in
terms of the matching, the backing, and the confocal design.

For example, in Figure 12, the multi-element, confocal, 1–3 composite transducer was
capable of delivering an acoustic pressure of approximately 23.6 MPa with a 100 V (AC)
application. The corresponding acoustic intensity was over 188 W/cm2 in a short duty
cycle (i.e., 1%). The spatial resolution of the maximum pressure region was also improved
by employing the arrayed FUS design and concentrating the acoustic energy at a spot.
Therefore, the new therapeutic FUS device designed in this study can be used in new
clinical applications, such as in precise, interstitial (or intravascular) histotripsy. In the
future, we shall investigate miniaturized, confocal, 1–3 piezoelectric composite transducers
for application to tissue ablation in an interstitial manner using high acoustic intensity with
precise spatial resolution under a low electric input power.
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5. Conclusions

In this study, we investigated a miniaturized (<2 mm in diameter), 1–3 composite FUS
transducer with the aid of coupled numerical analysis. This study suggested a systematic
design process and implemented extensive parametric studies for the design of the new
miniaturized FUS transducer. The 1–3 composite transducer does not have the technical
restrictions of the conventional single-phase transducer such as the mode coupling issue.
Therefore, the 1–3 composite transducer could produce a high acoustic pressure of approxi-
mately 7.6 MPa that is much greater (>160%) than that of the single-phase one. Furthermore,
the parametric study demonstrated that the thin kerf width in the 1–3 composite design
would be desirable for obtaining a high acoustic pressure output. Based on the parametric
studies, a 3-by-1 FUS transducer was designed. The new device was predicted to deliver
an unprecedented level of the acoustic pressure output (>20 MPa) and acoustic intensity
(~188 W/cm2) in a narrow spot (<1 mm). Therefore, the new transducer design can be uti-
lized for precise tissue ablation inside the human body. In future work, we will implement
the verification of the actual performance of the device for therapeutic applications.
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